Predicción de sobrecostos en proyectos de construcción de edificación (uso no residencial) empleando una técnica de Machine Learning. Caso de estudio: Capital Project Schedules and Budgets

dc.contributor.advisorEspinosa Bedoya, Albeiro
dc.contributor.advisorRojas López, Miguel David
dc.contributor.authorOspina Castañeda, Andrés Felipe
dc.contributor.cvlacOspina Castañeda, Andres Felipe [0002208300]
dc.contributor.cvlacRojas Lopez, Miguel David [0000252352]
dc.contributor.googlescholarEspinosa Bedoya, Albeiro [EGp0-AIAAAAJ&hl]
dc.contributor.orcidEspinosa Bedoya, Albeiro [0000-0001-7292-987X]
dc.contributor.orcidRojas López, Miguel David [0000-0002-3531-4910]
dc.contributor.researchgroupCentro de Investigación y Consultoría Organizacional-Cinco-
dc.date.accessioned2025-09-01T16:05:28Z
dc.date.available2025-09-01T16:05:28Z
dc.date.issued2025
dc.descriptionIlustraciones, tablasspa
dc.description.abstractEl presente estudio propone un modelo predictivo basado en técnicas de Machine Learning para anticipar sobrecostos en proyectos de construcción de edificación de uso no residencial, tomando como caso de estudio la base de datos “Capital Project Schedules and Budgets” de la School Construction Authority (SCA) de Nueva York. La investigación surge ante la necesidad de superar las limitaciones de los enfoques tradicionales en la gestión de riesgos en costos. A partir del enfoque CRISP-DM, se llevó a cabo un proceso estructurado que incluyó la comprensión del negocio, análisis exploratorio de datos, selección de variables relevantes, transformación de datos y entrenamiento de modelos predictivos. Se evaluaron cuatro algoritmos: Linear Regression, Random Forest Regressor, Multi Layer Perceptron Regressor, y Gradient Boosting Regressor, siendo este último el de mejor desempeño, alcanzando un coeficiente de determinación (R²) de 0.9824, con un error cuadrático medio (MSE) de 309.699.558 y un error absoluto medio (MAE) de 3.887. El análisis identificó que las variables más influyentes en los sobrecostos fueron de tipo financiero, destacándose el presupuesto total del proyecto, el gasto real estimado a la fecha y el presupuesto final estimado. En contraste, variables categóricas como el tipo de proyecto o la fase constructiva mostraron baja significancia estadística. Asimismo, la validación del modelo mediante K-Fold Cross Validation confirmó su capacidad de generalización, sin indicios de sobreajuste. (Tomado de la fuente)spa
dc.description.abstractThis study proposes a predictive model based on Machine Learning techniques to anticipate cost overruns in non-residential building construction projects, using the “Capital Project Schedules and Budgets” dataset from the New York School Construction Authority (SCA) as a case study. The research emerges from the need to overcome the limitations of traditional approaches to cost risk management. Following the CRISP-DM framework, a structured process was conducted, including business understanding, exploratory data analysis, selection of relevant variables, data transformation, and training of predictive models. Four algorithms were evaluated: Linear Regression, Random Forest Regressor, Multi-Layer Perceptron Regressor, and Gradient Boosting Regressor. The latter showed the best performance, achieving a coefficient of determination (R²) of 0.9824, a mean squared error (MSE) of 309,699,558, and a mean absolute error (MAE) of 3,887. The analysis identified financial variables as the most influential in cost overruns, with total project budget, estimated actual expenditure to date, and final estimated budget standing out. In contrast, categorical variables such as project type or construction phase showed low statistical significance. Moreover, the model's validation through K-Fold Cross Validation confirmed its generalization capability, with no signs of overfitting.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Analítica
dc.description.methodsEl desarrollo de este estudio se realiza a partir de CRISP-DM (Cross-Industry Standard Process for Data Mining), una metodología estructurada para proyectos de minería de datos que garantiza un desarrollo coherente desde la definición del problema hasta la implementación de la solución. Según Goh et al. (2017) las fases de la metodología pueden describirse de la siguiente manera: Comprensión del negocio: en esta etapa se identifican los objetivos y requisitos desde una perspectiva empresarial, traduciéndolos en un problema de minería de datos y definiendo un plan preliminar de trabajo. Comprensión de los datos: consiste en recopilar, explorar y evaluar la calidad de la información, con el fin de detectar patrones iniciales y posibles inconsistencias. Preparación de los datos: implica seleccionar, limpiar y transformar los datos para garantizar su formato e idoneidad antes del modelado. Modelado: se aplican diversas técnicas analíticas y se ajustan sus parámetros para encontrar la solución más adecuada al problema planteado. Evaluación: se validan los modelos generados, verificando que satisfagan los objetivos del negocio y sean suficientemente confiables para su uso. Despliegue: en esta fase se implementan los resultados en el entorno empresarial, ya sea mediante informes, integración en sistemas operativos o automatización de procesos, asegurando que el conocimiento obtenido aporte valor real a la organización.
dc.description.noteshttps://github.com/Anfospina/cost-overrun-predictionspa
dc.description.researchareaGestión de la construcción
dc.format.extent117 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88518
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analítica
dc.relation.indexedLaReferencia
dc.relation.referencesAbioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Dávila Delgado, J. M., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/J.JOBE.2021.103299
dc.relation.referencesAggabou, L. K., Lakehal, B., & Mouda, M. (2024). An Artificial Neural Network Approach for Construction Project Risk Management. International Journal of Safety and Security Engineering, 14(2), 553–561. https://doi.org/10.18280/ijsse.140222
dc.relation.referencesAkoglu, H. (2018). User’s guide to correlation coefficients. In Turkish Journal of Emergency Medicine (Vol. 18, pp. 91–93). Emergency Medicine Association of Turkey. https://doi.org/10.1016/j.tjem.2018.08.001
dc.relation.referencesAl-Nahhas, Y. S., Hadidi, L. A., Islam, M. S., Skitmore, M., & Abunada, Z. (2024). Modified Mamdani-fuzzy inference system for predicting the cost overrun of construction projects. Applied Soft Computing, 151. https://doi.org/10.1016/j.asoc.2023.111152
dc.relation.referencesAmmar, T., Abdel-Monem, M., & El-Dash, K. (2022). Risk factors causing cost overruns in road networks. Ain Shams Engineering Journal, 13. https://doi.org/10.1016/j.asej.2022.101720
dc.relation.referencesArabzadeh, V., Niaki, S. T. A., & Arabzadeh, V. (2018). Construction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms. Journal of Industrial Engineering International, 14, 747–756. https://doi.org/10.1007/s40092-017-0240-8
dc.relation.referencesArthur, A. (2021). Construction Risk Management Decision Making.
dc.relation.referencesAshtari, M. A., Ansari, R., Hassannayebi, E., & Jeong, J. (2022). Cost Overrun Risk Assessment and Prediction in Construction Projects: A Bayesian Network Classifier Approach. Buildings, 12(10). https://doi.org/10.3390/buildings12101660
dc.relation.referencesAxelos. (2017). Managing Successful Projects with PRINCE2®. TSO (The Stationery Office).
dc.relation.referencesBanaitiene, N., Banaitis, A., & Norkus, A. (2011). Risk management in projects: Peculiarities of Lithuanian construction companies. International Journal of Strategic Property Management, 15, 60–73. https://doi.org/10.3846/1648715X.2011.568675
dc.relation.referencesBiau, G., & Cadre, B. (2021). Optimization by Gradient Boosting. In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan (pp. 23–44). Springer International Publishing. https://doi.org/10.1007/978-3-030-73249-3_2
dc.relation.referencesBorujeni, S. E., Nannapaneni, S., Nguyen, N. H., Behrman, E. C., & Steck, J. E. (2021). Quantum circuit representation of Bayesian networks. Expert Systems with Applications, 176. https://doi.org/10.1016/j.eswa.2021.114768
dc.relation.referencesChattapadhyay, D. B., Putta, J., & Rama Mohan Rao, P. (2021). Risk identification, assessments, and prediction for mega construction projects: A risk prediction paradigm based on cross analytical-machine learning model. Buildings, 11(4). https://doi.org/10.3390/buildings11040172
dc.relation.referencesCheng, M.-Y., & Darsa, M. H. (2021). Construction schedule risk assessment and management strategy for foreign general contractors working in the Ethiopian construction industry. Sustainability (Switzerland), 13(14). https://doi.org/10.3390/su13147830
dc.relation.referencesChenya, L., Aminudin, E., Mohd, S., & Yap, L. S. (2022). Intelligent Risk Management in Construction Projects: Systematic Literature Review. IEEE Access, 10, 72936–72954. https://doi.org/10.1109/ACCESS.2022.3189157
dc.relation.referencesChien, C. F., Dauzère-Pérès, S., Huh, W. T., Jang, Y. J., & Morrison, J. R. (2020). Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies. In International Journal of Production Research (Vol. 58, pp. 2730–2731). Taylor and Francis Ltd. https://doi.org/10.1080/00207543.2020.1752488
dc.relation.referencesDampfhoffer, M., Mesquida, T., Valentian, A., & Anghel, L. (2023). Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2023.3263008
dc.relation.referencesDonthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
dc.relation.referencesFayek, A. R. (2020). Fuzzy Logic and Fuzzy Hybrid Techniques for Construction Engineering and Management. Journal of Construction Engineering and Management, 146. https://doi.org/10.1061/(asce)co.1943-7862.0001854
dc.relation.referencesFernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., & Fernández-Delgado, A. (2014). Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15, 3133–3181. http://www.mathworks.es/products/neural-network.
dc.relation.referencesFlanagan, R., & Norman, G. (1993). Developing Guideline for Risk Management of Tunnel Construction in Ethiopia. Open Journal of Safety Science and Technology, 11, 171–183. https://doi.org/10.4236/ojsst.2021.114012
dc.relation.referencesForouzeshNejad, A. A., Arabikhan, F., & Aheleroff, S. (2024). Optimizing Project Time and Cost Prediction Using a Hybrid XGBoost and Simulated Annealing Algorithm. Machines, 12. https://doi.org/10.3390/machines12120867
dc.relation.referencesGeorge, M. R., Nalluri, M. R., & Anand, K. B. (2022). Application of Ensemble Machine Learning for Construction Safety Risk Assessment. Journal of The Institution of Engineers (India): Series A, 103(4), 989–1003. https://doi.org/10.1007/s40030-022-00690-w
dc.relation.referencesGoh, S. C., Elliott, C., & Richards, G. (2017). Setting the context for analytics: Performance management in Canadian public organizations: Findings of a multi-case study. In Big Data and Analytics Applications in Government: Current Practices and Future Opportunities (pp. 29–55). CRC Press. https://doi.org/10.4324/9781315153582
dc.relation.referencesGonzález Alcaide, G., Valderrama Zurián, J. C., Aleixandre Benavent, R., & González De Dios, J. (2011). La investigación pediátrica Española en Anales de Pediatría: Grupos y ámbitos temáticos (2003-2009). Anales de Pediatria, 74, 239–254. https://doi.org/10.1016/j.anpedi.2010.10.023
dc.relation.referencesGuelman, L. (2012). Gradient boosting trees for auto insurance loss cost modeling and prediction. Expert Systems with Applications, 39, 3659–3667. https://doi.org/10.1016/j.eswa.2011.09.058
dc.relation.referencesHammad, A., AbouRizk, S., & Mohamed, Y. (2014). Application of KDD Techniques to Extract Useful Knowledge from Labor Resources Data in Industrial Construction Projects. Journal of Management in Engineering, 30. https://doi.org/10.1061/(asce)me.1943-5479.0000280
dc.relation.referencesHasan, N., & Singh, M. (2015). Library and Information Science Research Output: A study based on Web of Science. Collnet Journal of Scientometrics and Information Management, 9, 47–64. https://doi.org/10.1080/09737766.2015.1027089
dc.relation.referencesHazelton, M. L. (2009). Univariate Linear Regression. In International Encyclopedia of Education, Third Edition (pp. 482–488). Elsevier. https://doi.org/10.1016/B978-0-08-044894-7.01373-7
dc.relation.referencesHegde, J., & Rokseth, B. (2020). Applications of machine learning methods for engineering risk assessment – A review. In Safety Science (Vol. 122). Elsevier B.V. https://doi.org/10.1016/j.ssci.2019.09.015
dc.relation.referencesHon, C. K. H., Sun, C., Xia, B., Jimmieson, N. L., Way, K. A., & Wu, P. P. Y. (2022). Applications of Bayesian approaches in construction management research: a systematic review. Engineering, Construction and Architectural Management, 29, 2153–2182. https://doi.org/10.1108/ECAM-10-2020-0817
dc.relation.referencesHuang, M. (2020). Theory and Implementation of linear regression. Proceedings - 2020 International Conference on Computer Vision, Image and Deep Learning, CVIDL 2020, 210–217. https://doi.org/10.1109/CVIDL51233.2020.00-99
dc.relation.referencesKadume, N. H., & Naji, H. I. (2021). Building Schedule Risks Simulation by Using BIM with Monte Carlo Technique. IOP Conference Series: Earth and Environmental Science, 856. https://doi.org/10.1088/1755-1315/856/1/012059
dc.relation.referencesKatal, A., & Singh, N. (2022). Artificial Neural Network: Models, Applications, and Challenges. In EAI/Springer Innovations in Communication and Computing (pp. 235–257). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-78284-9_11
dc.relation.referencesKhodabakhshian, A. (2023). MACHINE LEARNING FOR RISK MANAGEMENT IN CONSTRUCTION PROJECTS. Politecnico Milano
dc.relation.referencesKhodabakhshian, A., Malsagov, U., & Re Cecconi, F. (2024). Machine Learning Application in Construction Delay and Cost Overrun Risks Assessment. Lecture Notes in Networks and Systems, 921 LNNS, 222–240. https://doi.org/10.1007/978-3-031-54053-0_17
dc.relation.referencesKhodabakhshian, A., Puolitaival, T., & Kestle, L. (2023). Deterministic and Probabilistic Risk Management Approaches in Construction Projects: A Systematic Literature Review and Comparative Analysis. Buildings. https://doi.org/10.3390/buildings13051312
dc.relation.referencesKim, T. K. (2017). Understanding one-way anova using conceptual figures. Korean Journal of Anesthesiology, 70, 22–26. https://doi.org/10.4097/kjae.2017.70.1.22
dc.relation.referencesKonstantinov, A., Utkin, L., & Muliukha, V. (2021). Gradient boosting machine with partially randomized decision trees. Conference of Open Innovation Association, FRUCT, 2021-January. https://doi.org/10.23919/FRUCT50888.2021.9347631
dc.relation.referencesKulkarni, V. Y., Petare, M., & Sinha, P. K. (2014). Analyzing random forest classifier with different split measures. Advances in Intelligent Systems and Computing, 236, 691–699. https://doi.org/10.1007/978-81-322-1602-5_74
dc.relation.referencesLi, J., Wang, J., Xu, N., Hu, Y., & Cui, C. (2018). Importance degree research of safety risk management processes of urban rail transit based on text mining method. Information (Switzerland), 9. https://doi.org/10.3390/info9020026
dc.relation.referencesLiu, W., Zhao, T., Zhou, W., & Tang, J. (2018). Safety risk factors of metro tunnel construction in China: An integrated study with EFA and SEM. Safety Science, 105, 98–113. https://doi.org/10.1016/j.ssci.2018.01.009
dc.relation.referencesMoon, S., Chi, S., & Im, S.-B. (2022). Automated detection of contractual risk clauses from construction specifications using bidirectional encoder representations from transformers (BERT). Automation in Construction, 142. https://doi.org/10.1016/j.autcon.2022.104465
dc.relation.referencesNikas, A., Poulymenakou, A., & Kriaris, P. (2007). Investigating antecedents and drivers affecting the adoption of collaboration technologies in the construction industry. Automation in Construction, 16, 632–641. https://doi.org/10.1016/j.autcon.2006.10.003
dc.relation.referencesNyqvist, R., Peltokorpi, A., & Seppänen, O. (2024). Can ChatGPT exceed humans in construction project risk management? Engineering, Construction and Architectural Management, 31(13), 223–243. https://doi.org/10.1108/ECAM-08-2023-0819
dc.relation.referencesObregón, L., Orozco, C., Camargo, J., Duarte, J., & Valencia, G. (2019). Research trend on nuclear energy from 2008 to 2018: A bibliometric analysis. International Journal of Energy Economics and Policy, 9, 542–551. https://doi.org/10.32479/ijeep.8515
dc.relation.referencesODI. (2019). Data trusts: lessons from three pilots (report). https://theodi.org/insights/reports/odi-data-trusts-report/
dc.relation.referencesOkudan, O., Budayan, C., & Dikmen, I. (2021). A knowledge-based risk management tool for construction projects using case-based reasoning. Expert Systems with Applications, 173. https://doi.org/10.1016/j.eswa.2021.114776
dc.relation.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Journal of Clinical Epidemiology, 134, 178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001
dc.relation.referencesPretnar Žagar, A., & Demšar, J. (2022). Model Evaluation: How to Accurately Evaluate Predictive Models. In Tourism on the Verge: Vol. Part F1051 (pp. 253–274). Springer Nature. https://doi.org/10.1007/978-3-030-88389-8_13
dc.relation.referencesProject Management Institute. (2017). A guide to the project management body of knowledge (PMBOK® guide) – Sixth edition. Project Management Institute
dc.relation.referencesProject Management Institute. (2021). A guide to the project management body of knowledge (PMBOK® guide) – Seventh edition. Project Management Institute
dc.relation.referencesRao, T. V. N., Gaddam, A., Kurni, M., & Saritha, K. (2021). Reliance on artificial intelligence, machine learning and deep learning in the era of industry 4.0. In Smart Healthcare System Design: Security and Privacy Aspects (pp. 281–300). wiley. https://doi.org/10.1002/9781119792253.ch12
dc.relation.referencesRavindran, D., & Deepak, S. (2023). Bibliometric Analysis of Network Marketing for Business Sustainability Using Co-citation Method. Studies in Computational Intelligence, 1113, 299–309. https://doi.org/10.1007/978-3-031-43300-9_25
dc.relation.referencesSanni-Anibire, M. O., Zin, R. M., & Olatunji, S. O. (2021). Machine learning - Based framework for construction delay mitigation. Journal of Information Technology in Construction, 26, 303–318. https://doi.org/10.36680/j.itcon.2021.017
dc.relation.referencesShwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is not all you need. Information Fusion, 81, 84–90. https://doi.org/10.1016/J.INFFUS.2021.11.011
dc.relation.referencesSohrabinejad, A., & Rahimi, M. (2015). Risk Determination, Prioritization, and Classifying in Construction Project Case Study: Gharb Tehran Commercial-Administrative Complex. Journal of Construction Engineering, 2015, 1–10. https://doi.org/10.1155/2015/203468
dc.relation.referencesStijnman, F. (2024). MLOps Concepts. Deploying Machine Learning into Production [DataCamp]
dc.relation.referencesTayefeh Hashemi, S., Ebadati, O. M., & Kaur, H. (2020). Cost estimation and prediction in construction projects: a systematic review on machine learning techniques. In SN Applied Sciences (Vol. 2). Springer Nature. https://doi.org/10.1007/s42452-020-03497-1
dc.relation.referencesTeja, S., & Ch, S. A. (2017). Risk Management in Construction Equipment. International Journal of Civil Engineering and Technology, 8(5), 160–167. http://iaeme.com/Home/issue/IJCIET?Volume=8&Issue=5http://iaeme.com
dc.relation.referencesTurkyilmaz, A. H., & Polat, G. (2024). Risk-Based Completion Cost Overrun Ratio Estimation in Construction Projects Using Machine Learning Classification Algorithms: A Case Study. Buildings, 14(11). https://doi.org/10.3390/buildings14113541
dc.relation.referencesVišić, M. (2022). CONNECTING PUZZLE PIECES: SYSTEMATIC LITERATURE REVIEW METHOD IN THE SOCIAL SCIENCES. Sociologija, 64, 543. https://doi.org/10.2298/SOC2204543V
dc.relation.referencesWahab, A., & Wang, J. (2022). Factors-driven comparison between BIM-based and traditional 2D quantity takeoff in construction cost estimation. Engineering, Construction and Architectural Management, 29, 702–715. https://doi.org/10.1108/ECAM-10-2020-0823
dc.relation.referencesWeng, J. (Connor). (2023). Putting Intellectual Robots to Work: Implementing Generative AI Tools in Project Management. Https://Archive.Nyu.Edu/Handle/2451/69531
dc.relation.referencesYaseen, Z. M., Ali, Z. H., Salih, S. Q., & Al-Ansari, N. (2020). Prediction of risk delay in construction projects using a hybrid artificial intelligence model. Sustainability (Switzerland), 12(4). https://doi.org/10.3390/su12041514
dc.relation.referencesYi, Z., & Luo, X. (2024). Construction Cost Estimation Model and Dynamic Management Control Analysis Based on Artificial Intelligence. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 48(1), 577–588. https://doi.org/10.1007/s40996-023-01173-z
dc.relation.referencesZou, P. X. W., Zhang, G., & Wang, J. (2007). Understanding the key risks in construction projects in China. International Journal of Project Management, 25, 601–614. https://doi.org/10.1016/j.ijproman.2007.03.001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.subject.ddc690 - Construcción de edificios
dc.subject.lembEdificios - Diseño y construcción
dc.subject.lembEdificios - Costos de construcción
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.proposalSobrecostosspa
dc.subject.proposalConstrucciónspa
dc.subject.proposalPredicciónspa
dc.subject.proposalGestión de riesgosspa
dc.subject.proposalMachine Learningeng
dc.subject.proposalGradient Boostingeng
dc.subject.proposalCost Overrunseng
dc.subject.proposalConstructioneng
dc.subject.proposalPredictioneng
dc.subject.proposalRisk Managementeng
dc.titlePredicción de sobrecostos en proyectos de construcción de edificación (uso no residencial) empleando una técnica de Machine Learning. Caso de estudio: Capital Project Schedules and Budgetsspa
dc.title.translatedPrediction of cost overruns in building construction projects (non-residential use) using a machine learning technique. Case study: Capital Project Schedules and Budgetseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Analítica
Tamaño:
2.71 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: