Predicción de sobrecostos en proyectos de construcción de edificación (uso no residencial) empleando una técnica de Machine Learning. Caso de estudio: Capital Project Schedules and Budgets
dc.contributor.advisor | Espinosa Bedoya, Albeiro | |
dc.contributor.advisor | Rojas López, Miguel David | |
dc.contributor.author | Ospina Castañeda, Andrés Felipe | |
dc.contributor.cvlac | Ospina Castañeda, Andres Felipe [0002208300] | |
dc.contributor.cvlac | Rojas Lopez, Miguel David [0000252352] | |
dc.contributor.googlescholar | Espinosa Bedoya, Albeiro [EGp0-AIAAAAJ&hl] | |
dc.contributor.orcid | Espinosa Bedoya, Albeiro [0000-0001-7292-987X] | |
dc.contributor.orcid | Rojas López, Miguel David [0000-0002-3531-4910] | |
dc.contributor.researchgroup | Centro de Investigación y Consultoría Organizacional-Cinco- | |
dc.date.accessioned | 2025-09-01T16:05:28Z | |
dc.date.available | 2025-09-01T16:05:28Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones, tablas | spa |
dc.description.abstract | El presente estudio propone un modelo predictivo basado en técnicas de Machine Learning para anticipar sobrecostos en proyectos de construcción de edificación de uso no residencial, tomando como caso de estudio la base de datos “Capital Project Schedules and Budgets” de la School Construction Authority (SCA) de Nueva York. La investigación surge ante la necesidad de superar las limitaciones de los enfoques tradicionales en la gestión de riesgos en costos. A partir del enfoque CRISP-DM, se llevó a cabo un proceso estructurado que incluyó la comprensión del negocio, análisis exploratorio de datos, selección de variables relevantes, transformación de datos y entrenamiento de modelos predictivos. Se evaluaron cuatro algoritmos: Linear Regression, Random Forest Regressor, Multi Layer Perceptron Regressor, y Gradient Boosting Regressor, siendo este último el de mejor desempeño, alcanzando un coeficiente de determinación (R²) de 0.9824, con un error cuadrático medio (MSE) de 309.699.558 y un error absoluto medio (MAE) de 3.887. El análisis identificó que las variables más influyentes en los sobrecostos fueron de tipo financiero, destacándose el presupuesto total del proyecto, el gasto real estimado a la fecha y el presupuesto final estimado. En contraste, variables categóricas como el tipo de proyecto o la fase constructiva mostraron baja significancia estadística. Asimismo, la validación del modelo mediante K-Fold Cross Validation confirmó su capacidad de generalización, sin indicios de sobreajuste. (Tomado de la fuente) | spa |
dc.description.abstract | This study proposes a predictive model based on Machine Learning techniques to anticipate cost overruns in non-residential building construction projects, using the “Capital Project Schedules and Budgets” dataset from the New York School Construction Authority (SCA) as a case study. The research emerges from the need to overcome the limitations of traditional approaches to cost risk management. Following the CRISP-DM framework, a structured process was conducted, including business understanding, exploratory data analysis, selection of relevant variables, data transformation, and training of predictive models. Four algorithms were evaluated: Linear Regression, Random Forest Regressor, Multi-Layer Perceptron Regressor, and Gradient Boosting Regressor. The latter showed the best performance, achieving a coefficient of determination (R²) of 0.9824, a mean squared error (MSE) of 309,699,558, and a mean absolute error (MAE) of 3,887. The analysis identified financial variables as the most influential in cost overruns, with total project budget, estimated actual expenditure to date, and final estimated budget standing out. In contrast, categorical variables such as project type or construction phase showed low statistical significance. Moreover, the model's validation through K-Fold Cross Validation confirmed its generalization capability, with no signs of overfitting. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Analítica | |
dc.description.methods | El desarrollo de este estudio se realiza a partir de CRISP-DM (Cross-Industry Standard Process for Data Mining), una metodología estructurada para proyectos de minería de datos que garantiza un desarrollo coherente desde la definición del problema hasta la implementación de la solución. Según Goh et al. (2017) las fases de la metodología pueden describirse de la siguiente manera: Comprensión del negocio: en esta etapa se identifican los objetivos y requisitos desde una perspectiva empresarial, traduciéndolos en un problema de minería de datos y definiendo un plan preliminar de trabajo. Comprensión de los datos: consiste en recopilar, explorar y evaluar la calidad de la información, con el fin de detectar patrones iniciales y posibles inconsistencias. Preparación de los datos: implica seleccionar, limpiar y transformar los datos para garantizar su formato e idoneidad antes del modelado. Modelado: se aplican diversas técnicas analíticas y se ajustan sus parámetros para encontrar la solución más adecuada al problema planteado. Evaluación: se validan los modelos generados, verificando que satisfagan los objetivos del negocio y sean suficientemente confiables para su uso. Despliegue: en esta fase se implementan los resultados en el entorno empresarial, ya sea mediante informes, integración en sistemas operativos o automatización de procesos, asegurando que el conocimiento obtenido aporte valor real a la organización. | |
dc.description.notes | https://github.com/Anfospina/cost-overrun-prediction | spa |
dc.description.researcharea | Gestión de la construcción | |
dc.format.extent | 117 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88518 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Minas | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Dávila Delgado, J. M., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/J.JOBE.2021.103299 | |
dc.relation.references | Aggabou, L. K., Lakehal, B., & Mouda, M. (2024). An Artificial Neural Network Approach for Construction Project Risk Management. International Journal of Safety and Security Engineering, 14(2), 553–561. https://doi.org/10.18280/ijsse.140222 | |
dc.relation.references | Akoglu, H. (2018). User’s guide to correlation coefficients. In Turkish Journal of Emergency Medicine (Vol. 18, pp. 91–93). Emergency Medicine Association of Turkey. https://doi.org/10.1016/j.tjem.2018.08.001 | |
dc.relation.references | Al-Nahhas, Y. S., Hadidi, L. A., Islam, M. S., Skitmore, M., & Abunada, Z. (2024). Modified Mamdani-fuzzy inference system for predicting the cost overrun of construction projects. Applied Soft Computing, 151. https://doi.org/10.1016/j.asoc.2023.111152 | |
dc.relation.references | Ammar, T., Abdel-Monem, M., & El-Dash, K. (2022). Risk factors causing cost overruns in road networks. Ain Shams Engineering Journal, 13. https://doi.org/10.1016/j.asej.2022.101720 | |
dc.relation.references | Arabzadeh, V., Niaki, S. T. A., & Arabzadeh, V. (2018). Construction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms. Journal of Industrial Engineering International, 14, 747–756. https://doi.org/10.1007/s40092-017-0240-8 | |
dc.relation.references | Arthur, A. (2021). Construction Risk Management Decision Making. | |
dc.relation.references | Ashtari, M. A., Ansari, R., Hassannayebi, E., & Jeong, J. (2022). Cost Overrun Risk Assessment and Prediction in Construction Projects: A Bayesian Network Classifier Approach. Buildings, 12(10). https://doi.org/10.3390/buildings12101660 | |
dc.relation.references | Axelos. (2017). Managing Successful Projects with PRINCE2®. TSO (The Stationery Office). | |
dc.relation.references | Banaitiene, N., Banaitis, A., & Norkus, A. (2011). Risk management in projects: Peculiarities of Lithuanian construction companies. International Journal of Strategic Property Management, 15, 60–73. https://doi.org/10.3846/1648715X.2011.568675 | |
dc.relation.references | Biau, G., & Cadre, B. (2021). Optimization by Gradient Boosting. In Advances in Contemporary Statistics and Econometrics: Festschrift in Honor of Christine Thomas-Agnan (pp. 23–44). Springer International Publishing. https://doi.org/10.1007/978-3-030-73249-3_2 | |
dc.relation.references | Borujeni, S. E., Nannapaneni, S., Nguyen, N. H., Behrman, E. C., & Steck, J. E. (2021). Quantum circuit representation of Bayesian networks. Expert Systems with Applications, 176. https://doi.org/10.1016/j.eswa.2021.114768 | |
dc.relation.references | Chattapadhyay, D. B., Putta, J., & Rama Mohan Rao, P. (2021). Risk identification, assessments, and prediction for mega construction projects: A risk prediction paradigm based on cross analytical-machine learning model. Buildings, 11(4). https://doi.org/10.3390/buildings11040172 | |
dc.relation.references | Cheng, M.-Y., & Darsa, M. H. (2021). Construction schedule risk assessment and management strategy for foreign general contractors working in the Ethiopian construction industry. Sustainability (Switzerland), 13(14). https://doi.org/10.3390/su13147830 | |
dc.relation.references | Chenya, L., Aminudin, E., Mohd, S., & Yap, L. S. (2022). Intelligent Risk Management in Construction Projects: Systematic Literature Review. IEEE Access, 10, 72936–72954. https://doi.org/10.1109/ACCESS.2022.3189157 | |
dc.relation.references | Chien, C. F., Dauzère-Pérès, S., Huh, W. T., Jang, Y. J., & Morrison, J. R. (2020). Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies. In International Journal of Production Research (Vol. 58, pp. 2730–2731). Taylor and Francis Ltd. https://doi.org/10.1080/00207543.2020.1752488 | |
dc.relation.references | Dampfhoffer, M., Mesquida, T., Valentian, A., & Anghel, L. (2023). Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2023.3263008 | |
dc.relation.references | Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 | |
dc.relation.references | Fayek, A. R. (2020). Fuzzy Logic and Fuzzy Hybrid Techniques for Construction Engineering and Management. Journal of Construction Engineering and Management, 146. https://doi.org/10.1061/(asce)co.1943-7862.0001854 | |
dc.relation.references | Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., & Fernández-Delgado, A. (2014). Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15, 3133–3181. http://www.mathworks.es/products/neural-network. | |
dc.relation.references | Flanagan, R., & Norman, G. (1993). Developing Guideline for Risk Management of Tunnel Construction in Ethiopia. Open Journal of Safety Science and Technology, 11, 171–183. https://doi.org/10.4236/ojsst.2021.114012 | |
dc.relation.references | ForouzeshNejad, A. A., Arabikhan, F., & Aheleroff, S. (2024). Optimizing Project Time and Cost Prediction Using a Hybrid XGBoost and Simulated Annealing Algorithm. Machines, 12. https://doi.org/10.3390/machines12120867 | |
dc.relation.references | George, M. R., Nalluri, M. R., & Anand, K. B. (2022). Application of Ensemble Machine Learning for Construction Safety Risk Assessment. Journal of The Institution of Engineers (India): Series A, 103(4), 989–1003. https://doi.org/10.1007/s40030-022-00690-w | |
dc.relation.references | Goh, S. C., Elliott, C., & Richards, G. (2017). Setting the context for analytics: Performance management in Canadian public organizations: Findings of a multi-case study. In Big Data and Analytics Applications in Government: Current Practices and Future Opportunities (pp. 29–55). CRC Press. https://doi.org/10.4324/9781315153582 | |
dc.relation.references | González Alcaide, G., Valderrama Zurián, J. C., Aleixandre Benavent, R., & González De Dios, J. (2011). La investigación pediátrica Española en Anales de Pediatría: Grupos y ámbitos temáticos (2003-2009). Anales de Pediatria, 74, 239–254. https://doi.org/10.1016/j.anpedi.2010.10.023 | |
dc.relation.references | Guelman, L. (2012). Gradient boosting trees for auto insurance loss cost modeling and prediction. Expert Systems with Applications, 39, 3659–3667. https://doi.org/10.1016/j.eswa.2011.09.058 | |
dc.relation.references | Hammad, A., AbouRizk, S., & Mohamed, Y. (2014). Application of KDD Techniques to Extract Useful Knowledge from Labor Resources Data in Industrial Construction Projects. Journal of Management in Engineering, 30. https://doi.org/10.1061/(asce)me.1943-5479.0000280 | |
dc.relation.references | Hasan, N., & Singh, M. (2015). Library and Information Science Research Output: A study based on Web of Science. Collnet Journal of Scientometrics and Information Management, 9, 47–64. https://doi.org/10.1080/09737766.2015.1027089 | |
dc.relation.references | Hazelton, M. L. (2009). Univariate Linear Regression. In International Encyclopedia of Education, Third Edition (pp. 482–488). Elsevier. https://doi.org/10.1016/B978-0-08-044894-7.01373-7 | |
dc.relation.references | Hegde, J., & Rokseth, B. (2020). Applications of machine learning methods for engineering risk assessment – A review. In Safety Science (Vol. 122). Elsevier B.V. https://doi.org/10.1016/j.ssci.2019.09.015 | |
dc.relation.references | Hon, C. K. H., Sun, C., Xia, B., Jimmieson, N. L., Way, K. A., & Wu, P. P. Y. (2022). Applications of Bayesian approaches in construction management research: a systematic review. Engineering, Construction and Architectural Management, 29, 2153–2182. https://doi.org/10.1108/ECAM-10-2020-0817 | |
dc.relation.references | Huang, M. (2020). Theory and Implementation of linear regression. Proceedings - 2020 International Conference on Computer Vision, Image and Deep Learning, CVIDL 2020, 210–217. https://doi.org/10.1109/CVIDL51233.2020.00-99 | |
dc.relation.references | Kadume, N. H., & Naji, H. I. (2021). Building Schedule Risks Simulation by Using BIM with Monte Carlo Technique. IOP Conference Series: Earth and Environmental Science, 856. https://doi.org/10.1088/1755-1315/856/1/012059 | |
dc.relation.references | Katal, A., & Singh, N. (2022). Artificial Neural Network: Models, Applications, and Challenges. In EAI/Springer Innovations in Communication and Computing (pp. 235–257). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-78284-9_11 | |
dc.relation.references | Khodabakhshian, A. (2023). MACHINE LEARNING FOR RISK MANAGEMENT IN CONSTRUCTION PROJECTS. Politecnico Milano | |
dc.relation.references | Khodabakhshian, A., Malsagov, U., & Re Cecconi, F. (2024). Machine Learning Application in Construction Delay and Cost Overrun Risks Assessment. Lecture Notes in Networks and Systems, 921 LNNS, 222–240. https://doi.org/10.1007/978-3-031-54053-0_17 | |
dc.relation.references | Khodabakhshian, A., Puolitaival, T., & Kestle, L. (2023). Deterministic and Probabilistic Risk Management Approaches in Construction Projects: A Systematic Literature Review and Comparative Analysis. Buildings. https://doi.org/10.3390/buildings13051312 | |
dc.relation.references | Kim, T. K. (2017). Understanding one-way anova using conceptual figures. Korean Journal of Anesthesiology, 70, 22–26. https://doi.org/10.4097/kjae.2017.70.1.22 | |
dc.relation.references | Konstantinov, A., Utkin, L., & Muliukha, V. (2021). Gradient boosting machine with partially randomized decision trees. Conference of Open Innovation Association, FRUCT, 2021-January. https://doi.org/10.23919/FRUCT50888.2021.9347631 | |
dc.relation.references | Kulkarni, V. Y., Petare, M., & Sinha, P. K. (2014). Analyzing random forest classifier with different split measures. Advances in Intelligent Systems and Computing, 236, 691–699. https://doi.org/10.1007/978-81-322-1602-5_74 | |
dc.relation.references | Li, J., Wang, J., Xu, N., Hu, Y., & Cui, C. (2018). Importance degree research of safety risk management processes of urban rail transit based on text mining method. Information (Switzerland), 9. https://doi.org/10.3390/info9020026 | |
dc.relation.references | Liu, W., Zhao, T., Zhou, W., & Tang, J. (2018). Safety risk factors of metro tunnel construction in China: An integrated study with EFA and SEM. Safety Science, 105, 98–113. https://doi.org/10.1016/j.ssci.2018.01.009 | |
dc.relation.references | Moon, S., Chi, S., & Im, S.-B. (2022). Automated detection of contractual risk clauses from construction specifications using bidirectional encoder representations from transformers (BERT). Automation in Construction, 142. https://doi.org/10.1016/j.autcon.2022.104465 | |
dc.relation.references | Nikas, A., Poulymenakou, A., & Kriaris, P. (2007). Investigating antecedents and drivers affecting the adoption of collaboration technologies in the construction industry. Automation in Construction, 16, 632–641. https://doi.org/10.1016/j.autcon.2006.10.003 | |
dc.relation.references | Nyqvist, R., Peltokorpi, A., & Seppänen, O. (2024). Can ChatGPT exceed humans in construction project risk management? Engineering, Construction and Architectural Management, 31(13), 223–243. https://doi.org/10.1108/ECAM-08-2023-0819 | |
dc.relation.references | Obregón, L., Orozco, C., Camargo, J., Duarte, J., & Valencia, G. (2019). Research trend on nuclear energy from 2008 to 2018: A bibliometric analysis. International Journal of Energy Economics and Policy, 9, 542–551. https://doi.org/10.32479/ijeep.8515 | |
dc.relation.references | ODI. (2019). Data trusts: lessons from three pilots (report). https://theodi.org/insights/reports/odi-data-trusts-report/ | |
dc.relation.references | Okudan, O., Budayan, C., & Dikmen, I. (2021). A knowledge-based risk management tool for construction projects using case-based reasoning. Expert Systems with Applications, 173. https://doi.org/10.1016/j.eswa.2021.114776 | |
dc.relation.references | Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Journal of Clinical Epidemiology, 134, 178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001 | |
dc.relation.references | Pretnar Žagar, A., & Demšar, J. (2022). Model Evaluation: How to Accurately Evaluate Predictive Models. In Tourism on the Verge: Vol. Part F1051 (pp. 253–274). Springer Nature. https://doi.org/10.1007/978-3-030-88389-8_13 | |
dc.relation.references | Project Management Institute. (2017). A guide to the project management body of knowledge (PMBOK® guide) – Sixth edition. Project Management Institute | |
dc.relation.references | Project Management Institute. (2021). A guide to the project management body of knowledge (PMBOK® guide) – Seventh edition. Project Management Institute | |
dc.relation.references | Rao, T. V. N., Gaddam, A., Kurni, M., & Saritha, K. (2021). Reliance on artificial intelligence, machine learning and deep learning in the era of industry 4.0. In Smart Healthcare System Design: Security and Privacy Aspects (pp. 281–300). wiley. https://doi.org/10.1002/9781119792253.ch12 | |
dc.relation.references | Ravindran, D., & Deepak, S. (2023). Bibliometric Analysis of Network Marketing for Business Sustainability Using Co-citation Method. Studies in Computational Intelligence, 1113, 299–309. https://doi.org/10.1007/978-3-031-43300-9_25 | |
dc.relation.references | Sanni-Anibire, M. O., Zin, R. M., & Olatunji, S. O. (2021). Machine learning - Based framework for construction delay mitigation. Journal of Information Technology in Construction, 26, 303–318. https://doi.org/10.36680/j.itcon.2021.017 | |
dc.relation.references | Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is not all you need. Information Fusion, 81, 84–90. https://doi.org/10.1016/J.INFFUS.2021.11.011 | |
dc.relation.references | Sohrabinejad, A., & Rahimi, M. (2015). Risk Determination, Prioritization, and Classifying in Construction Project Case Study: Gharb Tehran Commercial-Administrative Complex. Journal of Construction Engineering, 2015, 1–10. https://doi.org/10.1155/2015/203468 | |
dc.relation.references | Stijnman, F. (2024). MLOps Concepts. Deploying Machine Learning into Production [DataCamp] | |
dc.relation.references | Tayefeh Hashemi, S., Ebadati, O. M., & Kaur, H. (2020). Cost estimation and prediction in construction projects: a systematic review on machine learning techniques. In SN Applied Sciences (Vol. 2). Springer Nature. https://doi.org/10.1007/s42452-020-03497-1 | |
dc.relation.references | Teja, S., & Ch, S. A. (2017). Risk Management in Construction Equipment. International Journal of Civil Engineering and Technology, 8(5), 160–167. http://iaeme.com/Home/issue/IJCIET?Volume=8&Issue=5http://iaeme.com | |
dc.relation.references | Turkyilmaz, A. H., & Polat, G. (2024). Risk-Based Completion Cost Overrun Ratio Estimation in Construction Projects Using Machine Learning Classification Algorithms: A Case Study. Buildings, 14(11). https://doi.org/10.3390/buildings14113541 | |
dc.relation.references | Višić, M. (2022). CONNECTING PUZZLE PIECES: SYSTEMATIC LITERATURE REVIEW METHOD IN THE SOCIAL SCIENCES. Sociologija, 64, 543. https://doi.org/10.2298/SOC2204543V | |
dc.relation.references | Wahab, A., & Wang, J. (2022). Factors-driven comparison between BIM-based and traditional 2D quantity takeoff in construction cost estimation. Engineering, Construction and Architectural Management, 29, 702–715. https://doi.org/10.1108/ECAM-10-2020-0823 | |
dc.relation.references | Weng, J. (Connor). (2023). Putting Intellectual Robots to Work: Implementing Generative AI Tools in Project Management. Https://Archive.Nyu.Edu/Handle/2451/69531 | |
dc.relation.references | Yaseen, Z. M., Ali, Z. H., Salih, S. Q., & Al-Ansari, N. (2020). Prediction of risk delay in construction projects using a hybrid artificial intelligence model. Sustainability (Switzerland), 12(4). https://doi.org/10.3390/su12041514 | |
dc.relation.references | Yi, Z., & Luo, X. (2024). Construction Cost Estimation Model and Dynamic Management Control Analysis Based on Artificial Intelligence. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 48(1), 577–588. https://doi.org/10.1007/s40996-023-01173-z | |
dc.relation.references | Zou, P. X. W., Zhang, G., & Wang, J. (2007). Understanding the key risks in construction projects in China. International Journal of Project Management, 25, 601–614. https://doi.org/10.1016/j.ijproman.2007.03.001 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | |
dc.subject.ddc | 690 - Construcción de edificios | |
dc.subject.lemb | Edificios - Diseño y construcción | |
dc.subject.lemb | Edificios - Costos de construcción | |
dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
dc.subject.proposal | Sobrecostos | spa |
dc.subject.proposal | Construcción | spa |
dc.subject.proposal | Predicción | spa |
dc.subject.proposal | Gestión de riesgos | spa |
dc.subject.proposal | Machine Learning | eng |
dc.subject.proposal | Gradient Boosting | eng |
dc.subject.proposal | Cost Overruns | eng |
dc.subject.proposal | Construction | eng |
dc.subject.proposal | Prediction | eng |
dc.subject.proposal | Risk Management | eng |
dc.title | Predicción de sobrecostos en proyectos de construcción de edificación (uso no residencial) empleando una técnica de Machine Learning. Caso de estudio: Capital Project Schedules and Budgets | spa |
dc.title.translated | Prediction of cost overruns in building construction projects (non-residential use) using a machine learning technique. Case study: Capital Project Schedules and Budgets | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |