Identificación de diferentes modos de operación en bombas hidráulicas de caudal fijo con pistones axiales mediante técnicas de aprendizaje automático

dc.contributor.advisorRestrepo Martínez, Alejandro
dc.contributor.authorAlzate Rincón, César Augusto
dc.date.accessioned2022-06-03T14:59:58Z
dc.date.available2022-06-03T14:59:58Z
dc.date.issued2022-05
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEste trabajo busca identificar diferentes condiciones de operación en las bombas de pistones axiales de eje desviado mediante técnicas de análisis predictivo; la tesis expone la identificación de diversas situaciones de operación del equipo, que permitan extraer sus principales características de operación y establecer criterios claros de decisión ante posibles fallos en el equipo. La bomba de pistones axiales de eje desviado objeto de este estudio, hace parte de una máquina inyectora de una importante compañía de inyección de poliuretano ubicada en la ciudad de Medellín, donde las mediciones fueron tomadas durante el proceso productivo de inyección de espumas y las diferentes referencias de productos representan sus distintos modos de operación. La toma de datos de operación se dio a través de la medición de señales temporales como vibraciones, emisiones acústicas, ultrasónicas y campos magnéticos, discriminando diferentes niveles de exigencia del equipo. Esta información medida tendrá una etapa de análisis y descripción en el dominio del tiempo y la frecuencia mediante diferentes técnicas, así se facilitará un proceso de clasificación con estrategias de agrupamiento y redes neuronales; y finalmente se examinará el rendimiento de la clasificación con herramientas gráficas de evaluación. El resultado del desarrollo de la tesis hará posible comparar los diferentes métodos utilizados determinando la mejor sugerencia para un plan de diagnóstico de las bombas de pistones, que será el principal insumo de un programa de mantenimiento basado en la condición del equipo que garantice un prolongado ciclo de vida con eficiencia y eficacia en su operación. (Texto tomado de la fuente)spa
dc.description.abstractThis work searches identify different operation conditions of bent axis piston pumps through predictive analysis techniques; the thesis shows various situations of equipment operation, it enables to take its main operating features and establish decision criteria before of equipment fail. The bent axis piston pumps factual of this investigation is part of an injection machine of a major company of polyurethane injection located at Medellin city, where the measures were taken during productive process of foams injection and the different products references represent its modes of operation. The operation data acquisition was given through the measurement of variables like vibrations, acoustic emissions, ultrasonic emissions and magnetic fields, discriminating the exigence levels of equipment. This information will have an analysis and description phase in time and frequency domain through different techniques; so, it will facilitate a classification process with clustering strategies and neural networks; finally, it will review the classification performance whit evaluation graphic tools. The development result will make possible to compare the used methods determining the better suggestion for a piston pumps diagnostic plan, it will be the main input of a maintenance plan based on equipment condition for warranting a long life cycle with efficiency and efficacy in its operation.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.format.extentxiv, 83 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81501
dc.language.isospaspa
dc.publisherUniversidad nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Mecánicaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.referencesAjit Kumar Pandey, K. Dasgupta, N. Kumar and Alok Vardhan: “Leakage Analysis of Bent-axis Hydro-motors: An Experimental Study”. Journal of the Chinese Society of Mechanical Engineers, Vol.38, No.1, pp 93~98 (2017).spa
dc.relation.referencesPavel SRB, Michael Petru: “Numérical simulation of composite car seat cushion”. MM Science Journal, june 2020, DOI : 10.17973/MMSJ.2020_06_2020011spa
dc.relation.referencesCarlo Fiorentini, Caronno Pertusella, Maurizio Corti,Caronno Pertusella: “Method and apparatus for feeding a polyurethane mixture into hollow bodies”. European patent office, EP2366525A1. Pub. No. US 2011/0221085A1spa
dc.relation.referencesWanner International Ltd: “Diaphragm pumps for polyurethane production”. World Pumps: Volume 2013, Issue 1, Page 8. January 2013.spa
dc.relation.referencesRAMPF Group, Inc: “Dosing pumps for sealing compounds”. World Pumps: Volume 2009, Issue 519, Pages 20-21. December 2009spa
dc.relation.referencesKazushige Nakagawa: “Bent axis type axial piston pump or motor”. European Patent Office, EP0158084B1. Patent Patent Number:4872394. Date of Patent: Oct. 10, 1989spa
dc.relation.referencesG.S. Highfill, L.A. Halverson: “Lowering total cost of ownership with breakthrough magnetic torque transfer technology”. IEEE Xplore. DOI: 10.1109/CITCON.2006.1635720. Cement Industry Technical Conference, 2006. Conference Record. May 2006spa
dc.relation.referencesJie Tao, Yilun Liu, and Dalian Yang: “Bearing Fault Diagnosis Based on Deep Belief Network and Multisensor Information Fusion”. Hindawi Publishing Corporation, Shock and Vibration. Volume 2016, Article ID 9306205, 9 pages August 2016spa
dc.relation.referencesChristian Lessmeier, James Kuria Kimotho, Detmar Zimmer, Walter Sextro: “Condition Monitoring of Bearing Damage in Electromechanical Drive Systems by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification“. Conference: European Conference of the Prognostics and Health Management Society At: Bilbao, Spain. July 2016spa
dc.relation.referencesHui Huang, Ganyong Wu, Yongyuan Wu, Shumei Chen: “Identification of acoustic sources for bent-axis axial pistón motor under variable loads”. Journal of Sound and Vibration 468 (2020) 115063. November 2019spa
dc.relation.referencesNiloofar Gharesi, Mohammad Mehdi Arefi: “ Analyzing the Vibration Signals for Bearing Defects Diagnosis Using the Combination of SGWT Feature Extraction and SVM “. IFAC PapersOnLine 51-24 (2018) 221–227spa
dc.relation.referencesHaedong Jeong, Seungtae Park, Sunhee Woo, and Seungchul Lee: “Rotating Machinery Diagnostics using Deep Learning on Orbit Plot Images”. Procedia Manufacturing. Volume 5, 2016, Pages 1107–1118spa
dc.relation.referencesMiguel Alberto Cabañas: “Monitorización y clasificación de defectos en rodamientos de bolas”. Proyecto fin de carrera, Departamento de ingeniería mecánica, Universidad Carlos III de Madrid. 2011spa
dc.relation.referencesQinghong Gong, Hui Hunag, Ganyong Wu, Shumei Chen and Heng Du: ”Analysis and application of a new noise test system for the hydraulic motor”. Journal of Advanced Mechanical Design, Systems, and Manufacturing. Vol.13, No.4. November 2019spa
dc.relation.referencesB. Sreejith, A.K. Verma and A. Srividya: “ Fault diagnosis of rolling element bearing using time-domain features and neural networks”. IEEE Region 10 Colloquium and the Third ICIIS, Kharagpur, INDIA December 8-10. DOI: 409. 2008spa
dc.relation.referencesDjamal Zarour, Salim Meziani, Marc Thomas: “ Experimental studies for bearings degradation monitoring at an early stage usyng analysis of variance” Diagnostyka.. DOI: 10.29354/diag/4, Volume 19, issue 4, pages 81-87. 2008spa
dc.relation.referencesMansour A. Karkouba, Osama E. Gada, Mahmoud G. Rabie: “ Predicting axial piston pump performance using neural Networks “. Mechanism and Machine Theory, Volume 34, Issue 8, Pages 1211-1226. November 1999spa
dc.relation.referencesOmar José Lara Castro: “ Nuevas Metodologías no Invasivas de Diagnosis de Defectos Incipientes en Rodamientos de Bola ”. Tesis doctoral. Departamento de ingeniería mecánica, Universidad Carlos III de Madrid, 2007spa
dc.relation.referencesPaolo Casoli, Mirko Pastori, Fabio Scolari and Massimo Rundo. “A Vibration Signal-Based Method for Fault Identification and Classification in Hydraulic Axial Piston Pumps”. Energies: 12, 953; DOI:10.3390/en12050953. March 2019spa
dc.relation.references] Mohammadreza Kaji, Jamshid Parvizian, Hans Wernher van de Venn: “Constructing a Reliable Health Indicator for Bearings Using Convolutional Autoencoder and Continuous Wavelet Transform “. Applied Sciences (2076-3417). Vol. 10, Issue 24, p8948. 1p. December 2020spa
dc.relation.referencesParesh Girdhar: “Practical machinery vibration analysis and predictive maintenance I title “, eBook ISBN: 9780080480220. Page 6-10. 2004spa
dc.relation.referencesR Keith Mobley: “Vibration fundamentals, I title II series”, page 3-64. Butterworth Heinemann. 1999spa
dc.relation.referencesVimal Saxena, Nilendu Kar Chowdhury, S. Devendiran: “Assessment of Gearbox Fault Detection Using Vibration Signal Analysis and Acoustic Emission Technique “, IOSR Journal of Mechanical and Civil Engineering. (IOSR-JMCE). Volume 7, Issue 4, PP 52-60. August 2013spa
dc.relation.referencesFrooz Purarjomandlangrudi, Ghavameddin Nourbakhsh: “Acoustic emission condition monitoring: an application for wind turbine fault detection “. International Journal of Research in Engineering and Technology. Volume: 2 Issue: 5 907 – 918. May 2013spa
dc.relation.referencesYi-Chang Wu⇑, Bo-Syuan Jian: “Magnetic field analysis of a coaxial magnetic gear mechanism by two-dimensional equivalent magnetic circuit network method and finite-element method “ Applied Mathematical Modelling, Volume 39, Issue 19, Pages 5746-5758. October 2015spa
dc.relation.referencesG. C. Neves, A. F. F. Filho: “Magnetic Gearing Electromagnetic Concepts “. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. DOI: 10.1590/2179-10742017v16i1874. Vol 16, No 1, March 2017spa
dc.relation.referencesFausto Pedro García Márquez, Mayorkinos Papaelias: “ An overview of wind turbine maintenance management “. Non-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets. Chapter 3, Pages 31-47. 2020spa
dc.relation.referencesBrian E.D. Kingsbury, Nelson Morgan, Steven Greenberg : “Robust speech recognition using the modulation spectrogram”. Speech Communication Volume 25, Issues 1–3, Pages 117-132. August 1998spa
dc.relation.referencesAchraf Lahrache, Marco Cocconcelli, Riccardo Rubini: “ Anomaly detection in a cutting tool by k-means clustering and support vector machines “. Diagnostyka Vol18, Issue 3, Pag:21–29. March 2017spa
dc.relation.referencesMengyu Chai, Jin Zhang, Zaoxiao Zhang, Quan Duan: “Acoustic emission studies for characterization of fatigue crack growth in316LN stainless steel and welds.“. Applied Acoustics, Volume 126, Pages 101-113, November 2017spa
dc.relation.referencesChangsheng Zhua, Christian Uwa Idemudiaa, Wenfang Fengba: ”Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques”. Informatics in Medicine Unlocked. DOI: 100179. Volume 17. April 2019spa
dc.relation.referencesBinu Melit Devassy, Sony George: “Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE”. Forensic Science International. DOI 110194. Volume 311, June 2020spa
dc.relation.referencesAchraf lahrache, Marco cocconcelli, Riccardo rubini: “Anormaly detection in a cutting tool by k-means clustering and support vector machines”. Diagnostyka, vol 18, Issue 3, pag:21-29, December 2016spa
dc.relation.referencesMengyu Chai, Jin Zhang, Zaoxiao Zhang, Quan Duan: “Acoustic emission studies for characterization of fatigue crack growth in316LN stainless steel and welds.“. Applied Acoustics, Volume 126, Pages 101-113, November 2017spa
dc.relation.referencesBenjamin Lindemann, Fabian Fesenmayr , Nasser Jazdi , Michael Weyrich: “Anormaly detection in discrete manufacturing using self-learning approaches “ Procedia CIRP. Volume 79, Pages 313-318. 2019spa
dc.relation.referencesChangsheng Zhua, Christian Uwa Idemudiaa, Wenfang Fengba:”Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques”. Informatics in Medicine Unlocked. DOI: 100179. Volume 17. April 2019spa
dc.relation.referencesLucio Mwinmaarong Dery, Benjamin Nachman, Francesco Rubboc, Ariel Schwartzmanc: “ Weakly supervised classication in high energy physics “. Journal of Physics: Conference Series, Volume 1085, Issue 4. July 2017spa
dc.relation.referencesDonald F. Specht: “ A General Regression Neural Network “. IEEE transtactions of neural networks. DOI: 10.1109/72.97934. Vol 2, No 6. Usa, 1991spa
dc.relation.referencesYan-yan, Ying Lu: “Decision tree methods: applications for classification and prediction”. Shanghai Arch Psychiatry DOI: 10.11919/j.issn.1002-0829.215044, Vol 27(2), Pag 130–135. Apr 2015spa
dc.relation.referencesJohan A. Westerhuis, Huub C. J. Hoefsloot, Suzanne Smit, Daniel J. Vis: “ Assessment of PLSDA cross validation “.Metabolomics Vol 4, Issue 1, pag:81-89. February 2008spa
dc.relation.referencesA.K. Santra, C. Josephine Christy: “Genetic Algorithm and Confusion Matrix for Document Clustering”. International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012spa
dc.relation.referencesZhe Hui Hoo, Jane Candlish, Dawn Teare: “ What is an ROC curve? “ Emerg Med J, Vol 34, page:357–359, March 2017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.lembBombas (Máquinas)
dc.subject.lembMáquinas hidráulicas - mantenimiento
dc.subject.lembHydraulic machinery
dc.subject.lembPumping machinery
dc.subject.proposalMantenimiento predictivospa
dc.subject.proposalbomba hidráulica de pistonesspa
dc.subject.proposaljunta magnéticaspa
dc.subject.proposalvibraciones mecánicasspa
dc.subject.proposalcampos magnéticosspa
dc.subject.proposalemisiones acústicasspa
dc.subject.proposalaprendizaje automáticospa
dc.subject.proposalpredictive maintenanceeng
dc.subject.proposalhydraulic piston pumpeng
dc.subject.proposalmagnetic jointeng
dc.subject.proposalmechanical vibrationseng
dc.subject.proposalmagnetic fieldseng
dc.subject.proposalacoustic emissionseng
dc.subject.proposalmachine learningeng
dc.titleIdentificación de diferentes modos de operación en bombas hidráulicas de caudal fijo con pistones axiales mediante técnicas de aprendizaje automáticospa
dc.title.translatedIdentification of different conditions in fixed displacement hydraulic pumps with axial pistons through machine learningeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053783673.2022.pdf
Tamaño:
2.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en ingeniería mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: