Quantum measurement learning for medical image classification

dc.contributor.advisorFabio Augusto, Gonzaléz Osorio
dc.contributor.authorDiego Hernando, Useche Reyes
dc.date.accessioned2022-06-08T20:51:34Z
dc.date.available2022-06-08T20:51:34Z
dc.date.issued2022-03
dc.descriptionilustraciones, graficas, tablasspa
dc.description.abstractDeep neural networks are the state-of-the-art for medical image classification. However, these models require large data sets to be trained, and they lack some interpretability on their predictions. In recent years, there has been a growing interests of using the statistical machinery of quantum mechanics to built novel machine learning models, which may run on classical or quantum computers. One of such models is the recently proposed method quantum measurement classification (QMC) [1]. In this thesis, we present various classical-quantum machine learning strategies that combine convolutional neural networks (CNNs) with methods based on QMC [2] to the task of learning medical images in a supervised manner. We first approach the problem with a deep probabilistic regression model, showing that is competitive, and more interpretable compared to conventional deep learning architectures. We then present a representation learning technique based on CNNs which maps medical images to pure and mixed quantum states, and show that its competitive with other representation learning strategies. In addition, we propose a quantum implementation of two QMC-based models on a high-dimensional quantum computer, we demonstrate that it is possible to perform classification and density estimation in a quantum computer.eng
dc.description.abstractLas redes neuronales profundas están a la vanguardia para la clasificación de imágenes médicas. Sin embargo, estos modelos requieren para su entrenamiento conjuntos de datos muy grandes, y a sus predicciones les falta interpretabilidad. Recientemente, se han propuesto varios métodos de inteligencia artificial basados en la mecánica cuántica, los cuales pueden ser implementados en computadores clásicos o cuánticos. Uno de estos métodos es el recientemente propuesto \textit{Quantum Measurement Classification} (QMC) [1]. En este trabajo de tesis, presentamos diferentes estrategias clásicas y cuánticas de aprendizaje automático, las cuales combinan las redes neuronales convolucionales (CNNs) y algunos métodos basados en QMC [2] para la tarea de aprendizaje supervisado de imagenes medicas. En primer lugar, planteamos el problema de clasificación con un modelo de regresión profundo y probabilístico, mostrando que es competitivo y más interpretable en comparación a arquitecturas convencionales de aprendizaje profundo. En segundo lugar, presentamos un método de aprendizaje de la representación basado en CNNs del cual se obtienen características de las imágenes médicas en forma de estados cuánticos puros y mezclados, y mostramos que los resultados del método son competitivos con otras estrategias de representación. Adicionalmente, proponemos una implementación cuántica de dos métodos de aprendizaje automático basados en QMC en un computador cuántico de altas dimensiones, mostrando que es posible el aprendizaje supervisado y la estimación de la densidad en un computador cuántico. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.format.extent59 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81541
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesF. A. González, V. Vargas-Calderón, and H. Vinck-Posada, “Classification with Quantum Measurements,” https://doi.org/10.7566/JPSJ.90.044002, vol. 90, no. 4, 3 2021. [Online]. Available: https://journals.jps.jp/doi/abs/10.7566/JPSJ.90.044002spa
dc.relation.referencesF. A. González, A. Gallego, S. Toledo-Cortés, and V. Vargas-Calderón, “Learning with Density Matrices and Random Features,” 2 2021. [Online]. Available: https://arxiv.org/abs/2102.04394v4spa
dc.relation.referencesY. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 2015 521:7553, vol. 521, no. 7553, pp. 436–444, 5 2015. [Online]. Available: https://www.nature.com/articles/nature14539spa
dc.relation.referencesD. E. Rumelhart and J. L. McClelland, “Learning Internal Representations by Error Propagation - MIT Press books,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press, 1987, pp. 318–362.spa
dc.relation.referencesL. Cun, J. Henderson, Y. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,” Tech. Rep.spa
dc.relation.referencesA. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi, “Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks,” in Medical Imaging 2014: Digital Pathology, vol. 9041, 2014, p. 904103. [Online]. Available: http://spiedl.org/termsspa
dc.relation.referencesS. Otálora, O. Perdomo, F. González, and H. Muller, “Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10552 LNCS, 2017, pp. 146–154. [Online]. Available: http://www.who.int/diabetes/en/spa
dc.relation.referencesO. Perdomo, S. Otalora, F. Rodríguez, J. Arevalo, and F. A. González, “A Novel Machine Learning Model Based on Exudate Localization to Detect Diabetic Macular Edema,” Ophthalmic Medical Image Analysis International Workshop, vol. 3, no. 2016, pp. 137–144, 10 2016. [Online]. Available: https://pubs.lib.uiowa.edu/omia/article/id/27635/spa
dc.relation.referencesA. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Con- ference, 2009.spa
dc.relation.referencesS. Toledo-Cortés, D. H. Useche, and F. A. González, “Prostate Tissue Grading with Deep Quantum Measurement Ordinal Regression,” 3 2021. [Online]. Available: https://arxiv.org/abs/2103.03188v1spa
dc.relation.referencesD. H. Useche, A. Giraldo-Carvajal, H. M. Zuluaga-Bucheli, J. A. Jaramillo-Villegas, and F. A. González, “Quantum measurement classification with qudits,” Quantum Information Processing 2021 21:1, vol. 21, no. 1, pp. 1–12, 12 2021. [Online]. Available: https://link.springer.com/article/10.1007/s11128-021-03363-yspa
dc.relation.referencesS. F. Faraj, S. M. Bezerra, K. Yousefi, H. Fedor, S. Glavaris, M. Han, A. W. Partin, E. Humphreys, J. Tosoian, M. H. Johnson, E. Davicioni, B. J. Trock, E. M. Schaeffer, A. E. Ross, and G. J. Netto, “Clinical Validation of the 2005 ISUP Gleason Grading System in a Cohort of Intermediate and High Risk Men Undergoing Radical Prostatectomy,” PLOS ONE, vol. 11, no. 1, p. e0146189, 1 2016. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146189spa
dc.relation.referencesY. Li, M. Huang, Y. Zhang, J. Chen, H. Xu, G. Wang, and W. Feng, “Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer,” IEEE Access, vol. 8, pp. 117 714–117 725, 2020.spa
dc.relation.referencesP. Strom, K. Kartasalo, H. Olsson, L. Solorzano, B. Delahunt, D. M. Berney, D. G. Bostwick, A. J. Evans, D. J. Grignon, P. A. Humphrey, K. A. Iczkowski, J. G. Kench, G. Kristiansen, T. H. van der Kwast, K. R. Leite, J. K. McKenney, J. Oxley, C. C. Pan, H. Samaratunga, J. R. Srigley, H. Takahashi, T. Tsuzuki, M. Varma, M. Zhou, J. Lindberg, C. Lindskog, P. Ruusuvuori, C. W ̈ahlby, H. Gr ̈onberg, M. Rantalainen, L. Egevad, and M. Eklund, “Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 222–232, 2 2020.spa
dc.relation.referencesW. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der Laak, C. Hulsbergen-van de Kaa, and G. Litjens, “Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 233–241, 2 2020.spa
dc.relation.referencesJ. S. Lara, V. H. Contreras O, S. Otálora, H. M ̈uller, and F. A. González, “Multi- modal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12265 LNCS. Springer Science and Business Media Deutschland GmbH, 2020, pp. 572–581.spa
dc.relation.referencesJ. Vaicenavicius, D. Widmann, C. Andersson, F. Lindsten, J. Roll, and T. B. Schon, “Evaluating model calibration in classification,” pp. 3459–3467, 4 2019. [Online]. Available: https://proceedings.mlr.press/v89/vaicenavicius19a.htmlspa
dc.relation.referencesK. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone, “Random Feature Expansions for Deep Gaussian Processes,” pp. 884–893, 7 2017. [Online]. Available: https://proceedings.mlr.press/v70/cutajar17a.htmlspa
dc.relation.referencesC. E. Rasmussen, “Gaussian Processes in Machine Learning,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3176, pp. 63–71, 2003. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-28650-9 4spa
dc.relation.referencesO. Jiménez del Toro, M. Atzori, S. Otálora, M. Andersson, K. Eurén, M. Hedlund, P. Ronnquist, and H. Muller, “Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score,” in Medical Imaging 2017: Digital Pathology, vol. 10140, 2017, p. 101400O. [Online]. Available: http://cancergenome.nih.gov/,spa
dc.relation.referencesY. Tolkach, T. Dohmgorgen, M. Toma, and G. Kristiansen, “High-accuracy prostate cancer pathology using deep learning,” Nature Machine Intelligence, vol. 2, no. 7, pp. 411–418, 7 2020. [Online]. Available: https://www.nature.com/articles/s42256-0 20-0200-7spa
dc.relation.referencesD. Karimi, G. Nir, L. Fazli, P. C. Black, L. Goldenberg, and S. E. Salcudean, “Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 5, pp. 1413–1426, 5 2020.spa
dc.relation.referencesE. Esteban, M. López-Pérez, A. Colomer, M. A. Sales, R. Molina, and V. Naranjo, “A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes,” Computer Methods and Programs in Biomedicine, vol. 178, pp. 303–317, 9 2019.spa
dc.relation.referencesM. Lucas, I. Jansen, C. D. Savci-Heijink, S. L. Meijer, O. J. de Boer, T. G. van Leeuwen, D. M. de Bruin, and H. A. Marquering, “Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies,” Virchows Archiv, vol. 475, no. 1, pp. 77–83, 7 2019. [Online]. Available: https://doi.org/10.1007/s00428-019-02577-xspa
dc.relation.references. A. Khani, S. A. Fatemi Jahromi, H. O. Shahreza, H. Behroozi, and M. S. Baghshah, “Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks,” in 5th Iranian Conference on Signal Processing and Intelligent Systems, IC- SPIS 2019. Institute of Electrical and Electronics Engineers Inc., 12 2019.spa
dc.relation.referencesF. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 1800–1807, 10 2016. [Online]. Available: https://arxiv.org/abs/1610.02357v3spa
dc.relation.referencesC. K. Shie, C. H. Chuang, C. N. Chou, M. H. Wu, and E. Y. Chang, “Transfer representation learning for medical image analysis,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2015-Novem, pp. 711–714, 11 2015.spa
dc.relation.referencesJ. Arevalo, F. A. González, R. Ramos-Pollán, J. L. Oliveira, and M. A. Guevara Lopez, “Representation learning for mammography mass lesion classification with convolutional neural networks,” Computer Methods and Programs in Biomedicine, vol. 127, pp. 248–257, 4 2016.spa
dc.relation.referencesQ. Tang, Y. Liu, and H. Liu, “Medical image classification via multiscale representation learning,” Artificial Intelligence in Medicine, vol. 79, pp. 71–78, 6 2017.spa
dc.relation.referencesT. Moriya, H. R. Roth, S. Nakamura, H. Oda, K. Nagara, M. Oda, and K. Mori, “Unsupervised segmentation of 3D medical images based on clustering and deep representation learning,” https://doi.org/10.1117/12.2293414, vol. 10578, pp. 483–489, 3 2018. [Online]. Available: https://www.spiedigitallibrary.o rg/conference-proceedings-of -spie/10578/1057820/Unsupervised-segmentation- of -3D-medical-images-based-on-clustering-and/10.1117/12.2293414.fullhttps: //www.spiedigitallibrary.org/conference-proceedings-of-spie/10578/1057820/spa
dc.relation.referencesA. Chartsias, T. Joyce, G. Papanastasiou, S. Semple, M. Williams, D. E. Newby, R. Dharmakumar, and S. A. Tsaftaris, “Disentangled representation learning in cardiac image analysis,” Medical Image Analysis, vol. 58, p. 101535, 12 2019.spa
dc.relation.referencesN. Dong, M. Kampffmeyer, and I. Voiculescu, “Self-supervised Multi-task Representation Learning for Sequential Medical Images,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12977 LNAI, pp. 779–794, 9 2021. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-86523-8 47spa
dc.relation.referencesP. Zhang, F. Wang, and Y. Zheng, “Self supervised deep representation learning for fine-grained body part recognition,” Proceedings - International Symposium on Biomedical Imaging, pp. 578–582, 6 2017.spa
dc.relation.referencesM. Adnan, S. Kalra, and H. R. Tizhoosh, “Representation Learning of Histopathology Images using Graph Neural Networks,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 4254–4261, 4 2020. [Online]. Available: https://arxiv.org/abs/2004.07399v2spa
dc.relation.referencesM. M. Li, K. Huang, and M. Zitnik, “Graph Representation Learning in Biomedicine,” 4 2021. [Online]. Available: https://arxiv.org/abs/2104.04883v2spa
dc.relation.referencesS. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.spa
dc.relation.referencesN. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893, 2005.spa
dc.relation.referencesJ. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification,” 10 2021. [Online]. Available: https://arxiv.org/abs/2110.14795v1spa
dc.relation.referencesJ. N. Kather, J. Krisam, P. Charoentong, T. Luedde, E. Herpel, C. A. Weis, T. Gaiser, A. Marx, N. A. Valous, D. Ferber, L. Jansen, C. C. Reyes-Aldasoro, I. Zornig, D. Jager, H. Brenner, J. Chang-Claude, M. Hoffmeister, and N. Halama, “Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study,” PLOS Medicine, vol. 16, no. 1, p. e1002730, 2019. [Online]. Available: https://journals.plos.org/plosmedicine/article?id=10.1371/jour nal.pmed.1002730spa
dc.relation.referencesA. Vaswani, G. Brain, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser, and I. Polosukhin, “Attention is All you Need,” Advances in Neural Information Processing Systems, vol. 30, 2017.spa
dc.relation.referencesF. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandr`a, J. R. Mcclean, M. Mcewen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, p. 505, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5spa
dc.relation.referencesC. Schaeff, R. Polster, M. Huber, S. Ramelow, and A. Zeilinger, “Experimental access to higher-dimensional entangled quantum systems using integrated optics,” Optica, vol. 2, no. 6, p. 523, 6 2015. [Online]. Available: http://dx.doi.org/10.1364/OPTICA.2.000523spa
dc.relation.referencesJ. Carolan, C. Harrold, C. Sparrow, E. Mart ́ın-L ́opez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science, vol. 349, no. 6249, pp. 711–716, 8 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26160375/spa
dc.relation.referencesA. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Gunthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “High-dimensional intracity quantum cryptography with structured photons,” Optica, vol. 4, no. 9, p. 1006, 9 2017. [Online]. Available: https://doi.org/10.1364/OPTICA.4.001006spa
dc.relation.referencesA. B. Klimov, R. Guzm ́an, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 67, no. 6, p. 7, 6 2003. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.062313spa
dc.relation.referencesZ. Gedik, I. A. Silva, B. C ̧ akmak, G. Karpat, E. L. Vidoto, D. O. Soares-Pinto, E. R. DeAzevedo, and F. F. Fanchini, “Computational speed-up with a single qudit,” Scientific Reports, vol. 5, no. 1, p. 14671, 10 2015. [Online]. Available: www.nature.com/scientificreports/spa
dc.relation.referencesE. Moreno-Pineda, C. Godfrin, F. Balestro, W. Wernsdorfer, and M. Ruben, “Molecular spin qudits for quantum algorithms,” pp. 501–513, 1 2018. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2018/cs/c5cs00933bhttps: //pubs.rsc.org/en/content/articlelanding/2018/cs/c5cs00933bspa
dc.relation.referencesD. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges,” Advanced Quantum Technologies, vol. 2, no. 12, p. 1900038, 12 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/qute.201900038https: //onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900038https://onlinelibrary.wile y.com/doi/10.1002/qute.201900038spa
dc.relation.referencesL. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit systems,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 82, no. 3, p. 030301, 9 2010. [Online]. Available: https: //journals.aps.org/pra/abstract/10.1103/PhysRevA.82.030301spa
dc.relation.referencesP. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical Review Letters, vol. 113, no. 3, 9 2014.spa
dc.relation.referencesN. Wiebe, A. Kapoor, and K. M. Svore, “Quantum Deep Learning,” Quantum Information and Computation, vol. 16, no. 7-8, pp. 541–587, 12 2014. [Online]. Available: https://arxiv.org/abs/1412.3489v2spa
dc.relation.references. Lu and S. L. Braunstein, “Quantum decision tree classifier,” Quantum Information Processing 2013 13:3, vol. 13, no. 3, pp. 757–770, 11 2013. [Online]. Available: https://link.springer.com/article/10.1007/s11128-013-0687-5spa
dc.relation.referencesA. A. Ezhov and D. Ventura, “Quantum Neural Networks.” Physica, Heidelberg, 2000, pp. 213–235. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-7908-1856-7 11spa
dc.relation.referencesI. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, 12 2019. [Online]. Available: https://www.nature.com/articles/s41567-019-0648-8spa
dc.relation.referencesP. L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial networks,” Physical Review A, vol. 98, no. 1, p. 012324, 7 2018. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.012324spa
dc.relation.referencesF. A. Cárdenas-López, L. Lamata, J. C. Retamal, and E. Solano, “Multiqubit and multilevel quantum reinforcement learning with quantum technologies,” PLoS ONE, vol. 13, no. 7, p. e0200455, 7 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0200455spa
dc.relation.referencesD. N. Diep, “Some Quantum Neural Networks,” International Journal of Theoretical Physics, vol. 59, no. 4, pp. 1179–1187, 4 2020. [Online]. Available: https://link.springer.com/article/10.1007/s10773-020-04397-1spa
dc.relation.referencesB. Ricks and D. Ventura, “Training a Quantum Neural Network,” Advances in Neural Information Processing Systems, vol. 16, 2003.spa
dc.relation.referencesK. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, and R. Wolf, “Efficient learning for deep quantum neural networks,” pp. 1–6, 2 2019. [Online]. Available: https://doi.org/10.1038/s41467-020-14454-2spa
dc.relation.referencesA. Giraldo-Carvajal and J. A. Jaramillo-Villegas, “QuantumSkynet: A High- Dimensional Quantum Computing Simulator,” Optics InfoBase Conference Papers, 6 2021. [Online]. Available: https://arxiv.org/abs/2106.15833v1spa
dc.relation.referencesF. S. Khan and M. Perkowski, “Synthesis of multi-qudit hybrid and d-valued quantum logic circuits by decomposition,” Theoretical Computer Science, vol. 367, no. 3, pp. 336–346, 12 2006.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembCANCER-FORMACION DE IMAGENESspa
dc.subject.lembCancer-imagingeng
dc.subject.proposalQuantum measurement classificationeng
dc.subject.proposalProstate cancereng
dc.subject.proposalDeep learningeng
dc.subject.proposalQuantum machine learningeng
dc.subject.proposalclasificación con medición cuánticaspa
dc.subject.proposalcáncer de próstataspa
dc.subject.proposalaprendizaje profundospa
dc.subject.proposalaprendizaje automático cuánticospa
dc.titleQuantum measurement learning for medical image classificationeng
dc.title.translatedAprendizaje con medición cuántica para la clasificación de imágenes médicasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026569527.2022.pdf
Tamaño:
1.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: