Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGuzmán, Gerardo Gordillo
dc.contributor.authorGuzmán Castiblanco, Francisco Enrique
dc.date.accessioned2020-03-03T21:05:08Z
dc.date.available2020-03-03T21:05:08Z
dc.date.issued2019-10-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75814
dc.description.abstractThin films of organic/inorganic hybrid compounds of CH3NH3PbI3 (MAPbI3) and CH3NH3PbBr2I (MAPbBrI) deposited by the spin coating technique with perovskite structure were evaluated through transient photocurrent measurements as a function of temperature withr the purpose of determining the effect of recombination processes in trap states and in states of recombination centers on the properties of electric transport. The results were analyzed by making a theoretical fitting of the experimental curves of photocurrent (increasing and decreasing), using a procedure that assumes that the relaxation curves of the photocurrent can be expressed by multi-exponential expressions whose solution was performed numerically, using a program developed in the integrated open source multiplatform Spyder development environment for scientific programming in the Python language. A treatment of the experimental data was made to obtain a solution of system of equations from the algorithm FFT (fast Fourir Trsnsform) that allows to transform a set of data to the space of Fourier guaranteeing the uniqueness of each value in the space of Fourier. The theoretical simulation of the experimental curves of photocurrent allowed to identify the type and number of traps present in the MAPbI and MAPbBrI samples and also to determine the values of the life times τi associated with the traps identified; From the knowledge of τi, the activation energy of the traps and the density of trap states could be determined. It was established that each of the analyzed compounds has two trap states and a state associated with a recombination center. It was found that trap states associated with MAPbI do not induce persistence of the photocurrent while trap states for MAPbBrI samples have long acting times that generate persistent photocurrent
dc.description.abstractPelículas delgadas de compuestos híbridos orgánico/inorganicos de CH3NH3PbI3 (MAPbI3) y CH3NH3PbBr2I (MAPbBrI) depositadas por la técnica de spin coating con estructura perovskita fueron evaluadas a través de medidas de fotocorriente transiente en dependencia de la temperatura con el propósito de determinar el efecto de procesos de recombinación en estados de trampas y en estados de centros de recombinación sobre las propiedades de transporte eléctrico. Los resultados fueron analizados, haciendo un ajuste teórico de las curvas experimentales de fotocorriente (creciente y decreciente) usando el procedimiento que asume que las curvas de relajación de la fotocorriente pueden ser expresadas por expresiones multi-exponenciales cuya solución se realizó numéricamente utilizando un programa desarrollado en el entorno de desarrollo Spyder integrado multiplataforma de código abierto para programación científica en el lenguaje Python. Se hizo un tratamiento de los datos experimentales para lograr una solución de sistema de ecuaciones a partir del algoritmo FFT (Fast Fourier Trasnsform) que permite trasformar un conjunto de datos al espacio de Fourier garantizando la unicidad de cada valor en el espacio de Fourier. La simulación teórica de las curvas experimentales de fotocorriente permitió identificar el tipo y numero de trampas presentes en las muestras de MAPbI y MAPbBrI y además determinar los valores de los tiempos de vida τi asociados a las trampas identificadas; a partir del conocimiento de τi se pudo determinar la energía de activación de las trampas y la densidad de estados de trampas. Se pudo establecer que cada compuesto analizado presenta dos estados de trampas y un estado asociado a centro de recombinación. Se encontró que los estados de trampas asociados a MAPbI no inducen persistencia de la fotocorriente, mientras que los estados de trampas para las muestras de MAPbBrI presentan tiempos que actúan de manera prolongada que generan fotocorriente persistente.
dc.format.extent70
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcThin Film, Física de Estado Solido
dc.titleEstudio de trampas y centros de recombinación en películas delgadas de compuestos híbridos orgánico/inorgánicos con estructura Perovskita
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.description.additionalMaestría en Ciencias - Física. Línea de Investigación: Física Experimental y Simulación de Propiedades de trasporte
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupGrupo de Materiales Semiconductores & Energía Solar
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Física
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesRenewables 2018 Global Status Report, http://www.ren21.net/wp-content/uploads/2019/06/17-8652_GSR2018_FullReport_web_final_.pdf .
dc.relation.referencesRichter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz SW. n‐Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol Energy Mater Sol Cells. 2017;173:96‐105.
dc.relation.referencesNREL Press Release NR‐4514, 16 December 2014.
dc.relation.referencesFirst Solar Press Release. First Solar achieves yet another cell conversion efficiency world record, 24 February 2016.
dc.relation.referencesWard JS, Ramanathan K, Hasoon FS, et al. A 21.5% efficient Cu (In,Ga)Se2 thin‐film concentrator solar cell. Prog Photovolt Res Appl.2002;10(1):41‐46.
dc.relation.referencesWang W, Winkler MT, Gunawan O, et al. Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Adv Energy Mater. 2013;4(7). https://doi.org/10.1002/aenm.201301465
dc.relation.referenceshttps://en.wikipedia.org/wiki/South_China_University_of_Technology;https://en.wikipedia.org/wiki/Central_South_UniversityRenewables 2018 Global Status Report, http://www.ren21.net/wp-content/uploads/2019/06/17-8652_GSR2018_FullReport_web_final_.pdf .
dc.relation.referencesNREL. REN 21. Renewables 2018 global status report. Tecnicalriport. 2018.
dc.relation.referencesRenewable Energy Policy Network for the 21st Centry (REN 21), Global Status report 2015
dc.relation.referencesH.-S. Kim, et al. Scientific Reports 2 (2012) 1.
dc.relation.referencesM.M. Lee, et al. Science 338 (6107) (2012) 643.
dc.relation.referencesWinkler MT, Wang W, Gunawan O, Hovel HJ, Todorov TK, Mitzi DB. Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells. Energy and Environmental Science 2013. DOI: 10.1039/ c3ee42541j.
dc.relation.referencesH. Wei, L. Yu, Y. ShiZhong, Z LaiPan, J. Peng, W. Qing, Z. Yang, Q. ShengChun, W. ZhiJie & Ch. YongHai, Optical bandgap energy of CH3NH3PbI3 perovskite studied by.
dc.relation.referencesNiraj N. Lal,* Yasmina Dkhissi, Wei Li, Qicheng Hou, Yi-Bing Cheng, and Udo Bach, Perovskite Tandem Solar Cells, Advanced Generic Materials. 2017
dc.relation.referencesM. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop,
dc.relation.referencesD. H. Levi, A. W. Y. Ho-Baillie, Prog. Photovoltaics Res. Appl. 2016, DOI: 10.1002/pip.2855.
dc.relation.referencesJ. H. Heo, S. H. Im, Adv. Mater. 2016, 28, 5121.
dc.relation.referencesZ. Yang, A. Rajagopal, C. C. Chueh, S. B. Jo, B. Liu, T. Zhao,
dc.relation.referencesK. Y. Jen, Adv. Mater. 2016, DOI: 10.1002/adma.201602696.
dc.relation.referencesE. Edri1, S. Kirmayer , S. Mukhopadhyay , K. Gartsman, G. Hodes & D. Cahen, Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3 xClx perovskite solar cells, NATURE COMMUNICATIONS, 2014,| DOI: 10.1038
dc.relation.referencesC. Motta , F. El-Mellouhi & S. Sanvit, Charge carrier mobility in hybrid halide perovskites. Sci. Rep. 5, 12746; doi: 10.1038/srep12746 (2015).
dc.relation.referencesP. P. Boix, K. Nonomura, N. Mathews and S. G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells, Materials Today Volume 17,Number 1 ( 2014) 16-22.
dc.relation.referencesE. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes y D. Cahen, “Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3 xClx perovskite solar cells”, Nature Communications, 5 (3461), 2014, pp 1-8.
dc.relation.referencesY. Chen, M. He, J. Peng, Y. Sun y Z. Liang, “Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals”, Adv.Sci., 3, 2016, pp 1500392.
dc.relation.referencesC. A. Otalora, A. F. Loaiza y G. Gordillo, “Study of Electrical Transport Properties of Thin Films Used as HTL and as Active Layer in Organic Solar Cells, through Impedance Spectroscopy Measurements”, Advances In Materials Science And Engineering, 2016, 2016, pp 1-7.
dc.relation.referencesD. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent y O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 347 (6221), pp. 519-522.
dc.relation.referencesW. van Roosbroeck, W. Shockley, Phys. Rev. 94, 1558. (1954)
dc.relation.referencesW. Shockley, W. T. Read, Phys. Rev. 87, 835 (1952)
dc.relation.referencesR. H. Bube,"Photoconductivity of Solids"(Wiley and Sons, New York,1960)
dc.relation.referencesS. M. Ryvkin, “Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964)
dc.relation.referencesA. Rose, “Conceps in Photoconductivity ad Alliend Problems” (Krieger, Huntington, 1978)
dc.relation.referencesN.V. Joshi, Photoconductivity (Marcel Dekker, New York, 1990).
dc.relation.referencesM. Vanecek, J .Kocka, J .Stuchlik and A.Triska, Solid State Commun. 39 (1981) 1199.
dc.relation.referencesM. S .Iovu, I . A. Vasiliev, E. P .Colomeico,E. V. Emelianova, V. I .Arkhipov and G. J .Adriensenn, J. Phys.: Condens. Matter 16 (2004) 2949.
dc.relation.referencesM. Brinza, J. Willekens, M. L. Benkhedir, E. V. Emelianova, G. J. Adriaenssens, J. of Materials Science: Materials in Electronics, 16, (2005), 703-713.
dc.relation.referencesM. Silver, K. S. Dy, and I. L. Huang, Physical Rev. Letters, 27, (1971), 21-23
dc.relation.referencesSingh P K, Singh S N and Kishore R 1986 Appl. Phys. Lett. 48, 127
dc.relation.referencesSingh S N, Kishore R and Singh P K 1985a J. Appl. Phys. 57, 2793
dc.relation.referencesSingh S N, Kishore R and Arora N K 1985b Solar Cells 14 13
dc.relation.referencesS. N. Singh, R Gandotra, P.K. Singh and B C Chakravarty, Bull. Mater. Sci., Vol. 28, No. 4, July 2005
dc.relation.referencesN. V. Joshi, Physical Review B, Vol. 27, (1983) , 6272- 6278.
dc.relation.referencesN. V. Joshi and J.M Martín, Phys Let, 113A, 318 (1985)
dc.relation.referencesN. V. Joshi and S. Swanson, Solid Estate 30,105 (1987)
dc.relation.referencesG. Gordillo, C. A. Ota´lora and A. A. Ramirez; A study of trap and recombination centers in MAPbI3 perovskites, Royal Society Chemistry, Noviembre 2016.
dc.relation.referencesYu Li,Wei Wang,a Xiangyuan Wang,Shufeng Wang,Yantao Shic and Qihuang Gonga,, Density of photoinduced free carriers in perovskite thin films via purely optical detection, Journal of Materials Chemistry C, 2017-03
dc.relation.referencesY. Chen,w, H.T. Yi, X.Wu, R. Haroldson, Y.N. Gartstein, Y.I. Rodionov, K.S. Tikhonov, A. Zakhidov,X.-Y. Zhu2 & V. Podzorov, Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements, Nature Comunications, 2019.
dc.relation.referencesJ. Mcklvey. Fisica del Estado Solido y Semiconductores, Editorial Limusa, 1989.
dc.relation.referencesA. Buin, P. Pietsch, O. Voznyy, R.Comin, A. H Ip, E. H. Sargent, and B. Xu, Materials Processing Routes to Trap-free Halide Perovskites, Nano Letters, Octubre 2014.
dc.relation.referencesM. A. Peña and J. L. G. Fierro, Chemical Structures and Performance of Perovskite Oxides
dc.relation.referencesY. Chen, H.T. Yi, X.Wu, R. Haroldson, Y.N. Gartstein, Y.I. Rodionov, K.S. Tikhonov5, A. Zakhidov, X.Y. Zhu & V. Podzorov. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nature Comunications (2016)
dc.relation.referencesA.Buin, P. Pietsch, J. Xu, O. Voznyy, A. H. Ip,R. Comin, and E.H. Sargent, Materials Processing Routes to Trap-free Halide Perovskites, Nano Letters, Oct. 2014.
dc.relation.referencesY. Li,W. Wang,X. Wang,S. Wang,Y. Shic and Q. Gonga, Density of photoinduced free carriers in perovskite thin films via purely optical detection, Journal of Materials Chemistry C, Feb 2017
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPerovskita
dc.subject.proposalPerovskita
dc.subject.proposalThin Film
dc.subject.proposalThin Film
dc.subject.proposalEstado Solido
dc.subject.proposalSimulación
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit