Síntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.

dc.contributor.advisorValencia Uribe, Gloria Cristina
dc.contributor.advisorLópez Ortiz, Juan Bautista
dc.contributor.authorCoral Coral, Jhon Dario
dc.contributor.researchgroupGrupo de Investigación en Biotecnología Animal (Giba)spa
dc.contributor.researchgroupAplicaciones en Fotoquímica - GIAFOTspa
dc.date.accessioned2022-08-16T16:44:22Z
dc.date.available2022-08-16T16:44:22Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl triamtereno, un compuesto diurético de primera línea en algunos países incluido dentro del grupo de los ahorradores de potasio presenta poca solubilidad en agua. Con el propósito de mejorar este parámetro, y en consecuencia su disposición en el organismo, se sintetizaron dos nuevos compuestos en los que se modificó la estructura del TAT con manganeso y zinc, usando sus respectivos cloruros. La síntesis se llevó a cabo en solución agua:metanol. Estos compuestos fueron caracterizados a través de microscopía electrónica de barrido SEM y difracción de Rayos X en polvo. Adicionalmente, se observaron los perfiles de disolución en el tiempo en medio acuoso, evidenciando que este parámetro mejoró en los nuevos compuestos sintetizados. La caracterización de los nuevos compuestos se realizó a través de técnicas espectroscópicas como absorción UV-VIS, infrarrojo y raman. Los resultados obtenidos se contrastaron con termogramas y perfil de dilución. Se determinó el carácter fotosensibilizador del TAT y de los nuevos compuestos con Zn y Mn en medios alcohólicos. Se realizaron medidas de actinometría en estado estacionario que permitieron establecer el rendimiento cuántico de oxígeno molecular singulete generado por los nuevos compuestos. Adicionalmente, se realizaron medidas de rendimiento cuántico de fluorescencia, para aportar a la caracterización de los materiales, con miras al estudio posterior de sus aplicaciones como marcadores fluorescentes. La caracterización se completó con ensayos citotóxicos, genotóxicos y con prueba de hemolisis; con lo que fue posible demostrar el potencial antineoplásico de los nuevos compuestos sintetizados sobre la línea celular tumoral MCF-7. (Texto tomado de la fuente)spa
dc.description.abstractTriamterene, a first line diuretic compound in some countries included in the group of potassium sparing compounds, presents poor solubility in water. In order to improve this parameter, and consequently its disposition in the organism, two new compounds were synthesized in which the TAT structure was modified with manganese and zinc, using their respective chlorides. The synthesis was carried out in water:methanol solution. These compounds were characterized by SEM scanning electron microscopy and powder X-ray diffraction. Additionally, the dissolution profiles over time in aqueous medium were observed, evidencing that this parameter improved in the new synthesized compounds. The characterization of the new compounds was carried out through spectroscopic techniques such as UV-VIS absorption, infrared and Raman. The results obtained were contrasted with thermograms and dilution profile. The photosensitizing character of TAT and the new compounds with Zn and Mn in alcoholic media was determined. Steady state actinometry measurements were performed to establish the singlet molecular oxygen quantum yield generated by the new compounds. Additionally, fluorescence quantum yield measurements were performed to contribute to the characterization of the materials, with a view to the subsequent study of their applications as fluorescent markers. The characterization was completed with cytotoxic, genotoxic and hemolysis assays; thus, it was possible to demonstrate the antineoplastic potential of the new compounds synthesized on the MCF-7 tumor cell line.eng
dc.description.curricularareaÁrea Curricular en Ciencias Naturalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extentviii, 113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81916
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAcuña Cueva, E. R., Faure, R., Illán Cabeza, N. A., Jiménez Pulido, S. B., Moreno Carretero, M. N., & Quirós Olozábal, M. (2003). Synthesis and characterization of several lumazine derivative complexes of Co(II), Ni(II), Cu(II), Cd(II), Pd(II) and Pt(II). X-ray structures of a mononuclear copper complex and a dinuclear cadmium complex. Inorganica Chimica Acta, 351(1), 356–362. https://doi.org/10.1016/S0020-1693(03)00172-5spa
dc.relation.referencesAmin, P. O., Muhammadsharif, F. F., Raza Saeed, S., Ketuly, K., & Sulaiman, K. (2021). The Effect of Donor- pi -Acceptor Unit on the Optoelectronic Parameters of Poly ( Triamterene-co-Terephthalate ): Betalain Dye Composite System. March. https://www.researchgate.net/publication/350342735_The_Effect_of_Donor-pi-Acceptor_Unit_on_the_Optoelectronic_Parameters_of_PolyTriamterene-co-TerephthalateBetalain_Dye_Composite_Systemspa
dc.relation.referencesBawa, Y. (2007). Solvent inclusion properties of Triamterene crystal forms and solubility differences between Roxithromycin polymorphic forms. In Thesis (Issue April). http://repository.nwu.ac.za/handle/10394/1469spa
dc.relation.referencesCastillo, J., Rozo, C., Bertel, L., Rindzevicius, T., Mendez, S., Martinez, F., & Boisen, A. (2016). Orientation of Pterin-6-Carboxylic Acid on Gold Capped Silicon Nanopillars Platforms: Surface Enhanced Raman Spectroscopy and Density Functional Theory Studies. J. Braz. Chem. Soc., 27(5), 971–977. https://doi.org/10.5935/0103-5053.20150352spa
dc.relation.referencesDahl, O., Ziedrich, K. H., Marek, G. J., & Paradies, H. H. (1989). Physicochemical and structural studies of triamterene. Journal of Pharmaceutical Sciences, 78(7), 598–606. https://doi.org/10.1002/jps.2600780719spa
dc.relation.referencesDíaz, N. A., Ruiz, J. A. B., Reyes, E. F., Cejudo, A. G., Novo, J. J., Peinado, J. P., Meléndez-Valdés, F. T., & Fiñana, I. T. (2010). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas (pp. 1–8). https://www.uco.es/dptos/bioquimica-biol-mol/practicasgenerales.htmspa
dc.relation.referencesel Azzouzi, N., el Fadli, Z., & Metni, M. R. (2017). Synthesis and chemical characterization of some transition metal complexes with a 6-acetyl-1,3,7-trimetyllumazine ligand. Journal of Materials and Environmental Science, 8(12), 4323–4328. https://doi.org/10.26872/jmes.2017.8.12.455spa
dc.relation.referencesEl-Tabl, H. M., El-Saied, F. A., & Ayad, M. I. (2002). Manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II), and uranyl(VI) complexes of n-(4-formylantipyrine)benzothiazol-2-ylacetohydrazide. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 32(7), 1245–1262. https://doi.org/10.1081/SIM-120014301spa
dc.relation.referencesEntradas, T., Waldron, S., & Volk, M. (2020). The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. Journal of Photochemistry and Photobiology B: Biology, 204, 111787. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2020.111787spa
dc.relation.referencesFiori, J., Ballardini, R., Andrisano, V., & Cavrini, V. (2003). Photostability studies on the furosemide-triamterene drug association. Farmaco, 58(9), 867–873. https://doi.org/10.1016/S0014-827X(03)00098-3spa
dc.relation.referencesGrisales, D. (2020). Determinación del carácter fotosensibilizador del oxígeno molecular singulete en el desarrollo de fototoxicidad asociada al uso de Triamtereno y de su combinación con la Hidroclorotiazida.spa
dc.relation.referencesJensen, A. W. (1999). Drugs: Photochemistry and Photostability Edited by A. Albini and E. Fasani (Dell’ Universita Di Pavia). Journal of the American Chemical Society, 121(37), 8678–8678. https://doi.org/10.1021/ja9857559spa
dc.relation.referencesJiménez Pulido, S. B., Linares Ordóñez, F. M., Martínez Martos, J. M., Moreno Carretero, M. N., Quirós Olozábal, M., & Ramírez Expósito, M. J. (2008). Metal complexes with the ligand derived from 6-acetyl-1,3,7-trimethyllumazine and benzohydrazide. Molecular structures of two new Co(II) and Rh(III) complexes and analysis of in vitro antitumor activity. Journal of Inorganic Biochemistry, 102(8), 1677–1683. https://doi.org/10.1016/j.jinorgbio.2008.04.004spa
dc.relation.referencesJiménez Pulido, S. B., Linares Ordóñez, F. M., & Moreno Carretero, M. N. (2009). Novel coordination behavior of a pteridine-benzoylhydrazone ligand (BZLMH): Theoretical calculations, XRD structures and luminescence studies. Polyhedron, 28(13), 2641–2648. https://doi.org/10.1016/j.poly.2009.05.061spa
dc.relation.referencesKapoor, V. K. (1994). Triamterene. In H. G. B. T.-A. P. of D. S. and E. Brittain (Ed.), Analytical Profiles of Drug Substances and Excipients (Vol. 23, pp. 571–605). Academic Press. https://doi.org/https://doi.org/10.1016/S0099-5428(08)60613-9spa
dc.relation.referencesLeón, I. E., Cadavid-Vargas, J. F., di Virgilio, A. L., & Etcheverry, S. (2016). Vanadium, ruthenium and copper compounds: A new class of non-platinum Metallodrugs with anticancer activity. Current Medicinal Chemistry, 23(30). https://doi.org/10.2174/0929867323666160824162546spa
dc.relation.referencesLlopis, M. J., Alzuet, G., Martin, A., Borrás, J., García-Granda, S., & Díaz, R. (1993). Halocuprates(II) of triamterinium, a diprotonated pteridine derivative. Crystal structure of (triamterinium)CuCl4. Electronic and EPR characterization of (triamterinium)CuX4 (X = Cl, Br). Polyhedron, 12(20), 2499–2506. https://doi.org/10.1016/S0277-5387(00)83075-2spa
dc.relation.referencesMakuła, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-VIS Spectra. Journal of Physical Chemistry Letters, 9(23), 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892spa
dc.relation.referencesMukne, A. P., & Nagarsenker, M. (2004). Triamterene-β-cyclodextrin systems: Preparation, characterization and in vivo evaluation. AAPS PharmSciTech, 5(1), 142–150. https://doi.org/10.1208/pt050119spa
dc.relation.referencesNetzer, T., Ullrich, F., Knauf, H., & Mutschler, E. (1995). Potassium-Retaining Diuretics: Triamterene. In R. F. Greger, H. Knauf, & E. Mutschler (Eds.), Handbook of Experimental Pharmacology (1st ed., pp. 396–421). Springer. https://doi.org/10.1007/978-3-642-79565-7spa
dc.relation.referencesOnoda, H., Inoue, Y., Ezawa, T., Murata, I., Chantadee, T., Limmatvapirat, S., Oguchi, T., & Kanamoto, I. (2020). Preparation and characterization of triamterene complex with ascorbic acid derivatives. Drug Development and Industrial Pharmacy, 46(12), 2032–2040. https://doi.org/10.1080/03639045.2020.1842439spa
dc.relation.referencesParnis, J. M., & Oldham, K. B. (2013). Beyond the beer-lambert law: The dependence of absorbance on time in photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 267, 6–10. https://doi.org/10.1016/j.jphotochem.2013.06.006spa
dc.relation.referencesPayan, A. (2015). Síntesis y caracterización estructural de un compuesto de coordinación con el ligando 6-metoxiquinolina y evaluación del carácter fotosensibilizador de oxígeno molecular singulete.spa
dc.relation.referencesPeng, B., Wang, J.-R., & Mei, X. (2018). Triamterene–furosemide salt: structural aspects and physicochemical evaluation. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 74(6), 738–741. https://doi.org/10.1107/S2052520618013185spa
dc.relation.referencesPeng, B., Zhang, Z., Wang, J. R., Li, M., Zhang, Q., & Mei, X. (2019). Confocal Raman micro-spectral evidence and physicochemical evaluation of triamterene salts. Analyst, 144(2), 530–535. https://doi.org/10.1039/c8an01579aspa
dc.relation.referencesQuintero, B., & Miranda, M. A. (2000). Mechanisms of photosensitization induced by drugs: A general survey. Ars Pharmaceutica, 41(1), 27–46.spa
dc.relation.referencesSilverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds (Seventh ed). John Wiley & sons, INC.spa
dc.relation.referencesSperati, C. J., Zhang, C., Delsante, M., Gupta, R., Bagnasco, S., & Barman, I. (2018). Raman Spectroscopy for the Diagnosis of Intratubular Triamterene Crystallization. Kidney International Reports, 3(4), 997–1003. https://doi.org/10.1016/j.ekir.2018.03.010spa
dc.relation.referencesTravizano, M., Romano, S., & Kamienkowski, J. (2002). Determinación de la banda prohibida (band gap) en Si. Mathematica, 2. http://users.df.uba.ar/sgil/labo5_uba/inform/info/pautadas/band_gap_siI_2k2a.pdfspa
dc.relation.referencesVargas, F., Fuentes, A., Sequera, J., Méndez, H., Fraile, G., Velásquez, M., & Medina, R. (1998). In vitro approach to investigating the phototoxicity of the diuretic drug triamterene. Toxicology in Vitro, 12(6), 661–667. https://doi.org/10.1016/S0887-2333(98)00057-5spa
dc.relation.referencesVargas, F., Volkmar, I. M., Sequera, J., Mendez, H., Rojas, J., Fraile, G., Velasquez, M., & Medina, R. (1998). Photodegradation and phototoxicity studies of furosemide. Involvement of singlet oxygen in the photoinduced hemolysis and lipid peroxidation. Journal of Photochemistry and Photobiology B: Biology, 42(3), 219–225. https://doi.org/10.1016/S1011-1344(98)00074-8spa
dc.relation.referencesWiley, J. & S. (2021). Triamterene - Raman - Spectrum - SpectraBase. John Wiley & Sons, Inc. https://spectrabase.com/spectrum/682dsezWsXmspa
dc.relation.referencesWilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. Journal of Physical and Chemical Reference Data, 22(1), 113–262. https://doi.org/10.1063/1.555934spa
dc.relation.referencesYoshikawa, A., Matsunami, H., & Nanishi, Y. (2007). Development and applications of wide bandgap semiconductors. Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices, 1–24. https://doi.org/10.1007/978-3-540-47235-3_1spa
dc.relation.referencesZaheer, M. R., Gupta, A., Iqbal, J., Zia, Q., Ahmad, A., Roohi, Owais, M., Hashlamon, A., Mohd Setapar, S. H., Aliev, G., & Md Ashraf, G. (2016). Molecular mechanisms of drug photodegradation and photosensitization. Current Pharmaceutical Design, 22(7), 768–782. https://doi.org/10.2174/1381612822666151209151408spa
dc.relation.referencesZoltan, T., Vargas, F., & Izzo, C. (2007). UV-VIS Spectrophotometrical and Analytical Methodology for the Determination of Singlet Oxygen in New Antibacterials Drugs. Analytical Chemistry Insights, 2, 117739010700200020. https://doi.org/10.4137/117739010700200015spa
dc.relation.referencesAcceptor_Unit_on_the_Optoelectronic_Parameters_of_PolyTriamterene-co-TerephthalateBetalain_Dye_Composite_Systemspa
dc.relation.referencesPhotobiology B: Biology, 204, 111787. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2020.111787spa
dc.relation.referencesArencibia Arrebola, D. F., Rosario Fernández, L. A., & Curveco Sánchez, D. L. (2003). Principales ensayos para determinar la citotoxicidad de una sustancia, algunas consideraciones y su utilidad. Revista de Toxicología En Línea, 40–52. http://www.sertox.com.ar/img/item_full/19003.pdfspa
dc.relation.referencesAşkin Çelik, T. (2018). Introductory Chapter: Cytotoxicity. In Cytotoxicity. https://doi.org/10.5772/intechopen.77244spa
dc.relation.referencesCarmona-Martínez, V., Ruiz-Alcaraz, A. J., Vera, M., Guirado, A., Martínez-Esparza, M., & García-Peñarrubia, P. (2018). Therapeutic potential of pteridine derivatives: A comprehensive review. Medicinal Research Reviews, 1–56. https://doi.org/10.1002/med.21529spa
dc.relation.referencesCosta, M., Santos, B., Jorge, J., Alves, R., Marques, I., Sarmento, A., & Goncalves, A. (2022). Zinc Prevents DNA Damage in Normal Cells but Shows Genotoxic and Cytotoxic Effects in Acute Myeloid Leukemia Cells. International Journal of Molecular Sciences, 23(2567), 11. https://doi.org/https://doi.org/ 10.3390/ijms23052567spa
dc.relation.referencesErkan, M., Aydin, Y., Orta Yilmaz, B., & Yildizbayrak, N. (2021). Chapter 42 - Protective effects of vitamin C against fluoride toxicity. In V. B. Patel & V. R. B. T.-T. Preedy (Eds.) (pp. 435–445). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819092-0.00043-1spa
dc.relation.referencesFeldman, B. F., & Sink, C. A. (2008). “Methods”, Practical Transfusion Medicine. https://www.ivis.org/library/practical-transfusion-medicine/methodsspa
dc.relation.referencesFreshney, R. I. (2005). Culture of animal cells: A manual of basic technique (5th ed.). WILEY. https://doi.org/10.1002/9780471747598spa
dc.relation.referencesGascón Jiménez, S. (2007). Mecanismos de regulación del receptor de glutamato tipo NMDA en excitotoxicidad e isquemia cerebral. http://hdl.handle.net/10486/2621spa
dc.relation.referencesGuillotin, D., Austin, P., Begum, R., Freitas, M. O., Merve, A., Brend, T., Short, S., Marino, S., & Martin, S. A. (2017). Drug-repositioning screens identify triamterene as a selective drug for the treatment of DNA mismatch repair deficient cells. Clinical Cancer Research, 23(11), 2880–2890. https://doi.org/10.1158/1078-0432.CCR-16-1216spa
dc.relation.referencesHorváthová, E., Slameňová, D., Hlinčíková, L., Mandal, T. K., Gábelová, A., & Collins, A. R. (1998). The nature and origin of DNA single-strand breaks determined with the comet assay. Mutation Research - DNA Repair, 409(3), 163–171. https://doi.org/10.1016/S0921-8777(98)00053-6spa
dc.relation.referencesHsiao, Y. L., Chang, P. C., Huang, H. J., Kuo, C. C., & Chen, C. Y. C. (2014). Treatment of Acute Lymphoblastic Leukemia From Traditional Chinese Medicine. Evidence-Based Complementary and Alternative Medicine, 2014, 1–21. https://doi.org/10.1155/2014/601064spa
dc.relation.referencesIARC. (2016). Triamterene. In SOME DRUGS AND HERBAL PRODUCTS (Vol. 108, pp. 263–283). International Agency for Research on Cancer. World Health Organization. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Drugs-And-Herbal-Products-2015spa
dc.relation.referencesJoão Romão, M., Knäblein, J., Huber, R., & Moura, J. J. G. (1997). Structure and function of molybdopterin containing enzymes. Progress in Biophysics and Molecular Biology, 68(2), 121–144. https://doi.org/https://doi.org/10.1016/S0079-6107(97)00022-9spa
dc.relation.referencesLima, P. D. L., Vasconcellos, M. C., Montenegro, R. C., Bahia, M. O., Costa, E. T., Antunes, L. M. G., & Burbano, R. R. (2011). Genotoxic effects of aluminum, iron and manganese in human cells and experimental systems: A review of the literature. Human and Experimental Toxicology, 30(10), 1435–1444. https://doi.org/10.1177/0960327110396531spa
dc.relation.referencesLehninger, A. L., Nelson, D. L., & Cox, M. M. (2006). Lehninger PRINCIPIOS DE BIOQUÍMICA (Cuarta edi).spa
dc.relation.referencesLópez Ortiz, J. B. (Universidad N. de C., & Márquez Fernández, M. E. (Universidad N. de C. (2002). Modelo experimental para el estudio cromosómico en células de mamíferos. Laboratorio de Genética, Universidad Nacional de Colombia.spa
dc.relation.referencesLópez, S. L., Aiassa, D., Benítez Leite, S., Lajmanovich, R., Mañas, F., Poletta, G., Śnchez, N., Simoniello, M. F., & Carrasco, A. E. (2012). Pesticides used in South American GMO-based agriculture. A review of their effects on humans and animal models. In Advances in Molecular Toxicology (Vol. 6). https://doi.org/10.1016/B978-0-444-59389-4.00002-1spa
dc.relation.referencesLorente, C. (2003). Fotofísica y propiedades fotosensibilizadoras de pterinas en solución acuosa. http://sedici.unlp.edu.ar/handle/10915/2216spa
dc.relation.referencesMartínez-Pardo, M. (2012). Deficiencias de tetrahidrobiopterina (BH4): diagnóstico y tratamiento. Acta Pediátrica de México, 33(6), 319–323. http://www.medigraphic.com/pdfs/actpedmex/apm-2012/apm126l.pdfspa
dc.relation.referencesMoghadam, N. H., Salehzadeh, S., Tanzadehpanah, H., Saidijam, M., Karimi, J., & Khazalpour, S. (2018). In vitro cytotoxicity and DNA/HSA interaction study of triamterene using molecular modelling and multi-spectroscopic methods. Journal of Biomolecular Structure and Dynamics, 37(9), 2242–2253. https://doi.org/10.1080/07391102.2018.1489305spa
dc.relation.referencesMutschler, E., Gilfrich, H. J., Knauf, H., Mörke, W., & Völger, K. D. (1983). Pharmacokinetics of triamterene. Clinical and Experimental Hypertension, A5(2), 249–269. https://doi.org/10.3109/10641968309048825spa
dc.relation.referencesPark, N. Y., Jo, D. S., Kim, Y. H., Bae, J.-E., Kim, J. B., Park, H. J., Choi, J. Y., Lee, H. J., Chang, J. H., Bunch, H., Jeon, H. B., Jung, Y.-K., & Cho, D.-H. (2021). Triamterene induces autophagic degradation of lysosome by exacerbating lysosomal integrity. Archives of Pharmacal Research, 44(6), 621–631. https://doi.org/10.1007/s12272-021-01335-5spa
dc.relation.referencesPérez-González, A., Gómez-Peralta, J. I., Garza-Ortiz, A., & Barba-Behrens, N. (2012). Importancia del molibdeno en los sistemas biológicos y su papel en enzimas mononucleares como parte del cofactor Moco. Educacion Quimica, 23(1), 23–32. https://doi.org/10.1016/s0187-893x(17)30094-0spa
dc.relation.referencesPfleiderer, W., Kappel, M., & Baur, R. (1984). Biochemical and Clinical Aspects of Pteridines. 369(2). https://doi.org/doi:10.1515/bchm3.1988.369.2.527spa
dc.relation.referencesSchalhorn, A., Siegert, W., & Sauer, H. (1981). Antifolate Effect of Triamterene on Human Leucocytes and on a Human Lymphoma Cell Line. European Journal of Clinical Pharmacology, 20, 219–224.spa
dc.relation.referencesSeukep, A. J., Noumedem, J. A. K., Djeussi, D. E., & Kuete, V. (2014). 9 - Genotoxicity and Teratogenicity of African Medicinal Plants. Toxicological Survey of African Medicinal Plants, 235–275. https://doi.org/https://doi.org/10.1016/B978-0-12-800018-2.00009-1spa
dc.relation.referencesStryer, L. (1995). Biochemistry (4th editio). W. H. Freeman and Company. Thomas, A. H. (2001). Fotoquímica de ácido fólico, 6-formilpterina y 6-carboxipterina en solución acuosa. http://sedici.unlp.edu.ar/handle/10915/2215spa
dc.relation.referencesTurkez, H., Arslan, M. E., & Ozdemir, O. (2017). Genotoxicity testing: progress and prospects for the next decade. Expert Opinion on Drug Metabolism and Toxicology, 13(10), 1089–1098. https://doi.org/10.1080/17425255.2017.1375097spa
dc.relation.referencesUlukaya, E., Ozdikicioglu, F., Oral, A. Y., & Demirci, M. (2008). The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 22(1), 232–239. https://doi.org/10.1016/j.tiv.2007.08.006spa
dc.relation.referencesWu, Q., Liu, J., Xu, X., Huang, B., Zheng, D., & Li, J. (2021). Mechanism of megaloblastic anemia combined with hemolysis. Bioengineered, 12(1), 6703–6712. https://doi.org/10.1080/21655979.2021.1952366spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.lembFisicoquímica
dc.subject.lembChemistry, physical and theoretical
dc.subject.proposalTriamterenospa
dc.subject.proposalTriamtereneeng
dc.subject.proposalPerfil de diluciónspa
dc.subject.proposalDilution profileeng
dc.subject.proposalCaracterización espectroscópicaspa
dc.subject.proposalspectroscopic characterizationeng
dc.subject.proposalEstabilidad fotoquímicaspa
dc.subject.proposalPhotochemical stabilityeng
dc.subject.proposalEnsayos citotóxicos y genotóxicosspa
dc.subject.proposalCytotoxic and genotoxic assayseng
dc.subject.proposalHemólisisspa
dc.subject.proposalSíntesis de compuestosspa
dc.subject.proposalSynthesis of compoundseng
dc.subject.proposalHemolysiseng
dc.titleSíntesis y caracterización de nuevos compuestos de triamtereno con ZnCl2 y/o MnCl2: Evaluación del carácter fotosensibilizador y efectos cito y genotóxico.spa
dc.title.translatedSynthesis and characterization of new triamterene compounds with ZnCl2 and/or MnCl2: Evaluation of photosensitizing character and cytotoxic and genotoxic effects.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085282761.2022.pdf
Tamaño:
2.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Ciencias-Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: