Sismicidad y deformación frágil de la corteza en la región del Altiplano Antioqueño y su influencia en la configuración tectónica regional

dc.contributor.advisorMonsalve Mejía, Gaspar
dc.contributor.authorMuñoz Calderón, Andrés Felipe
dc.contributor.googlescholarMuñoz Calderón, Andrés Felipe [t4pX1o0AAAAJ]
dc.contributor.orcidMuñoz Calderón, Andrés Felipe [0009000804551068]
dc.contributor.orcidMonsalve. Gaspar [0000000260293058]
dc.coverage.cityAntioquia (Colombia)
dc.date.accessioned2025-12-11T16:27:40Z
dc.date.available2025-12-11T16:27:40Z
dc.date.issued2025-12-10
dc.descriptionIlustraciones, mapas
dc.description.abstractEl norte de la Cordillera Central de Colombia (Altiplano Antioqueño), está dominado geológicamente por el Batolito Antioqueño, un cuerpo cretácico granítico que intruye un basamento metamórfico Permo-Triásico. La reología y respuesta a la deformación del batolito es de interés, ya que en su interior se ha registrado una sismicidad muy baja en comparación a las unidades litológicas adyacentes y a las fallas regionales de orientación N-S que lo rodean. Utilizando estaciones sismológicas instaladas sobre el batolito y mediante algoritmos de detección semi-automática (STA/LTA), se identificaron sismos no reportados de baja magnitud. Posteriormente, la aplicación de algoritmos de inversión permitió obtener una localización hipocentral para estos eventos y la relocalización de algunos sismos de las bases de datos del Servicio Geológico Colombiano (SGC). Se obtuvo así un catálogo de 161 sismos a partir de 2192 tiempos de llegada de onda P y 1659 tiempos de llegada de onda S registrados en 54 estaciones. Los resultados muestran algunos sismos superficiales (>20 km) dentro del batolito, pero es evidente que la mayoría de la sismicidad se concentra en sus bordes a partir del contraste de rigidez generado con las unidades vecinas. También se identificaron eventos profundos (45–170 km y 240–390 km) posiblemente relacionados con fragmentos litosféricos hundiéndose bajo la Cordillera Central. Un proceso de inversión simultánea permitió obtener un modelo de velocidad con velocidades desde 4.7 hasta 6.8 km/s para los diferentes niveles corticales y mayores a 7.9 km/s en el manto superior. Finalmente, el cálculo de 40 mecanismos focales revela que la región presenta partición de la deformación por la respuesta diferente en ambos costados del batolito, pero dentro de un régimen tectónico transpresivo con cinemática predominantemente dextral. (Textos tomado de la fuente)spa
dc.description.abstractThe northern segment of the Central Cordillera of Colombia (Antioquia Plateau) is geologically dominated by the Antioquia Batholith, a Cretaceous granitic body that intrudes a Permo-Triassic metamorphic basement. The rheology and deformation response of the batholith are of particular interest, as its interior records very low seismicity compared to the surrounding lithological units and the regional N-S trending faults that bound it. Using seismological stations deployed on the batholith and semi-automatic detection algorithms (STA/LTA), previously unreported low-magnitude earthquakes were identified. Subsequently, inversion algorithms were applied to obtain hypocentral locations for these events, as well as the relocation of some earthquakes from the Colombian Geological Survey (SGC) databases. A catalog of 161 earthquakes was compiled from 2192 P-wave arrival times and 1659 S-wave arrival times recorded at 54 stations. The results show some shallow earthquakes (<20 km) within the batholith, but it is evident that seismicity is predominantly concentrated along its margins, likely due to the rigidity contrast with adjacent units. In addition, deep events (45–170 km and 240–390 km) were identified, possibly associated with lithospheric fragments sinking beneath the Central Cordillera. A simultaneous inversion process yielded a velocity model with crustal values ranging from 4.7 to 6.8 km/s and upper mantle velocities exceeding 7.9 km/s. Finally, the calculation of 40 focal mechanisms reveals strain partitioning across the region due to different responses on both sides of the batholith, but within a transpressive tectonic regime with predominantly dextral kinematics.eng
dc.description.curricularareaMedio Ambiente.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería - Recursos Minerales
dc.description.notesNA
dc.description.researchareaSismología y tectónica
dc.description.technicalinfoNA
dc.format.extent1 recurso en línea (110 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89199
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Minerales
dc.relation.referencesAki, K., Christoffersson, A., & Husebye, E. S. (1977). Determination of the three‐dimensional seismic structure of the lithosphere. Journal of Geophysical Research, 82(2), 277-296. https://doi.org/10.1029/JB082i002p00277
dc.relation.referencesAki, K., & Lee, W. H. K. (1976). Determination of three‐dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. Journal of Geophysical research, 81(23), 4381-4399. https://doi.org/10.1029/JB081i023p04381
dc.relation.referencesAllmendinger, R. W., Reilinger, R., & Loveless, J. (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics, 26(3). https://doi.org/10.1029/2006TC002030
dc.relation.referencesArias, L.A.. (1995). El relieve de la zona central de Antioquia: un palimpsesto de eventos tectónicos y climáticos. Revista Faculta de Ingeniería Universidad de Antioquia, pp. 9–24.
dc.relation.referencesAster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and inverse problems. Elsevier. https://doi.org/10.1016/B978-0-12-804651-7.00006-7
dc.relation.referencesAssumpcao, M. (1992). The regional intraplate stress field in South America. Journal of Geophysical Research: Solid Earth, 97(B8), 11889-11903. https://doi.org/10.1029/91JB01590
dc.relation.referencesAvellaneda-Jiménez, D. S., Monsalve, G., León, S., & Gómez-García, A. M. (2022). Insights into Moho depth beneath the northwestern Andean region from gravity data inversion. Geophysical Journal International, 229(3), 1964-1977. https://doi.org/10.1093/gji/ggac041
dc.relation.referencesBackus, G., & Gilbert, F. (1968). The resolving power of gross earth data. Geophysical Journal International, 16(2), 169-205. https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
dc.relation.referencesBayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., ... & Ibañez-Mejia, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth and Planetary Science Letters, 331, 97-111. https://doi.org/10.1016/j.epsl.2012.03.015
dc.relation.referencesBarrero, D., Álvarez, J., & Kassem, T. (1969). Actividad ígnea y tectónica en la Cordillera Central durante el Meso-Cenozoico. Boletín Geológico, 17(1-3), 145-173. https://doi.org/10.32685/0120-1425/bolgeol17.1-3.1969.330
dc.relation.referencesBerglund, H. T., Sheehan, A. F., Murray, M. H., Roy, M., Lowry, A. R., Nerem, R. S., & Blume, F. (2012). Distributed deformation across the Rio Grande rift, Great Plains, and Colorado Plateau. Geology, 40(1), 23-26. https://doi.org/10.1130/G32418.1
dc.relation.referencesBird, P. (1979). Continental delamination and the Colorado Plateau. Journal of Geophysical Research: Solid Earth, 84(B13), 7561-7571. https://doi.org/10.1029/JB084iB13p07561
dc.relation.referencesBorrero, C., & Toro-Toro, L. M. (2016). Vulcanismo de afinidad adaquítica en el miembro inferior de la Formación Combia (Mioceno tardío) al sur de la subcuenca de Amaga, noroccidente de Colombia. Boletín de Geología, 38(1), 87-100. https://doi.org/10.18273/revbol.v38n1-2016005
dc.relation.referencesBlanco-Quintero, I. F., García-Casco, A., Toro, L. M., Moreno, M., Ruiz, E. C., Vinasco, C. J., ... & Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15), 1852-1872 https://doi.org/10.1080/00206814.2014.963710
dc.relation.referencesBotero Arango, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Anales de la Facultad Nacional de Minas, (57), 1-102.
dc.relation.referencesByerly, P. (1939). Near earthquakes in central California. Bulletin of the Seismological Society of America, 29(3), 427-462. https://doi.org/10.1785/BSSA0290030427
dc.relation.referencesCardona, A., Valencia, V., Garzón, A., Montes, C., Ojeda, G., Ruiz, J., & Weber, M. (2010). Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: tectonic setting and implications within Pangea paleogeography. Journal of South American Earth Sciences, 29(4), 772-783. https://doi.org/10.1016/j.jsames.2009.12.005
dc.relation.referencesCardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo–Trujillo, A., Schmitt, A.K., Mejía, D. & Arenas, J.C. 2020. Cretaceous record from a Mariana– to an Andean–type margin in the Central Cordillera of the Colombian Andes. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 39 p. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.10
dc.relation.referencesCaballero, V., Mora, A., Quintero, I., Blanco, V., Parra, M., Rojas, L. E., ... & Duddy, I. (2013). Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: The Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. https://doi.org/10.1144/SP377.12
dc.relation.referencesCampbell, D. L. (1978). Investigation of the stress‐concentration mechanism for intraplate earthquakes. Geophysical Research Letters, 5(6), 477-479. https://doi.org/10.1029/GL005i006p00477
dc.relation.referencesCase, J. E., Duran , L. G., Alfonso, L. R., & Moore, W. R. (1971). Tectonic investigations in western Colombia and eastern Panama. Geological Society of America Bulletin, 82(10), 2685-2712. https://doi.org/10.1130/0016-7606(1971)82[2685:TIIWCA]2.0.CO;2
dc.relation.referencesCediel, F., R. P. Shaw, & C. Cáceres. (2003). Tectonic assembly of the Northern Andean Block, in C. Bartolini, R. T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics: AAPG Memoir 79, p. 815– 848.
dc.relation.referencesCochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., ... & Chiaradia, M. (2014). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190, 383-402. https://doi.org/10.1016/j.lithos.2013.12.020
dc.relation.referencesCorredor, F. (2003). Seismic strain rates and distributed continental deformation in the northern Andes and three-dimensional seismotectonics of northwestern South America. Tectonophysics, 372(3-4), 147-166. https://doi.org/10.1016/S0040-1951(03)00276-2
dc.relation.referencesCortés, M., & Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4), 29-58. https://doi.org/10.1016/j.tecto.2005.03.020
dc.relation.referencesChristensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761-9788. https://doi.org/10.1029/95JB00259
dc.relation.referencesCrosson, R. S. (1976). Crustal structure modeling of earthquake data: 1. Simultaneous least squares estimation of hypocenter and velocity parameters. Journal of geophysical research, 81(17), 3036-3046. https://doi.org/10.1029/JB081i017p03036
dc.relation.referencesDi Toro, G., & Pennacchioni, G. (2005). Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics, 402(1-4), 55-80. https://doi.org/10.1016/j.tecto.2004.12.036
dc.relation.referencesDi Toro, G., Nielsen, S., & Pennacchioni, G. (2005). Earthquake rupture dynamics frozen in exhumed ancient faults. Nature, 436(7053), 1009-1012. https://doi.org/10.1038/nature03910
dc.relation.referencesDionicio, V., Pedraza, P., & Poveda, E. (2023). Moment tensor and focal mechanism data of earthquakes recorded by Servicio Geológico Colombiano from 2014 to 2021. Boletín Geológico, 50(2). https://doi.org/10.32685/0120-1425/bol.geol.50.2.2023.694
dc.relation.referencesDuque-Trujillo, J., Bustamante, C., Solari, L., Gómez-Mafla, Á., Toro-Villegas, G., & Hoyos, S. (2019). Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn-to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geology, 46(1), 82-101. http://dx.doi.org/10.5027/andgeoV46n1-3120
dc.relation.referencesEgbue, O., Kellogg, J., Aguirre, H., & Torres, C. (2014). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 58, 8-21. https://doi.org/10.1016/j.jsg.2013.10.004
dc.relation.referencesEgo, F., Sébrier, M., Lavenu, A., Yepes, H., & Egues, A. (1996). Quaternary state of stress in the Northern Andes and the restraining bend model for the Ecuadorian Andes. Tectonophysics, 259(1-3), 101-116. https://doi.org/10.1016/0040-1951(95)00075-5
dc.relation.referencesEllsworth, W. L. (1978). Three-dimensional structure of the crust and mantle beneath the island of Hawaii (Doctoral dissertation, Massachusetts Institute of Technology).
dc.relation.referencesFeininger, T. (1970). The Palestina Fault, Colombia. Geological Society of America Bulletin, 81(4), 1201-1216. https://doi.org/10.1130/0016-7606(1970)81[1201:TPFC]2.0.CO;2
dc.relation.referencesFeininger, T., & Botero, G. (1982) The Antioquian Batholith, Colombia. Publicación Geológica Especial INGEOMINAS 12:1–50
dc.relation.referencesFeininger, T., & Botero, G. (1982) The Antioquian Batholith, Colombia. Publicación Geológica Especial INGEOMINAS 12:1–50
dc.relation.referencesFrechet, J. (1985). Sismogenese et doublets sismiques (Doctoral dissertation, Universite Scientifique et Medicale de Grenoble).
dc.relation.referencesFrémont, M. J., & Malone, S. D. (1987). High precision relative locations of earthquakes at Mount St. Helens, Washington. Journal of Geophysical Research: Solid Earth, 92(B10), 10223-10236. https://doi.org/10.1029/JB092iB10p10223
dc.relation.referencesFreymueller, J. T., Kellogg, J. N., & Vega, V. (1993). Plate motions in the north Andean region. Journal of Geophysical Research: Solid Earth, 98(B12), 21853-21863. https://doi.org/10.1029/93JB00520
dc.relation.referencesGarcia, C., & Hermelin, M. (2004). Cálculo preliminar de la tasa de meteorización del Batolito Antioqueño, Cordillera Central, Colombia. Revista Brasileira de Geomorfologia, 5(1). https://doi.org/10.20502/rbg.v5i1.31
dc.relation.referencesGeiger, L. (1912). Probability method for the determination of earthquake epicentres from the arrival time only. Bull. St. Louis Univ., 8, 60.
dc.relation.referencesGleizes, G., Leblanc, D., Olivier, P., & Bouchez, J. (2001). Strain partitioning in a pluton during emplacement in transpressional regime: the example of the Néouvielle granite (Pyrenees). International Journal of Earth Sciences, 90(2), 325-340. https://doi.org/10.1007/s005310000144
dc.relation.referencesGomberg, J. S., Shedlock, K. M., & Roecker, S. W. (1990). The effect of S-wave arrival times on the accuracy of hypocenter estimation. Bulletin of the Seismological Society of America, 80(6A), 1605-1628. https://doi.org/10.1785/BSSA08006A1605
dc.relation.referencesGómez, J. & Montes, N.E., compiladores. (2020). Mapa Geológico de Colombia en Relieve 2020. Escala 1:1 000 000. Servicio Geológico Colombiano, 2 hojas. Bogotá
dc.relation.referencesGómez, J., Montes, N.E. & Marín, E., compiladores. (2023). Mapa Geológico de Colombia 2023. Escala 1:1 500 000. Servicio Geológico Colombiano. Bogotá.
dc.relation.referencesGonzález, H. (2001). Mapa geológico del Departamento de Antioquia: Geología, recursos minerales y amenazas potenciales. Memoria Explicativa. INGEOMINAS, Bogotá
dc.relation.referencesGot, J. L., Fréchet, J., & Klein, F. W. (1994). Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. Journal of Geophysical Research: Solid Earth, 99(B8), 15375-15386. https://doi.org/10.1029/94JB00577
dc.relation.referencesHall, R., Álvarez, J., & Rico, H. (1972). Geología de parte de los departamentos de Antioquia y Caldas (Sub-zona II-A). Boletín Geológico, 20(1), 1–85. https://doi.org/10.32685/0120-1425/bolgeol20.1.1972.326
dc.relation.referencesHamilton, W, & Myers, W. B. (1967). The nature of batholiths. U. S. Geol. Survey Prof. Paper 554-C, 30 p.
dc.relation.referencesHardebeck, J. L., & Shearer, P. M. (2002). A new method for determining first-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(6), 2264-2276. https://doi.org/10.1785/0120010200
dc.relation.referencesHardebeck, J. L., & Shearer, P. M. (2003). Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bulletin of the Seismological Society of America, 93(6), 2434-2444. https://doi.org/10.1785/0120020236
dc.relation.referencesHauksson, E., & Meier, M. A. (2019). Applying depth distribution of seismicity to determine thermo-mechanical properties of the seismogenic crust in Southern California: comparing lithotectonic blocks. Pure and Applied Geophysics, 176(3), 1061-1081. https://doi.org/10.1007/s00024-018-1981-z
dc.relation.referencesHavskov, J., & Ottemoller, L. (1999). SEISAN earthquake analysis software. Seismological Research Letters, 70(5), 532-534.
dc.relation.referencesHavskov, J., Voss, P. H., & Ottemöller, L. (2020). Seismological observatory software: 30 Yr of SEISAN. Seismological Research Letters, 91(3), 1846-1852. https://doi.org/10.1785/0220190313
dc.relation.referencesHenao, J. D. & Monsalve, G. (2018). Geological inferences about the upper crustal configuration of the Medellin–Aburra Valley (Colombia) using strong motion seismic records. Geodesy and Geodynamics, 9(1), 67-76. https://doi.org/10.1016/j.geog.2017.06.005
dc.relation.referencesIbañez-Mejia, M., Tassinari, C. C. G., & Jaramillo-Mejia, J. M. (2007). U–Pb zircon ages of the “Antioquian Batholith”: geochronological constraints of Late Cretaceous magmatism in the Central Andes of Colombia. In 11th Colombian Geological Congress, extended abstracts.
dc.relation.referencesJaramillo, C., & Cárdenas, A. (2013). Global warming and neotropical rainforests: a historical perspective. Annual Review of Earth and Planetary Sciences, 41(1), 741-766. https://doi.org/10.1146/annurev-earth-042711-105403
dc.relation.referencesJaramillo, J. S., Cardona, A., León, S., Valencia, V., & Vinasco, C. (2017). Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6 35′ N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 76, 460-481. https://doi.org/10.1016/j.jsames.2017.04.012
dc.relation.referencesJaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330, 194-210. https://doi.org/10.1016/j.lithos.2019.02.017
dc.relation.referencesJarrin, P., Nocquet, J. M., Rolandone, F., Audin, L., Mora-Páez, H., Alvarado, A., ... & Cisneros, D. (2023). Continental block motion in the Northern Andes from GPS measurements. Geophysical Journal International, 235(2), 1434-1464. https://doi.org/10.1093/gji/ggad294
dc.relation.referencesJiang, H., Lee, C. T. A., Morgan, J. K., & Ross, C. H. (2015). Geochemistry and thermodynamics of an earthquake: A case study of pseudotachylites within mylonitic granitoid. Earth and Planetary Science Letters, 430, 235-248. https://doi.org/10.1016/j.epsl.2015.08.027
dc.relation.referencesKellogg, J. N., Camelio, G. B. F., & Mora-Páez, H. (2019). Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy. In Andean tectonics (pp. 69-102). Elsevier. https://doi.org/10.1016/B978-0-12-816009-1.00006-X
dc.relation.referencesKennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429-465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
dc.relation.referencesKerr, A. C., Marriner, G. F., Tarney, J., Nivia, A., Saunders, A. D., Thirlwall, M. F., & Sinton, C. W. (1997). Cretaceous Basaltic Terranes in western Columbia: elemental, chronological and Sr–Nd isotopic constraints on petrogenesis. Journal of petrology, 38(6), 677-702. https://doi.org/10.1093/petroj/38.6.677
dc.relation.referencesKerr, A. C., & Tarney, J. (2005). Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 33(4), 269-272. https://doi.org/10.1130/G21109.1
dc.relation.referencesKissling, E. (1988). Geotomography with local earthquake data. Reviews of Geophysics, 26(4), 659-698. https://doi.org/10.1029/RG026i004p00659
dc.relation.referencesKissling, E., Ellsworth, W. L., Eberhart‐Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research: Solid Earth, 99(B10), 19635-19646. https://doi.org/10.1029/93JB03138
dc.relation.referencesKissling, E., Kradolfer, U., & Maurer, H. (1995). Program VELEST user’s guide-Short Introduction. Institute of Geophysics, ETH Zurich, 22.
dc.relation.referencesKisslinger, C. (1980). Evaluation of S to P amplitude rations for determining focal mechanisms from regional network observations. Bulletin of the Seismological Society of America, 70(4), 999-1014. https://doi.org/10.1785/BSSA0700040999
dc.relation.referencesKlein, F. W. (1978). Hypocenter location program HYPOINVERSE: Part I. Users guide to versions 1, 2, 3, and 4. Part II. Source listings and notes (No. 78-694). US Geological Survey.
dc.relation.referencesKlein, F. W. (2002). User's guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes (No. 2002-171). US Geological Survey. https://doi.org/10.3133/ofr02171
dc.relation.referencesKradolfer, U. (1989). Seismische Tomographie in der Schweiz mittels lokaler Erdbeben (Doctoral dissertation, ETH Zurich).
dc.relation.referencesKreemer, C., Blewitt, G., & Bennett, R. A. (2010). Present‐day motion and deformation of the Colorado plateau. Geophysical Research Letters, 37(10). https://doi.org/10.1029/2010GL043374
dc.relation.referencesLara, M., Salazar-Franco, A. M., & Silva-Tamayo, J. C. (2018). Provenance of the Cenozoic siliciclastic intramontane Amagá Formation: Implications for the early Miocene collision between Central and South America. Sedimentary Geology, 373, 147-162. https://doi.org/10.1016/j.sedgeo.2018.06.003
dc.relation.referencesLay, T., & Wallace, T. C. (1995). Modern global seismology (Vol. 58). Elsevier.
dc.relation.referencesLawson, C. L., & Hanson, R. J. (1995). Solving least squares problems. Society for Industrial and Applied Mathematics.
dc.relation.referencesLeal-Mejía, H., Shaw, R. P., & Melgarejo & Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction, 253-410. https://doi.org/10.1007/978-3-319-76132-9_5
dc.relation.referencesLee, W. H., & Lahr, J. C. (1975). HYPO71 (revised; a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes (No. 75-311). US Dept. of the Interior, Geological Survey, National Center for Earthquake Research.
dc.relation.referencesLeón, S., Cardona, A., Mejía, D., Botello, G. E., Villa, V., Collo, G., ... & Avellaneda-Jiménez, D. S. (2019). Source area evolution and thermal record of an Early Cretaceous back-arc basin along the northwesternmost Colombian Andes. Journal of South American Earth Sciences, 94, 102229. https://doi.org/10.1016/j.jsames.2019.102229
dc.relation.referencesLeón, S., Monsalve, G., & Bustamante, C. (2021). How much did the Colombian Andes rise by the collision of the Caribbean oceanic plateau?. Geophysical Research Letters, 48(7), e2021GL093362. https://doi.org/10.1029/2021GL093362
dc.relation.referencesLesage, G., Richards, J. P., Muehlenbachs, K., & Spell, T. L. (2013). Geochronology, geochemistry, and fluid characterization of the late Miocene Buriticá gold deposit, Antioquia Department, Colombia. Economic Geology, 108(5), 1067-1097. https://doi.org/10.2113/econgeo.108.5.1067
dc.relation.referencesLevenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2), 164-168.
dc.relation.referencesLienert, B. R., Berg, E., & Frazer, L. N. (1986). HYPOCENTER: An earthquake location method using centered, scaled, and adaptively damped least squares. Bulletin of the Seismological Society of America, 76(3), 771-783. https://doi.org/10.1785/BSSA0760030771
dc.relation.referencesLienert, B. R., & Havskov, J. (1995). A computer program for locating earthquakes both locally and globally. Seismological Research Letters, 66(5), 26-36.
dc.relation.referencesLondoño, A. C. (1998). Geoformas asociadas al batolito antioqueño. Geología Colombiana, 23, 133-145.
dc.relation.referencesLonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404(3-4), 237-264. https://doi.org/10.1016/j.tecto.2005.05.011
dc.relation.referencesMa, P., Liu, S., Gurnis, M., & Zhang, B. (2019). Slab horizontal subduction and slab tearing beneath East Asia. Geophysical Research Letters, 46(10), 5161-5169. https://doi.org/10.1029/2018GL081703
dc.relation.referencesMarín-Cerón, M. I., Leal-Mejía, H., Bernet, M., & Mesa-García, J. (2019). Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review. Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction, 603-648. https://doi.org/10.1007/978-3-319-76132-9_8
dc.relation.referencesMaya, M., & González, H. (1995). Unidades litodémicas en la cordillera Central de Colombia. Boletín Geológico, 35(2-3), 44–57. https://doi.org/10.32685/0120-1425/bolgeol35.2-3.1995.316
dc.relation.referencesMontes, C., Hatcher Jr, R. D., & Restrepo-Pace, P. A. (2005). Tectonic reconstruction of the northern Andean blocks: Oblique convergence and rotations derived from the kinematics of the Piedras–Girardot area, Colombia. Tectonophysics, 399(1-4), 221-250. https://doi.org/10.1016/j.tecto.2004.12.024
dc.relation.referencesMontes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903
dc.relation.referencesMonsalve–Bustamante, M.L. (2020). The volcanic front in Colombia: Segmentation and recent and historical activity. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 97–159. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.03
dc.relation.referencesMonsalve, G., Muñoz-Calderón, A. F., Avellaneda-Jiménez, D. S., & Ramírez-Flórez, S. (2024a). Algunas consideraciones sobre la estructura sísmica cortical en el norte de la Cordillera Central colombiana-Altiplano Antioqueño. Boletín de Geología, 46(3), 247-263. https://doi.org/10.18273/revbol.v46n3-2024011
dc.relation.referencesMonsalve, G., Wagner, L. S., Muñoz, A., Alzate, M. A., Avellaneda-Jimenez, D. S., Carchedi, C., & Golden, S. (2024b). Flat Subduction and Overlapping Slabs: Exploring the Lithosphere Beneath Northwesternmost South America using Teleseismic Receiver Functions. In AGU Fall Meeting Abstracts (Vol. 2024, No. 3326, pp. T11C-3326).
dc.relation.referencesMonsalve, G., Sheehan, A., Schulte‐Pelkum, V., Rajaure, S., Pandey, M. R., & Wu, F. (2006). Seismicity and one‐dimensional velocity structure of the Himalayan collision zone: Earthquakes in the crust and upper mantle. Journal of Geophysical Research: Solid Earth, 111(B10). https://doi.org/10.1029/2005JB004062
dc.relation.referencesMora, A., Parra, M., Strecker, M. R., Sobel, E. R., Hooghiemstra, H., Torres, V., & Jaramillo, J. V. (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin, 120(7-8), 930-949. https://doi.org/10.1130/B26186.1
dc.relation.referencesMora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M., Diederix, H., ... & Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes–A new GPS velocity field. Journal of South American Earth Sciences, 89, 76-91. https://doi.org/10.1016/j.jsames.2018.11.002
dc.relation.referencesNakamura, M. (2002). Determination of focal mechanism solution using initial motion polarity of P and S waves. Physics of the Earth and Planetary Interiors, 130(1-2), 17-29. https://doi.org/10.1016/S0031-9201(01)00306-5
dc.relation.referencesNelson, H. W. (1962). Contribución al conocimiento de la cordillera Central de Colombia sección entre Ibagué y Armenia. Boletín Geológico, 10(1-3), 161–202. https://doi.org/10.32685/0120-1425/bolgeol10.1-3.1962.302
dc.relation.referencesNorabuena, E., Leffler-Griffin, L., Mao, A., Dixon, T., Stein, S., Sacks, I. S., ... & Ellis, M. (1998). Space geodetic observations of Nazca-South America convergence across the central Andes. Science, 279(5349), 358-362. 10.1126/science.279.5349.358
dc.relation.referencesNoriega-Londoño, S., Restrepo-Moreno, S., Marín-Cerón, M. I., Carcaillet, J., Bernet, M., & Angel, I. (2024). Erosion rates and morphogenesis of the El Peñol de Guatapé inselberg, northern Andes (Colombia), inferred from geomorphic analyses and cosmogenic 10Be measurements. Journal of South American Earth Sciences, 134, 104726. https://doi.org/10.1016/j.jsames.2023.104726
dc.relation.referencesOjeda, A., & Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of seismology, 5, 575-593. https://doi.org/10.1023/A:1012053206408
dc.relation.referencesOrdoñez, O. (2001). Caracterização isotópica Rb-Sr e Sm-Nd dos principais eventos magmáticos nos Andes Colombianos. Tese de doutorado, Universidade de Brasilia.
dc.relation.referencesOrdóñez, O., Martins Pimentel, M., & Henrique Laux, J. (2008). Edades U-Pb del Batolito Antioqueño. Boletín de Ciencias de la Tierra, (22), 129-130.
dc.relation.referencesOttemöller, L., Voss, P.H. and Havskov J. (2021). SEISAN Earthquake Analysis Software for Windows, Solaris, Linux and Macosx, Version 12.0. 607 pp. University of Bergen
dc.relation.referencesPavlis, G. L. (1986). Appraising earthquake hypocenter location errors: a complete, practical approach for single-event locations. Bulletin of the Seismological Society of America, 76(6), 1699-1717. https://doi.org/10.1785/BSSA0760061699
dc.relation.referencesPavlis, G. L., & Booker, J. R. (1980). The mixed discrete‐continuous inverse problem: Application to the simultaneous determination of earthquake hypocenters and velocity structure. Journal of Geophysical Research: Solid Earth, 85(B9), 4801-4810. https://doi.org/10.1029/JB085iB09p04801
dc.relation.referencesPavlis, G. L., & Das, S. (2000). The Pamir‐Hindu Kush seismic zone as a strain marker for flow in the upper mantle. Tectonics, 19(1), 103-115. https://doi.org/10.1029/1999TC900062
dc.relation.referencesPennington, W. D. (1981). Subduction of the eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11), 10753-10770. https://doi.org/10.1029/JB086iB11p10753
dc.relation.referencesPosada, G., Monsalve, G., & Abad, A. M. (2017). Focal mechanism construction in the north of the Colombian Central Cordillera from record the National Seismological Network of Colombia. Boletín de Ciencias de la Tierra, (42). https://doi.org/10.15446/rbct.n42.57160
dc.relation.referencesPoupinet, G., Ellsworth, W. L., & Fréchet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research: Solid Earth, 89(B7), 5719-5731. https://doi.org/10.1029/JB089iB07p05719
dc.relation.referencesPoveda, E., Monsalve, G., & Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120(4), 2408-2425. https://doi.org/10.1002/2014JB011304
dc.relation.referencesPrieto, G. A., Beroza, G. C., Barrett, S. A., López, G. A., & Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics, 570, 42-56. https://doi.org/10.1016/j.tecto.2012.07.019
dc.relation.referencesRavat, D. N., Braile, L. W., & Hinze, W. J. (1987). Earthquakes and plutons in the midcontinent-Evidence from the Bloomfield pluton, New Madrid rift complex. Seismological Research Letters, 58(2), 41-52. https://doi.org/10.1785/gssrl.58.2.41
dc.relation.referencesReasenberg, P., & Oppenheimer, D. (1986). FPFIT, FPPLOT and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions (Vol. 85, No. 739). US Geological Survey. https://doi.org/10.3133/ofr85739
dc.relation.referencesRichter, C.F. (1958). Elementary Seismology. W.H. Freeman, San Francisco, Calif, p. 342.
dc.relation.referencesRoecker, S. W. (1981). Seismicity and tectonics of the Pamir-Hindu Kush region of central Asia (Doctoral dissertation, Massachusetts Institute of Technology).
dc.relation.referencesRestrepo-Moreno, S. A., Foster, D. A., & Kamenov, G. (2007). Formation age and magma sources for the Antioqueño Batholith derived from LA–ICP–MS uranium–lead dating and hafnium–isotope analysis of zircon grains. In GSA Meeting (Vol. 39, No. 6, p. 493).
dc.relation.referencesRestrepo-Moreno, S. A., Foster, D. A., Stockli, D. F., & Parra-Sánchez, L. N. (2009). Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth and planetary science letters, 278(1-2), 1-12. https://doi.org/10.1016/j.epsl.2008.09.037
dc.relation.referencesRestrepo-Pace, P. A. (1992). Petrotectonic characterization of the central Andean terrane, Colombia. Journal of South American Earth Sciences, 5(1), 97-116. https://doi.org/10.1016/0895-9811(92)90062-4
dc.relation.referencesRestrepo, J. J., Ordóñez-Carmona, O., Armstrong, R., & Pimentel, M. M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the central cordillera of Colombia. Journal of South American Earth Sciences, 32(4), 497-507. https://doi.org/10.1016/j.jsames.2011.04.009
dc.relation.referencesRestrepo, J.J & Toussaint, J.F. (1985). Unidades litológicas de los alrededores de Medellín. Instituto de Ciencias Naturales y Ecología, Publicación Especial, 2: 1–31. Medellín.
dc.relation.referencesRestrepo, J. J., & Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes Journal of International Geoscience, 11(3), 189-193.
dc.relation.referencesRestrepo, J.J. & Toussaint, J.F. (2020). Tectonostratigraphic terranes in Colombia: An update. First part: Continental terranes. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 37–63. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.03
dc.relation.referencesSarmiento-Rojas, L. F., Van Wess, J. D., & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383-411. https://doi.org/10.1016/j.jsames.2006.07.003
dc.relation.referencesShearer, P. M. (2019). Introduction to seismology. Cambridge university press.
dc.relation.referencesSierra L., G.M., Silva T., J.C., Correa O., L.G., 2003. Estratigrafía Secuencial de la Formación Amagá. Boletín de Ciencias de la Tierra, 15, 9–22.
dc.relation.referencesSilva-Tamayo, J.C., Sierra, G.M., Correa, L.G., 2008. Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes, Journal of South American Earth Sciences, 26(4), 369-382, https://doi.org/10.1016/j.jsames.2008.02.001
dc.relation.referencesSnoke, J. A. (1984). A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data. Earthquake notes, 55, 15.
dc.relation.referencesStein, S., & Wysession, M. (2009). An introduction to seismology, earthquakes, and earth structure. John Wiley & Sons.
dc.relation.referencesSteiner, M. B. (1988). Paleomagnetism of the Late Pennsylvanian and Permian: A test of the rotation of the Colorado Plateau. Journal of Geophysical Research: Solid Earth, 93(B3), 2201-2215. https://doi.org/10.1029/JB093iB03p02201
dc.relation.referencesStevenson, D., Gangopadhyay, A., & Talwani, P. (2006). Booming plutons: Source of microearthquakes in South Carolina. Geophysical Research Letters, 33(3). https://doi.org/10.1029/2005GL024679
dc.relation.referencesSun, M., Bezada, M. J., Cornthwaite, J., Prieto, G. A., Niu, F., & Levander, A. (2022). Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577, 117253. https://doi.org/10.1016/j.epsl.2021.117253
dc.relation.referencesTaboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., ... & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813. https://doi.org/10.1029/2000TC900004
dc.relation.referencesTarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Society for industrial and applied mathematics.
dc.relation.referencesTikoff, B., & Teyssier, C. (1994). Strain modeling of displacement-field partitioning in transpressional orogens. Journal of Structural Geology, 16(11), 1575-1588. https://doi.org/10.1016/0191-8141(94)90034-5
dc.relation.referencesThompson, G. A., & Zoback, M. L. (1979). Regional geophysics of the Colorado Plateau. Tectonophysics, 61(1-3), 149-181. https://doi.org/10.1016/0040-1951(79)90296-8
dc.relation.referencesThurber, C. H. (1981). Earth structure and earthquake locations in the Coyote Lake area, central California (Doctoral dissertation, Massachusetts Institute of Technology).
dc.relation.referencesThurber, C. H. (1985). Nonlinear earthquake location: theory and examples. Bulletin of the Seismological Society of America, 75(3), 779-790. https://doi.org/10.1785/BSSA0750030779
dc.relation.referencesThurber, C. H. (1992). Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors, 75(1-3), 55-62. https://doi.org/10.1016/0031-9201(92)90117-E
dc.relation.referencesTrenkamp, R., Kellogg, J. N., Freymueller, J. T., & Mora, H. P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2), 157-171. https://doi.org/10.1016/S0895-9811(02)00018-4
dc.relation.referencesTrnkoczy, A. (2009). Understanding and parameter setting of STA/LTA trigger algorithm. In New manual of seismological observatory practice (NMSOP) (pp. 1-20). Deutsches GeoForschungsZentrum GFZ.
dc.relation.referencesTurcotte, D. L., & Schubert, G. (2002). Geodynamics. Cambridge university press.
dc.relation.referencesUski, M., Tiira, T., Korja, A., & Elo, S. (2006). The 2003 earthquake swarm in Anjalankoski, south-eastern Finland. Tectonophysics, 422(1-4), 55-69. https://doi.org/10.1016/j.tecto.2006.05.014
dc.relation.referencesVargas, C.A. (2019). Subduction geometries in northwestern South America. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary.Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.11
dc.relation.referencesVargas, C. A., & Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc‐Indenter with northwestern South America. Bulletin of the seismological Society of America, 103(3), 2025-2046. https://doi.org/10.1785/0120120328
dc.relation.referencesVargas, C. A., Pujades, L. G., & Montes, L. (2007). Seismic structure of South-Central Andes of Colombia by tomographic inversion. Geofísica internacional, 46(2), 117-127.
dc.relation.referencesVallejo, C., Spikings, R. A., Luzieux, L., Winkler, W., Chew, D., & Page, L. (2006). The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nova, 18(4), 264-269. https://doi.org/10.1111/j.1365-3121.2006.00688.x
dc.relation.referencesVeloza, G., Styron, R., Taylor, M., & Mora, A. (2012). Open-source archive of active faults for northwest South America. Gsa Today, 22(10), 4-10. https://doi.org/10.1130/GSAT-G156A.1
dc.relation.referencesVillagomez Diaz, D. R. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America. Université de Genève.
dc.relation.referencesVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003
dc.relation.referencesVillagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the northern Andes. Lithos, 160, 228-249. https://doi.org/10.1016/j.lithos.2012.12.008
dc.relation.referencesVinasco, C. (2019). The romeral shear zone. Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction, 833-876. https://doi.org/10.1007/978-3-319-76132-9_12
dc.relation.referencesVinasco, C. J., Cordani, U. G., González, H., Weber, M. A., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371. https://doi.org/10.1016/j.jsames.2006.07.007
dc.relation.referencesWagner, L. S., Jaramillo, J. S., Ramírez‐Hoyos, L. F., Monsalve, G., Cardona, A., & Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616-6623. https://doi.org/10.1002/2017GL073981
dc.relation.referencesWagner, L. S., Monsalve, G., Avellaneda-Jimenez, D. S., & Golden, S. (2023). The MUSICA Seismic Deployment: Imaging the Colombian Flat Slab and the Caldas Tear. AGU23.
dc.relation.referencesWaldhauser, F. (2001). HypoDD-A program to compute double-difference hypocenter locations (No. 2001-113).
dc.relation.referencesWaldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the seismological society of America, 90(6), 1353-1368. https://doi.org/10.1785/0120000006
dc.relation.referencesWeber, M., Duque, J.F., Hoyos, S., Cárdenas–Rozo, A.L., Gómez, J. & Wilson, R. 2020. The Combia Volcanic Province: Miocene post–collisional magmatism in the northern Andes. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, p. 355–394. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.12
dc.relation.referencesZapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., ... & Castaneda, J. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 66, 207-226. https://doi.org/10.1016/j.gr.2018.10.008
dc.relation.referencesZapata, S., Zapata-Henao, M., Cardona, A., Jaramillo, C., Silvestro, D., & Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203, 103553. https://doi.org/10.1016/j.gloplacha.2021.103553
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
dc.subject.lembPredicción sismica
dc.subject.lembTectonica de placas
dc.subject.lembSismología
dc.subject.proposalAltiplano Antioqueñospa
dc.subject.proposalSismicidadspa
dc.subject.proposalMecanismos focalesspa
dc.subject.proposalInversión sísmicaspa
dc.subject.proposalDeformación frágilspa
dc.subject.proposalConfiguración de la litósferaspa
dc.subject.proposalAntioquia Plateaueng
dc.subject.proposalSeismicityeng
dc.subject.proposalFocal mechanismseng
dc.subject.proposalSeismic inversioneng
dc.subject.proposalBrittle deformationeng
dc.subject.proposalLithospheric configurationeng
dc.subject.proposalBatolito Antioqueñospa
dc.titleSismicidad y deformación frágil de la corteza en la región del Altiplano Antioqueño y su influencia en la configuración tectónica regionalspa
dc.title.translatedSeismicity and brittle deformation of the crust in the Antioquia Plateau region and its influence on regional tectonic configurationeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos.pdf
Tamaño:
5.08 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: