dc.relation.references | Abbo, A. J. y S. W. Sloan (1995). “A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion”. En: Computers & structures 54(3), págs. 427-441. Al Kafaji, I. K. J. (2013). “Formulation of a Dynamic Material Point Method ( MPM ) for Geomechanical Problems”. Tesis doct., pág. 243. isbn: 9789053357057. Alonso, E. (2017). “Triggering and Motion of Landslides”. En: 57th Rankine Lecture, London (BGA). Andersen, Lars, Søren M Andersen y Lars Damkilde (2009). “Selective Integration in the Material-point Method”. En: Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics. Bandara, S., A. Ferrari y L. Laloui (2016). “Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method”. En: International Journal for Numerical and Analytical Methods in Geomechanics 40(9), págs. 1358-1380. doi: 10.1002/nag.2499. Bandara, S. y K. Soga (2015). “Coupling of soil deformation and pore fluid flow using material point method”. En: Computers and Geotechnics 63(1), págs. 199-214. Bardenhagen, S. G., J. U. Brackbill y D. Sulsky (2000). “The material-point method for granular materials”. En: Computer Methods in Applied Mechanics and Engineering 187(3-4), págs. 529-541. issn: 00457825. doi: 10.1016/S0045-7825(99)00338-2. Bardenhagen, S.G. G y J.E. Guilkey (2004). “The generalized interpolation material point method”. En: Computer Methods in Applied Mechanics and Engineering. issn: 15261492. doi: 10.1016/S0045-7825(99)00338-2. Belytschko, T., W. Kam-Liu y B. Moran (2000). “4 - Lagrangian meshes”. En: Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Inc: Chichester, England. Cap. 4, págs. 141-215. Belytschko, T., Y. Y. Lu y L. Gu (1994). “Element-free galerkin methods”. En: International Journal for Numerical Methods in Engineering 37(2), págs. 229-256. Belytschko, Ted, Zdenék P Baˇzant, Hyun Yul-Woong y Chang Ta-Peng (1986). “Strainsoftening materials and finite-element solutions”. En: Computers & Structures 23(2), págs. 163-180. issn: 0045-7949. doi: https : / / doi . org / 10 . 1016 / 0045 - 7949(86 ) 90210-5. Beuth, L (2012). “Formulation and application of a quasi-static material point method”. Tesis doct. University of Stuttgart. isbn: 9783921837665. Beuth, L. y P. A. Vermeer (2013). “Large deformation analysis of cone penetration testing in undrained clay”. En: International conference on installation effects in geotechnical engineering (ICIEGE), págs. 1-7. Bonet, J. y R. Wood (1997). NONLINEAR CONTINUUM MECHANICS FOR FINITE ELEMENT ANALYSIS. Cambridge University Press: Cambridge, United Kingdom. isbn: 052157272X. Brackbill, J.U. y H. Ruppel (1986). “A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions”. En: Journal of Computational Physics. Brinkgreve, R. B. J., S. Kumarswamy, W. M. Swolfs, L. Zampich y N. Ragi Manoj (2019). Plaxis 2D Reference Manual 2019. Delft, The Netherlands. isbn: 10.1093/cid/ciq238. Brinkgreve, Ronald B J, Markus B¨urg, Andriy Andreykiv y Liang Jin Lim (2015). “Beyond the Finite Element Method in Geotechnical Analysis Uber die Finite-Elemente-Methode ¨ in der geotechnischen Analyse hinaus”. En: págs. 91-102. Bui, H. H., K. Sako y R. Fukagawa (2007). “Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (sph) method”. En: Journal of Terramechanics 44(5), págs. 339-346. Ceccato, F (2014). “Study of large deformation geomechanical problems with the Material Point Method”. En: Universita Degli Studi Di Padova. Ceccato, F. y P. Simonini (2016). “Granular Flow Impact Forces on Protection Structures: MPM Numerical Simulations with Different Constitutive Models”. En: Procedia Engineering 158, págs. 164-169. issn: 18777058. doi: 10.1016/j.proeng.2016.08.423. Coetzee, C J, P A Vermeer y A. H. Basson (2005). “The modelling of anchors using the material point method”. En: International Journal for Numerical and Analytical Methods in Geomechanics 29(9). Cruden, DM. y DJ. Varnes (1996). “Landslide types and process”. En: Transportation Research Board, National Research Council, National Academy Press Special re, págs. 36-75. Cundall, P. A. y O. D. L. Strack (1979). “A discrete numerical model for granular assemblies”. En: Geotechnique 29(1), págs. 47-65. Di, Y, J Yang y T Sato (2007). “An operator-split ALE model for large deformation analysis of geomaterials”. En: International Journal for Numerical and Analytical Methods in Geomechanics 31(12), págs. 1375-1399. doi: 10.1002/nag.601. Dowell, M. y P Jarratt (1972). “The Pegasus method for computing the root of an equation”. En: BIT 12, págs. 503-508. Elkadi, A. y P. Nguyen (2013). Mpm validation with centrifuge tests: pilot case pile installation. Inf. téc. Delft, The Netherlands: Deltares. Fern, E.J. y K. Soga (jun. de 2016). “The role of constitutive models in MPM simulations of granular column collapses”. En: Acta Geotechnica 11(3), págs. 659-678. issn: 1861-1133. doi: 10.1007/s11440-016-0436-x. Fern, E.J. y K. Soga (2017). “Granular Column Collapse of Wet Sand”. En: 1st International Conference on the Material Point Method, MPM 2017. Vol. 175. 2016, págs. 14-20. doi: 10.1016/j.proeng.2017.01.005. Fern, J., A. Rohe, K. Soga y E. Alonso (2019). The Material Point Method for Geotechnical Engineering. A practial guide. Taylor & Francis Group. isbn: 9780429028090. doi: 10. 1201/9780429028090. Garcia-Yague, Angel (1966). “Contribución para la clasificación de deslizamientos del terreno”. En: Revista de Obras Públicas 995-1003. Gingold, R. A. y J. J. Monaghan (1977). “Smoothed particle hydrodynamics: theory and application to non-spherical stars”. En: Monthly notices of the royal astronomical society 181(3), págs. 375-389. Gong, Ming (2015). “Improving the Material Point Method”. Tesis doct. University of New Mexico. Griffiths, D. V. y P. A. Lane (1999). “Slope stability analysis by finite elements”. En: Géotechnique 49(3), págs. 387-403. Guilkey, J.E., J. B. Hoying y J. A. Weiss (2006). “Computational modeling of multicellular constructs with the material point method”. En: Journal of Biomechanics 39(11), págs. 2074-2086. Guilkey, J.E. y J. A. Weiss (2003). “Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method”. En: International Journal for Numerical Methods in Engineering 57(9), págs. 1323-1338. Haberman, R. (2004). Applied Partial Differential Equations with Fourier Series and Boundary Value Problems. Fourth. Prentice Hall, págs. 142-147. Hamad, Fursan (2014). “Formulation of a Dynamic Material Point Method and Applications to Soil–Water–Geotextile Systems”. Tesis doct. University of Stuttgart. isbn: 9783921837702. Harlow, F. H. y M. H Evans (1957). “The particle-in-cell method for hydrodynamic calculations”. En: Technical report, DTIC Document. Helwany, Sam (2007). “Elasticity and Plasticity”. En: Applied Soil Mechanics with ABAQUS applications. John Wiley & Sons, Inc. Cap. 2, págs. 25-28. Huang, P, X Zhang, S Ma y X Huang (2010). “Contact algorithms for the material point method in impact and penetration simulation”. En: International Journal for Numerical Methods in Engineering 85, págs. 498-517. doi: 10.1002/nme. Idelsohm, S., E. Oñate y F. D. Pin (2004). “The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves”. En: International Journal for Numerical Methods in Engineering 61(7), págs. 964-989. Jáky, J. (1944). “The coeffient of earth pressure at rest. In Hungarian (A nyugalmi nyomas tenyezoje)”. En: J. Soc. Hung. Eng. Arch, págs. 355-358. Jassim, I, D. Stolle y P.A Vermeer (2013). “Two-phase dynamic analysis by material point method”. En: International Journal for Numerical and Analytical Methods in Geomechanics 37(15), págs. 2502-2522. Kee, K.T., F.L. Chun, K.C. Yean y S. Somsak (2012). “Eulerian Finite-Element Technique for Analysis of Jack-Up Spudcan Penetration”. En: International Journal of Geomechanics 12(1). Kelly, PA (2013). Mechanics Lecture Notes: An introduction to Solid Mechanics. Section 2.1: Motion. Auckland, págs. 201-206. Kim, H. y J. Inoue (2007). “A stochastic element free seepage flow analysis of heterogeneous subsurface”. En: Numerical models in geomechanics, págs. 225-231. Konagai, K. y J. Johansson (2001). “Lagrangian Particles for Modeling Large Soil Deformations”. En: Proc., Seismic Fault-induced failures, págs. 101-108. Kumar, K, K Soga y J.-Y. Delenne (2012). “Granular Flows in Fluid”. En: Discrete Element Modelling of Particulate Media. The Royal Society of Chemistry, págs. 59-66. isbn: 978- 1-84973-360-1. doi: 10.1039/9781849735032-00059. Kumar, P. R., G. Dodagoudar y B. Rao (2008). “Meshfree modeling of two-dimensional contaminant transport through unsaturated porous media”. En: Unsaturated Soils: Advances in Geo-Engineering, págs. 861-866. Lacaze, L., J. C Phillips y R. R Kerswell (2008). “Planar collapse of a granular column: Experiments and discrete element simulations”. En: Physics of Fluids 20(6), pág. 63302. doi: 10.1063/1.2929375. Lajeunesse, E. y A. Mangeney-Castelnau (2004). “Spreading of a granular mass on a horizontal plane”. En: Physics of Fluids 16(7), págs. 2371-2381. Lam, Siu Kwan, Antoine Pitrou y Stanley Seibert (2015). “Numba: A LLVM-based Python JIT Compiler”. En: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. LLVM ’15. ACM: New York, NY, USA, 7:1-7:6. isbn: 978-1- 4503-4005-2. doi: 10.1145/2833157.2833162. Linero, Dorian y Diego Garzón (2010). “Capítulo 4 - Leyes de conservación”. En: Elementos de la mecánica del medio continuo para cuerpos sólidos - Volumen 1: Temas básicos. Universidad Nacional de Colombia: Bogotá D.C., págs. 165-183. Lube, G., H. E. Huppert, R. S. J. Sparks y M. A. Hallworth (2004). “Axisymmetric collapses of granular columns”. En: Journal of Fluid Mechanics( 508), págs. 175-199. issn: 00221120. doi: 10.1017/S0022112004009036. Lube, G., H. Huppert, R. Sparks y A. Freundt (2007). “Static and flowing regions in granular collapses down channels”. En: Physics of Fluids 19(4), págs. 1-9. issn: 10706631. doi: 10.1063/1.2712431. Lucy, L. B. (1977). “A numerical approach to the testing of the fission hypothesis”. En: The astronomical journal 82, págs. 1013-1024. Luding, Stefan (2008). “Introduction to Discrete Element Methods”. En: Discrete modelling of geomaterials 75(4), págs. 785-826. issn: 0304-4866. doi: 10.22546/30/703. Ma, J., D. Wang y M.F. Randolph (2014). “A new contact algorithm in the material point method for geotechnical simulations”. En: International Journal for Numerical and Analytical Methods in Geomechanics 38(11), págs. 189-213. issn: 03639061. doi: 10.1002/nag. arXiv: nag.2347 [10.1002]. McDougall, Scott (2017). “2014 Canadian Geotechnical Colloquium: Landslide runout analysis — current practice and challenges”. En: Canadian Geotechnical Journal 54(5), págs. 605-620. doi: 10.1139/cgj-2016-0104. Nayak, G. C. y O. C. Zienkiewicz (1972). “Convenient form of stress invariants for plasticity”. En: Journal of the Structural Division - ASCE 98, págs. 949-954. Nguyen, Vinh Phu (2014). “Material point method: basics and applications”. Numada, M. y K. Konagai (2003). “Material point method for run out analysis of earthquakeinduced long-traveling soil flows”. En: Journal of Earthquake Engineering 27, págs. 3-6. Oñate, E., M. A. Celigueta, S. Idelsohm, F. Salazar y B. Suárez (2011). “Possibilities of the particle finite element method for fluid soil structure interaction problems”. En: Computational Mechanics 48(3), págs. 307-318. Oñate, E., S. Idelsohm, F. D. Pin y R. Aubry (2004). “the Particle Finite Element Method an Overview”. En: International Journal of Computational Methods 01(2), págs. 267-307. Pinyol, N M, M Alvarado, E E Alonso y F Zabala (2018). “Thermal effects in landslide mobility”. En: Géotechnique 68(6), págs. 528-545. doi: 10.1680/jgeot.17.P.054. Prat, Pere (2006). Ecuaciones constitutivas ELASTICIDAD y PLASTICIDAD. Universitat Polit`ecnica de Catalunya: Barcelona, págs. 31-36. Pruijn, N S (2016). “The improvement of the material point method by increasing efficiency and accuracy”. Tesis doct. Technische Universiteit Delf. Qiu, Gang, Sascha Henke y J¨urgen Grabe (2011). “Applications of Coupled Eulerian-Lagrangian Method to Geotechnical Problems with Large Deformations”. En: Computers and Geotechnics 38(11), págs. 30-39. Rickenmann, Dieter (2005). “Runout prediction methods”. En: Debris-flow Hazards and Related Phenomena, págs. 305-324. Sadeghirad, A., R. M. Brannon y J. Burghardt (2011). “A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations”. En: International Journal for Numerical Methods in Engineering. issn: 00295981. doi: 10.1002/nme.3110. arXiv: 1010.1724. Sloan, S. W., A. J. Abbo y D. Sheng (2001). “Refined explicit integration of elastoplastic models with automatic error control”. En: Engineering Computations 18(1-2), págs. 121-194. issn: 02644401. doi: 10.1108/02644400110365842. Sloan, S.W. (1987). “Substepping schemes for the numerical integration of elastoplastic stress-strain relations”. En: International Journal for Numerical Methods in Engineering 24, págs. 893-911. Smith, I. M., D. V. Griffiths y L. Margetts (2014). “Material non-lineality”. En: Programming the Finite Element Method. 5th. John Wiley & Sons, Inc. Cap. 6, págs. 270-275. Smith, M. (2009). ABAQUS Standard User’s Manual, version 6.9. Simulia: Providence, RI. Soga, K., E. Alonso, A. Yerro, K . Kumar y S. Bandara (2016). “Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method”. En: Geotechnique 66(3), págs. 248-273. issn: 0016-8505. doi: 10.1680/jgeot. 15.LM.005. Solowski, W.T. y S.W. Sloan (2013). “Modelling of sand column collapse with material point method”. En: ComGeo III 2013. Vol. 553. January 2013, págs. 698-705. Steffen, M., P. C. Wallstedt, J.E. Guilkey, R. M. Kirby y M. Berzins (2008). “Examination and analysis of implementation choices within the material point method (MPM)”. En: Computer Modelling in Engineering and Sciences 31(2), págs. 107-127. Sulsky, D., Z. Chen y H.L. Schreyer (1994). “A particle method for hystory-dependent materials”. En: Computer Methods in Applied Mechanics and Engineering 118(1-2), págs. 179-196. issn: 00457825. doi: 10.1016/0045-7825(94)90112-0. Sulsky, D. y H.L. Schreyer (1996). “Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems”. En: Computer Methods in Applied Mechanics and Engineering. Sulsky, D., S. J. Zhou y H .L. Schreyer (1995). “Application of a praticle-in-cell method to solid mechanics”. En: Comp Phys Commun 87, págs. 179-196. Tielen, Roel (2016). “A high order material point method”. Tesis doct. Technische Universiteit Delf, págs. 1-8. doi: 10.1016/j.proeng.2017.01.022. Ting, J., B. T. Corkum, C. R. Kauffman y C. Greco (1989). “Discrete numerical model for soil mechanics”. En: Journal of Geotechnical Engineering 115(3), págs. 379-398. Tsuji, Y., T. Kawaguchi y T. Tanaka (1993). “Discrete particle simulation of 2-dimensional fluidized-bed”. En: Powder technology 77, págs. 79-87. Vardon, Philip J, Bin Wang y Michael A Hicks (2017). “Slope failure simulations with MPM”. En: Journal of Hydrodynamics 29(3), págs. 445-451. issn: 1001-6058. doi: 10. 1016/S1001-6058(16)60755-2. Wang, B (2017). “Slope failure analysis using the material point method”. Tesis doct. Delft University of Technology. isbn: 9789461868510. doi: 10.4233/UUID. Wang, Bin, Philip J. Vardon, Michael A. Hicks y Zhen Chen (2016). “Development of an implicit material point method for geotechnical applications”. En: Computers and Geotechnics 71, págs. 159-167. issn: 18737633. doi: 10.1016/j.compgeo.2015.08.008. Wieckowski, Z (2001). “Analysis of granular flow by the Material Point Method”. En: European Conference on Computational Mechanics. Cracow, Poland. Wieckowski, Z (2004). “The material point method in large strain engineering problems”. En: Computer Methods in Applied Mechanics and Engineering. Wieckowski, Z (2013). “Two-phase numerical model for soil-fluid interaction problems”. En: Proceeding of ComGeoIII. Krakow, págs. 410-419. Wieckowski, Z, Sung Youn y Jeoung Yeon (1999). “A particle-in-cell solution to the silo discharging problem”. En: International Journal for Numerical Methods in Engineering 45, págs. 1203-1225. Xiang, Xu y Dai Zi-Hang (2017). “Numerical implementation of a modified Mohr – Coulomb model and its application in slope stability analysis”. En: Journal of Modern Transportation 25(1), págs. 40-51. issn: 2196-0577. doi: 10.1007/s40534-017-0123-0. Yerro, A., E. E. Alonso y N.m. Pinyol (2015). “The material point method for unsaturated soils”. En: ( 3), págs. 201-217. Yerro, A., K. Soga y J. Bray (2018). “Runout evaluation of the Oslo landslide with the Material Point Method”. En: Canadian Geotechnical Joundal. Yerro, Alba, Eduardo E. Alonso y Nuria M. Pinyol (2013). “The Material Point Method: A promising computational tool in Geotechnics”. En: International Conference on Soil Mechanics and Geotechnical Engineering, págs. 853-856. Zabala, F y E. E. Alonso (2011). “Progressive failure of Asnalcóllar dam using the material point method”. En: Geotechnique 61(9), págs. 795-808. Zhang, D.Z., X. Ma y P.T. Giguere (2011). “Material point method enhance by modified gradient of shape function”. En: Journal of Computational Physics. Zhang, X., K. Krabbenhoft, D. Sheng y W Li (2015). “Numerical simulation of a flow-like landslide using the particle finite element method”. En: Computational Mechanics 55(1), págs. 167-177. Zhang, Xiong, Zhen Chen y Yan Liu (2017). “Chapter 3 - The Material Point Method”. En: The Material Point Method. Ed. por Xiong Zhang, Zhen Chen y Yan Liu. Academic Press: Oxford, págs. 37-101. isbn: 978-0-12-407716-4. doi: https://doi.org/10.1016/B978- 0-12-407716-4.00003-X. |