Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBarbosa Cruz, Edgard Robert
dc.contributor.authorLeón Vanegas, David Eduardo
dc.date.accessioned2020-02-17T16:34:28Z
dc.date.available2020-02-17T16:34:28Z
dc.date.issued2020-02-17
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75625
dc.description.abstractProblems in Geotechnical Engineering are usually very complex due to the high non-linearity of the soil behaviour, the interaction with different structures, and the large deformations of the soil mass. Therefore, simulating these problems is a challenge, partly because common analysis tools employed nowadays, such as the Finite Element Method (FEM), have limitations to simulate large deformation problems. To overcome those limitations, new numerical methods have been developed in recent years, such as the Material Point Method (MPM), which has proved to be suitable for the simulation of complex geotechnical problems. The MPM combines the advantages of Eulerian and Lagrangian movement descriptions, in order to simulate large deformations problems, without the disadvantages of mesh distortion, or the presence of convective terms. This thesis presents the implementation, validation and application of an open-source computer code written by the author, based on the MPM, which may be the base of a line of research at the Universidad Nacional de Colombia. This computer code, named MPM-UN, is based on a dynamic formulation that allows to solve problems under quasi-static loads, as well as to study the dynamic nature of some geotechnical failure processes of dry and saturated soils under drained and undrained conditions, without considering changes of the pore pressures. The code integrates a frictional contact algorithm to take into account the interaction between bodies and an elastoplastic model with Mohr-Coulomb failure criteria. The validation of the code was made by simulating problems that have theoretical solutions, such as the axial vibration of an elastic bar, the bearing capacity of a continuous foundation and the sliding of a disk on an inclined plane; and by means of more complex problems such as the failure of a slope by its own weight and the collapes of a granular column. Finally, two simple slopes were simulated in order to examine the potentialities of the MPM in landslide analysis, proving that it is possible to capture complex failure behaviors with this tool, and also it allows simulating the entire deformation process, from the formation of the failure to the deposition of the material. From those simulations, the capabilities of the method to predict the generation of retrogressive failures were verified and the influence of different parameters on the run-out of the landslides was analyzed. It was found that variables that commonly are not considered, such as the angle of dilatancy and the compressibility have an important incidence in the results.
dc.description.abstractLos problemas en Ingeniería Geotécnica son en general problemas muy complejos debido a la no linealidad del comportamiento del suelo, la interacción con distintos cuerpos, y las deformaciones grandes de la masa del suelo. Lo anterior hace que simular este tipo de problemas sea un desafío, en parte porque las herramientas de análisis tradicionales como el Método de los Elementos Finitos (FEM), presentan limitaciones con respecto a la simulación de problemas de deformaciones grandes. Para hacer frente a estas limitaciones en los últimos años se han desarrollado nuevos métodos numéricos, como el Método del Punto Material (MPM), el cual ha mostrado ser adecuado para el análisis de este tipo de problemas. El MPM combina las ventajas de las descripciones de movimiento Euleriana y Lagrangiana, para simular problemas de deformaciones grandes, sin los problemas de distorsión de malla, ni la presencia de términos convectivos. En este trabajo se presenta la implementación, validación y aplicación de un código de computador abierto escrito por el autor, basado en el MPM, el cual puede ser la base de una línea de investigación en la Universidad Nacional de Colombia. El código de computador, denominado MPM-UN, está basado en una formulación dinámica que permite solucionar tanto problemas bajo cargas cuasi-estáticas, como estudiar la naturaleza dinámica de algunos procesos de falla en geotecnia de suelo seco y saturado, en condiciones drenadas y no drenadas, sin considerar cambios en la presión de poros. El código integra un algoritmo de contacto friccional para tener en cuenta la interacción entre cuerpos y un modelo elastoplástico con criterio de falla de Mohr-Coulomb. La validación del código se realizó mediante la simulación de problemas que cuentan con soluciones teóricas, como la vibración axial de una barra elástica, la capacidad portante de un cimiento continuo y el deslizamiento de un disco en un plano inclinado; y por medio de problemas más complejos, tales como la falla de un talud por peso propio y el colapso de una columna granular. Por último, se realizó la simulación de dos taludes simples con el objetivo de examinar las potencialidades del MPM en el análisis de deslizamientos, comprobando que con esta herramienta es posible capturar comportamientos de falla complejos y además permite simular todo el proceso de deformación, desde la formación de la superficie de falla hasta la depositación del material. A partir de estas simulaciones se verificaron las capacidades del método para predecir la generación de fallas retrogresivas, y se estudió la influencia de diferentes parámetros en la distancia de viaje de los deslizamientos, encontrando que variables que en general no se consideran, como el ángulo de dilatancia y la compresibilidad, tienen una incidencia importante en los resultados.
dc.format.extent179
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcIngeniería y operaciones afines
dc.titleImplementación del Método del Punto Material para aplicaciones geotécnicas bajo cargas estáticas
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.description.additionalMagister en Ingeniería - Geotecnia
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupGeotechnical Engineering Knowledge and Innovation - GENKI
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbbo, A. J. y S. W. Sloan (1995). “A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion”. En: Computers & structures 54(3), págs. 427-441. Al Kafaji, I. K. J. (2013). “Formulation of a Dynamic Material Point Method ( MPM ) for Geomechanical Problems”. Tesis doct., pág. 243. isbn: 9789053357057. Alonso, E. (2017). “Triggering and Motion of Landslides”. En: 57th Rankine Lecture, London (BGA). Andersen, Lars, Søren M Andersen y Lars Damkilde (2009). “Selective Integration in the Material-point Method”. En: Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics. Bandara, S., A. Ferrari y L. Laloui (2016). “Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method”. En: International Journal for Numerical and Analytical Methods in Geomechanics 40(9), págs. 1358-1380. doi: 10.1002/nag.2499. Bandara, S. y K. Soga (2015). “Coupling of soil deformation and pore fluid flow using material point method”. En: Computers and Geotechnics 63(1), págs. 199-214. Bardenhagen, S. G., J. U. Brackbill y D. Sulsky (2000). “The material-point method for granular materials”. En: Computer Methods in Applied Mechanics and Engineering 187(3-4), págs. 529-541. issn: 00457825. doi: 10.1016/S0045-7825(99)00338-2. Bardenhagen, S.G. G y J.E. Guilkey (2004). “The generalized interpolation material point method”. En: Computer Methods in Applied Mechanics and Engineering. issn: 15261492. doi: 10.1016/S0045-7825(99)00338-2. Belytschko, T., W. Kam-Liu y B. Moran (2000). “4 - Lagrangian meshes”. En: Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Inc: Chichester, England. Cap. 4, págs. 141-215. Belytschko, T., Y. Y. Lu y L. Gu (1994). “Element-free galerkin methods”. En: International Journal for Numerical Methods in Engineering 37(2), págs. 229-256. Belytschko, Ted, Zdenék P Baˇzant, Hyun Yul-Woong y Chang Ta-Peng (1986). “Strainsoftening materials and finite-element solutions”. En: Computers & Structures 23(2), págs. 163-180. issn: 0045-7949. doi: https : / / doi . org / 10 . 1016 / 0045 - 7949(86 ) 90210-5. Beuth, L (2012). “Formulation and application of a quasi-static material point method”. Tesis doct. University of Stuttgart. isbn: 9783921837665. Beuth, L. y P. A. Vermeer (2013). “Large deformation analysis of cone penetration testing in undrained clay”. En: International conference on installation effects in geotechnical engineering (ICIEGE), págs. 1-7. Bonet, J. y R. Wood (1997). NONLINEAR CONTINUUM MECHANICS FOR FINITE ELEMENT ANALYSIS. Cambridge University Press: Cambridge, United Kingdom. isbn: 052157272X. Brackbill, J.U. y H. Ruppel (1986). “A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions”. En: Journal of Computational Physics. Brinkgreve, R. B. J., S. Kumarswamy, W. M. Swolfs, L. Zampich y N. Ragi Manoj (2019). Plaxis 2D Reference Manual 2019. Delft, The Netherlands. isbn: 10.1093/cid/ciq238. Brinkgreve, Ronald B J, Markus B¨urg, Andriy Andreykiv y Liang Jin Lim (2015). “Beyond the Finite Element Method in Geotechnical Analysis Uber die Finite-Elemente-Methode ¨ in der geotechnischen Analyse hinaus”. En: págs. 91-102. Bui, H. H., K. Sako y R. Fukagawa (2007). “Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (sph) method”. En: Journal of Terramechanics 44(5), págs. 339-346. Ceccato, F (2014). “Study of large deformation geomechanical problems with the Material Point Method”. En: Universita Degli Studi Di Padova. Ceccato, F. y P. Simonini (2016). “Granular Flow Impact Forces on Protection Structures: MPM Numerical Simulations with Different Constitutive Models”. En: Procedia Engineering 158, págs. 164-169. issn: 18777058. doi: 10.1016/j.proeng.2016.08.423. Coetzee, C J, P A Vermeer y A. H. Basson (2005). “The modelling of anchors using the material point method”. En: International Journal for Numerical and Analytical Methods in Geomechanics 29(9). Cruden, DM. y DJ. Varnes (1996). “Landslide types and process”. En: Transportation Research Board, National Research Council, National Academy Press Special re, págs. 36-75. Cundall, P. A. y O. D. L. Strack (1979). “A discrete numerical model for granular assemblies”. En: Geotechnique 29(1), págs. 47-65. Di, Y, J Yang y T Sato (2007). “An operator-split ALE model for large deformation analysis of geomaterials”. En: International Journal for Numerical and Analytical Methods in Geomechanics 31(12), págs. 1375-1399. doi: 10.1002/nag.601. Dowell, M. y P Jarratt (1972). “The Pegasus method for computing the root of an equation”. En: BIT 12, págs. 503-508. Elkadi, A. y P. Nguyen (2013). Mpm validation with centrifuge tests: pilot case pile installation. Inf. téc. Delft, The Netherlands: Deltares. Fern, E.J. y K. Soga (jun. de 2016). “The role of constitutive models in MPM simulations of granular column collapses”. En: Acta Geotechnica 11(3), págs. 659-678. issn: 1861-1133. doi: 10.1007/s11440-016-0436-x. Fern, E.J. y K. Soga (2017). “Granular Column Collapse of Wet Sand”. En: 1st International Conference on the Material Point Method, MPM 2017. Vol. 175. 2016, págs. 14-20. doi: 10.1016/j.proeng.2017.01.005. Fern, J., A. Rohe, K. Soga y E. Alonso (2019). The Material Point Method for Geotechnical Engineering. A practial guide. Taylor & Francis Group. isbn: 9780429028090. doi: 10. 1201/9780429028090. Garcia-Yague, Angel (1966). “Contribución para la clasificación de deslizamientos del terreno”. En: Revista de Obras Públicas 995-1003. Gingold, R. A. y J. J. Monaghan (1977). “Smoothed particle hydrodynamics: theory and application to non-spherical stars”. En: Monthly notices of the royal astronomical society 181(3), págs. 375-389. Gong, Ming (2015). “Improving the Material Point Method”. Tesis doct. University of New Mexico. Griffiths, D. V. y P. A. Lane (1999). “Slope stability analysis by finite elements”. En: Géotechnique 49(3), págs. 387-403. Guilkey, J.E., J. B. Hoying y J. A. Weiss (2006). “Computational modeling of multicellular constructs with the material point method”. En: Journal of Biomechanics 39(11), págs. 2074-2086. Guilkey, J.E. y J. A. Weiss (2003). “Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method”. En: International Journal for Numerical Methods in Engineering 57(9), págs. 1323-1338. Haberman, R. (2004). Applied Partial Differential Equations with Fourier Series and Boundary Value Problems. Fourth. Prentice Hall, págs. 142-147. Hamad, Fursan (2014). “Formulation of a Dynamic Material Point Method and Applications to Soil–Water–Geotextile Systems”. Tesis doct. University of Stuttgart. isbn: 9783921837702. Harlow, F. H. y M. H Evans (1957). “The particle-in-cell method for hydrodynamic calculations”. En: Technical report, DTIC Document. Helwany, Sam (2007). “Elasticity and Plasticity”. En: Applied Soil Mechanics with ABAQUS applications. John Wiley & Sons, Inc. Cap. 2, págs. 25-28. Huang, P, X Zhang, S Ma y X Huang (2010). “Contact algorithms for the material point method in impact and penetration simulation”. En: International Journal for Numerical Methods in Engineering 85, págs. 498-517. doi: 10.1002/nme. Idelsohm, S., E. Oñate y F. D. Pin (2004). “The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves”. En: International Journal for Numerical Methods in Engineering 61(7), págs. 964-989. Jáky, J. (1944). “The coeffient of earth pressure at rest. In Hungarian (A nyugalmi nyomas tenyezoje)”. En: J. Soc. Hung. Eng. Arch, págs. 355-358. Jassim, I, D. Stolle y P.A Vermeer (2013). “Two-phase dynamic analysis by material point method”. En: International Journal for Numerical and Analytical Methods in Geomechanics 37(15), págs. 2502-2522. Kee, K.T., F.L. Chun, K.C. Yean y S. Somsak (2012). “Eulerian Finite-Element Technique for Analysis of Jack-Up Spudcan Penetration”. En: International Journal of Geomechanics 12(1). Kelly, PA (2013). Mechanics Lecture Notes: An introduction to Solid Mechanics. Section 2.1: Motion. Auckland, págs. 201-206. Kim, H. y J. Inoue (2007). “A stochastic element free seepage flow analysis of heterogeneous subsurface”. En: Numerical models in geomechanics, págs. 225-231. Konagai, K. y J. Johansson (2001). “Lagrangian Particles for Modeling Large Soil Deformations”. En: Proc., Seismic Fault-induced failures, págs. 101-108. Kumar, K, K Soga y J.-Y. Delenne (2012). “Granular Flows in Fluid”. En: Discrete Element Modelling of Particulate Media. The Royal Society of Chemistry, págs. 59-66. isbn: 978- 1-84973-360-1. doi: 10.1039/9781849735032-00059. Kumar, P. R., G. Dodagoudar y B. Rao (2008). “Meshfree modeling of two-dimensional contaminant transport through unsaturated porous media”. En: Unsaturated Soils: Advances in Geo-Engineering, págs. 861-866. Lacaze, L., J. C Phillips y R. R Kerswell (2008). “Planar collapse of a granular column: Experiments and discrete element simulations”. En: Physics of Fluids 20(6), pág. 63302. doi: 10.1063/1.2929375. Lajeunesse, E. y A. Mangeney-Castelnau (2004). “Spreading of a granular mass on a horizontal plane”. En: Physics of Fluids 16(7), págs. 2371-2381. Lam, Siu Kwan, Antoine Pitrou y Stanley Seibert (2015). “Numba: A LLVM-based Python JIT Compiler”. En: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. LLVM ’15. ACM: New York, NY, USA, 7:1-7:6. isbn: 978-1- 4503-4005-2. doi: 10.1145/2833157.2833162. Linero, Dorian y Diego Garzón (2010). “Capítulo 4 - Leyes de conservación”. En: Elementos de la mecánica del medio continuo para cuerpos sólidos - Volumen 1: Temas básicos. Universidad Nacional de Colombia: Bogotá D.C., págs. 165-183. Lube, G., H. E. Huppert, R. S. J. Sparks y M. A. Hallworth (2004). “Axisymmetric collapses of granular columns”. En: Journal of Fluid Mechanics( 508), págs. 175-199. issn: 00221120. doi: 10.1017/S0022112004009036. Lube, G., H. Huppert, R. Sparks y A. Freundt (2007). “Static and flowing regions in granular collapses down channels”. En: Physics of Fluids 19(4), págs. 1-9. issn: 10706631. doi: 10.1063/1.2712431. Lucy, L. B. (1977). “A numerical approach to the testing of the fission hypothesis”. En: The astronomical journal 82, págs. 1013-1024. Luding, Stefan (2008). “Introduction to Discrete Element Methods”. En: Discrete modelling of geomaterials 75(4), págs. 785-826. issn: 0304-4866. doi: 10.22546/30/703. Ma, J., D. Wang y M.F. Randolph (2014). “A new contact algorithm in the material point method for geotechnical simulations”. En: International Journal for Numerical and Analytical Methods in Geomechanics 38(11), págs. 189-213. issn: 03639061. doi: 10.1002/nag. arXiv: nag.2347 [10.1002]. McDougall, Scott (2017). “2014 Canadian Geotechnical Colloquium: Landslide runout analysis — current practice and challenges”. En: Canadian Geotechnical Journal 54(5), págs. 605-620. doi: 10.1139/cgj-2016-0104. Nayak, G. C. y O. C. Zienkiewicz (1972). “Convenient form of stress invariants for plasticity”. En: Journal of the Structural Division - ASCE 98, págs. 949-954. Nguyen, Vinh Phu (2014). “Material point method: basics and applications”. Numada, M. y K. Konagai (2003). “Material point method for run out analysis of earthquakeinduced long-traveling soil flows”. En: Journal of Earthquake Engineering 27, págs. 3-6. Oñate, E., M. A. Celigueta, S. Idelsohm, F. Salazar y B. Suárez (2011). “Possibilities of the particle finite element method for fluid soil structure interaction problems”. En: Computational Mechanics 48(3), págs. 307-318. Oñate, E., S. Idelsohm, F. D. Pin y R. Aubry (2004). “the Particle Finite Element Method an Overview”. En: International Journal of Computational Methods 01(2), págs. 267-307. Pinyol, N M, M Alvarado, E E Alonso y F Zabala (2018). “Thermal effects in landslide mobility”. En: Géotechnique 68(6), págs. 528-545. doi: 10.1680/jgeot.17.P.054. Prat, Pere (2006). Ecuaciones constitutivas ELASTICIDAD y PLASTICIDAD. Universitat Polit`ecnica de Catalunya: Barcelona, págs. 31-36. Pruijn, N S (2016). “The improvement of the material point method by increasing efficiency and accuracy”. Tesis doct. Technische Universiteit Delf. Qiu, Gang, Sascha Henke y J¨urgen Grabe (2011). “Applications of Coupled Eulerian-Lagrangian Method to Geotechnical Problems with Large Deformations”. En: Computers and Geotechnics 38(11), págs. 30-39. Rickenmann, Dieter (2005). “Runout prediction methods”. En: Debris-flow Hazards and Related Phenomena, págs. 305-324. Sadeghirad, A., R. M. Brannon y J. Burghardt (2011). “A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations”. En: International Journal for Numerical Methods in Engineering. issn: 00295981. doi: 10.1002/nme.3110. arXiv: 1010.1724. Sloan, S. W., A. J. Abbo y D. Sheng (2001). “Refined explicit integration of elastoplastic models with automatic error control”. En: Engineering Computations 18(1-2), págs. 121-194. issn: 02644401. doi: 10.1108/02644400110365842. Sloan, S.W. (1987). “Substepping schemes for the numerical integration of elastoplastic stress-strain relations”. En: International Journal for Numerical Methods in Engineering 24, págs. 893-911. Smith, I. M., D. V. Griffiths y L. Margetts (2014). “Material non-lineality”. En: Programming the Finite Element Method. 5th. John Wiley & Sons, Inc. Cap. 6, págs. 270-275. Smith, M. (2009). ABAQUS Standard User’s Manual, version 6.9. Simulia: Providence, RI. Soga, K., E. Alonso, A. Yerro, K . Kumar y S. Bandara (2016). “Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method”. En: Geotechnique 66(3), págs. 248-273. issn: 0016-8505. doi: 10.1680/jgeot. 15.LM.005. Solowski, W.T. y S.W. Sloan (2013). “Modelling of sand column collapse with material point method”. En: ComGeo III 2013. Vol. 553. January 2013, págs. 698-705. Steffen, M., P. C. Wallstedt, J.E. Guilkey, R. M. Kirby y M. Berzins (2008). “Examination and analysis of implementation choices within the material point method (MPM)”. En: Computer Modelling in Engineering and Sciences 31(2), págs. 107-127. Sulsky, D., Z. Chen y H.L. Schreyer (1994). “A particle method for hystory-dependent materials”. En: Computer Methods in Applied Mechanics and Engineering 118(1-2), págs. 179-196. issn: 00457825. doi: 10.1016/0045-7825(94)90112-0. Sulsky, D. y H.L. Schreyer (1996). “Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems”. En: Computer Methods in Applied Mechanics and Engineering. Sulsky, D., S. J. Zhou y H .L. Schreyer (1995). “Application of a praticle-in-cell method to solid mechanics”. En: Comp Phys Commun 87, págs. 179-196. Tielen, Roel (2016). “A high order material point method”. Tesis doct. Technische Universiteit Delf, págs. 1-8. doi: 10.1016/j.proeng.2017.01.022. Ting, J., B. T. Corkum, C. R. Kauffman y C. Greco (1989). “Discrete numerical model for soil mechanics”. En: Journal of Geotechnical Engineering 115(3), págs. 379-398. Tsuji, Y., T. Kawaguchi y T. Tanaka (1993). “Discrete particle simulation of 2-dimensional fluidized-bed”. En: Powder technology 77, págs. 79-87. Vardon, Philip J, Bin Wang y Michael A Hicks (2017). “Slope failure simulations with MPM”. En: Journal of Hydrodynamics 29(3), págs. 445-451. issn: 1001-6058. doi: 10. 1016/S1001-6058(16)60755-2. Wang, B (2017). “Slope failure analysis using the material point method”. Tesis doct. Delft University of Technology. isbn: 9789461868510. doi: 10.4233/UUID. Wang, Bin, Philip J. Vardon, Michael A. Hicks y Zhen Chen (2016). “Development of an implicit material point method for geotechnical applications”. En: Computers and Geotechnics 71, págs. 159-167. issn: 18737633. doi: 10.1016/j.compgeo.2015.08.008. Wieckowski, Z (2001). “Analysis of granular flow by the Material Point Method”. En: European Conference on Computational Mechanics. Cracow, Poland. Wieckowski, Z (2004). “The material point method in large strain engineering problems”. En: Computer Methods in Applied Mechanics and Engineering. Wieckowski, Z (2013). “Two-phase numerical model for soil-fluid interaction problems”. En: Proceeding of ComGeoIII. Krakow, págs. 410-419. Wieckowski, Z, Sung Youn y Jeoung Yeon (1999). “A particle-in-cell solution to the silo discharging problem”. En: International Journal for Numerical Methods in Engineering 45, págs. 1203-1225. Xiang, Xu y Dai Zi-Hang (2017). “Numerical implementation of a modified Mohr – Coulomb model and its application in slope stability analysis”. En: Journal of Modern Transportation 25(1), págs. 40-51. issn: 2196-0577. doi: 10.1007/s40534-017-0123-0. Yerro, A., E. E. Alonso y N.m. Pinyol (2015). “The material point method for unsaturated soils”. En: ( 3), págs. 201-217. Yerro, A., K. Soga y J. Bray (2018). “Runout evaluation of the Oslo landslide with the Material Point Method”. En: Canadian Geotechnical Joundal. Yerro, Alba, Eduardo E. Alonso y Nuria M. Pinyol (2013). “The Material Point Method: A promising computational tool in Geotechnics”. En: International Conference on Soil Mechanics and Geotechnical Engineering, págs. 853-856. Zabala, F y E. E. Alonso (2011). “Progressive failure of Asnalcóllar dam using the material point method”. En: Geotechnique 61(9), págs. 795-808. Zhang, D.Z., X. Ma y P.T. Giguere (2011). “Material point method enhance by modified gradient of shape function”. En: Journal of Computational Physics. Zhang, X., K. Krabbenhoft, D. Sheng y W Li (2015). “Numerical simulation of a flow-like landslide using the particle finite element method”. En: Computational Mechanics 55(1), págs. 167-177. Zhang, Xiong, Zhen Chen y Yan Liu (2017). “Chapter 3 - The Material Point Method”. En: The Material Point Method. Ed. por Xiong Zhang, Zhen Chen y Yan Liu. Academic Press: Oxford, págs. 37-101. isbn: 978-0-12-407716-4. doi: https://doi.org/10.1016/B978- 0-12-407716-4.00003-X.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMétodo del Punto Material (MPM)
dc.subject.proposalMaterial Point Method (MPM)
dc.subject.proposalModelación numérica
dc.subject.proposalNumerical simulation
dc.subject.proposalLandslides
dc.subject.proposalDeslizamientos
dc.subject.proposalLarge deformations
dc.subject.proposalDeformaciones grandes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit