Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia

dc.contributor.advisorMontes, Luis Alfredo
dc.contributor.advisorZuluaga, Carlos
dc.contributor.authorQuintana Puentes, Robinson
dc.contributor.orcidQuintana Puentes, Robinson [0000-0002-3523-6203]spa
dc.contributor.researchgroupGrupo de geofísicaspa
dc.coverage.countryColombia
dc.coverage.countryColombia
dc.date.accessioned2023-06-27T20:46:02Z
dc.date.available2023-06-27T20:46:02Z
dc.date.issued2022
dc.descriptionilustraciones, mapasspa
dc.description.abstractLa forma de la topografía de la superficie en la parte sur del territorio colombiano es el resultado de la deformación producida por la subducción de la placa de Nazca debajo de la Placa de Suramérica. Se genera un modelado numérico termo-mecánico para solucionar varias ecuaciones que describen los fenómenos físicos principales asociados a calor y esfuerzo. Este proceso de subducción es modelado bajo el marco de la mecánica de los medios continuos. Se presenta la evolución en la subducción escogida modelando los escenarios en aproximadamente 150 millones de años desde el periodo geológico Jurásico hasta ahora, parametrizado por el control que ejerce la forma de la topografía actual. Este modelamiento se realiza con el programa computacional MatLab y se tienen en cuenta códigos computacionales de varios autores que están trabajando en estas soluciones. Un aspecto fundamental es discretizar el espacio basándose en coordenadas planas formando un grillado de 24.888 marcas y representando un área de 300 km de alto y 3000 km de largo sobre la latitud de 3° grados. Se determinan esfuerzo, temperatura, composición, velocidad, geometría y propiedades de las cortezas oceánica y continental para un total de 10 escenarios. El código i3Elvis resulta ser un código robusto para modelar fenómenos de la subducción tales como; la ruptura, ángulo bajo con respecto al horizonte de la placa oceánica. Pero no resulta ser efectivo para el desprendimiento de la placa cuando se adhiere un terreno oceánico. Se genera un modelo de geometría actual de las rocas involucradas en la subducción por medio de datos de gravimetría y magnetometría, el cual, es el objetivo de llegada del modelamiento. (Texto tomado de la fuente)spa
dc.description.abstractThe shape of the surface topography in the southern part of the Colombian territory is the result of the deformation produced by the subduction of the Nazca plate under the South American Plate. We generate a thermo-mechanical numerical modeling to solve several equations that describe the main physical phenomena associated with heat and stress. We model this subduction process under the framework of continuum mechanics. We present the evolution in the chosen subduction modeling the scenarios in approximately 150 million years from the Jurassic geologic period until now, parameterized by the control exerted by the shape of the current topography. This modeling was carried out with the MatLab computer program and computer codes of various authors who are working on these solutions were taken into account. A fundamental aspect is to discretize the space based on plane coordinates, forming a grid of 24,888 marks and representing an area 300 km high and 3000 km long on the latitude of 3° degrees. We determined stress, temperature, composition, velocity, geometry, and properties of the oceanic and continental crusts for a total of 10 scenarios. The i3Elvis code turned out to be a robust code to model subduction phenomena such as; the rupture, low angle with respect to the horizon of the oceanic plate. But it did not turn out to be effective for plate detachment when an oceanic terrain is attached. We generated a current geometry model of the rocks involved in the subduction through gravimetry and magnetometry data, which was the goal of the modeling.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Geocienciasspa
dc.description.researchareaEstratigrafía, tectónica y Geodinámicaspa
dc.format.extentxv, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84087
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Geocienciasspa
dc.relation.referencesAllmendinger, R., Reilinger, R., y Loveless, J. (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. TECTONICS, 1-8. doi: https://doi.org/10.1029/2006TC002030spa
dc.relation.referencesAltamimi, Z., Rebischung, P., Métivier, L., y Collilieux, X. (2014). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 6109-6131. doi: https://doi.org/10.1002/2016JB013098spa
dc.relation.referencesBahrouni, N., Masson, F., Meghraoui, F., Saleh, M., Maamri, R., Dhaha, F., y Arfaoui, M. (2020). Active tectonics and GPS data analysis of the Maghrebian thrust belt and Africa-Eurasia plate convergence in Tunisia. Tectonophysics, 228440. doi: https://doi.org/10.1016/j.tecto.2020.228440spa
dc.relation.referencesBriseño Guarupe, L. A., y Díaz Campos, R. (1995). Medidas de propiedades dinámicas en rocas "in situ" y computo de parámetros elastomecánicos. Geofísica Colombiana, 73-79. Obtenido de https://revistas.unal.edu.co/index.php/esrj/article/view/31238spa
dc.relation.referencesBustamante, C., Archanjo, C. J., Cardona, A., Andrés, B., y Valencia, V. (2017). U-Pb Ages and Hf Isotopes in Zircons from Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane Configurations in the Northern Andes. (T. U. Journals, Ed.) The Journal of Geology, 487–500. doi: https://www.journals.uchicago.edu/doi/10.1086/693014spa
dc.relation.referencesCardona, A., Cordani, H., y Macdonald, W. (2006). Tectonic correlations of pre-Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. Journal of South American Earth Sciences, 337-354. doi: https://doi.org/10.1016/j.jsames.2006.07.009spa
dc.relation.referencesCardozo, N., Allmendinger, R., y Fisher, D. (2012). Structural Geology Algorithms vector and tensor. New York: CAMBRIDGE UNIVERSITY PRESS. doi: https://doi.org/10.1017/CBO9780511920202spa
dc.relation.referencesEgbue, O., Kellogg, J., Aguirre, H., y Torres, C. (2013). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 8-21. doi: https://doi.org/10.1016/j.jsg.2013.10.004spa
dc.relation.referencesEngelkemeir, R., Khan, S. D., y Burke, K. (2010). Surface deformation in Houston, Texas using GPS. Tectonophysics, 47–54. doi: https://doi.org/10.1016/j.tecto.2010.04.016spa
dc.relation.referencesFreymueller, J., Kellogg, J., y Vega, V., (1993). Plate Motions in the North Andean Region. Journal of Geophysical Research, 21853-21863. Doi: https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1003&context=geol_facpubspa
dc.relation.referencesGonzález, C. P., Quintana, P. R., y Montes, L. V. (2019). Cálculo de la elongación, dilatación y vectores de rotación de la deformación con algunas estaciones GPS en Colombia. Vínculos, 16, 262–269. doi: https://doi.org/10.14483/2322939X.15749spa
dc.relation.referencesHeidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B,. Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M., Zoback, M., y Zoback, M. (2016). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 484-498. doi: https://doi.org/10.1016/j.tecto.2018.07.007spa
dc.relation.referencesJi, K. H., y Henrring, T. A. (2013). A method for detecting transient signals in GPS position time-series: smoothing and principal component analysis. Geophysical Journal International, 171–186. doi: https://doi.org/10.1093/gji/ggt003spa
dc.relation.referencesKellogg, J.N., Freymueller, J.T., Dixon, T.H., Neilan, R.E., Ropain, C.U., Camargo, S.M., Fernandez, B., Stowell, J.L., Salazar, A., Mora, J., Espin, L., Perdue, V., Leos, L., (1990). First GPS baseline results from the north Andes, CASA UNO special issue. Geophys. Res. Lett. 17, 211-214. https://doi.org/10.1029/GL017i003p00211spa
dc.relation.referencesKlos, A., Bogusz, J., Figurski, M., & Kosek, W. (2014). Uncertainties of geodetic velocities from permanent GPS observations: the sudeten case study. Geomater, 201–209. doi: https://doi.org/10.13168/AGG.2014.0005spa
dc.relation.referencesMartínez-Garzón, P., Heidbach, O., y Bohnhoff, M. (2020). Contemporary stress and strain field in the Mediterranean from stress inversion of focal mechanisms and GPS data. Tectonophysics, 228286. doi: https://doi.org/10.1016/j.tecto.2019.228286spa
dc.relation.referencesMora Páez, H., y Audemard, F. (2021). GNSS Networks for Geodynamics in the Caribbean, Northwestern South America, and Central America. En B. E. Erol, Geodetic Sciences - Theory, Applications and Recent Developments (págs. 1-22). Bogotá, Colombia: Intechopen. doi: https://www.intechopen.com/chapters/76166spa
dc.relation.referencesMora-Páez, H., J. R. Peléz-Gaviria, H. Diederix, O. Bohórquez-Orozco, L. Cardona-Piedrahita, y. Cochuelo-Cuervo, . . . F. Díaz-Mila. (2018). Space Geodesy Infrastructure in Colombia for Geodynamics Research. Seismological Research Letter, 446-451. doi: https://doi.org/10.1785/0220170185spa
dc.relation.referencesMora-Páez, H., Kellog, J. N., Freymuller, J. T., Mencin, D., Rui, F. M., Hans, D., . . . Corchuelo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 76-91. doi: https://doi.org/10.1016/j.jsames.2018.11.002spa
dc.relation.referencesMora-Páez, H., Kellogg, J. N., y Freymuller, J. T. (2020). Contributions of space geodesy for geodynamic studies in Colombia: 1988 to 2017. En S. G. Colombiano, The Geology of Colombia (págs. 479–498). Bogotá: Gómez, J. y Pinilla–Pachon. doi: https://doi.org/10.32685/pub.esp.38.2019.14spa
dc.relation.referencesMostafavi, M., Gold, C., y Dakowicz, M. (2003). Delete and insert operations in Voronoi/Delaunay methods. Computers y Geosciences, 523–530 doi: https://doi.org/10.1016/S0098-3004(03)00017-7spa
dc.relation.referencesParra, M., Mora, A., López, C., Luis, R., y Horton, B. (2012). Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology. doi: https://doi.org/10.1130/G32519.1spa
dc.relation.referencesRestrepo, J., Ordoñez, O., Armstrong, R., y Pimentel, M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the central cordillera of Colombia. Journal of South American Earth Sciences, 497-507. doi: https://doi.org/10.1016/j.jsames.2011.04.009spa
dc.relation.referencesSaikia, M., y Hussain, A. (2019). Delaunay Triangulation Based Key Distribution for Wireless Sensor Network. Journal of Communications, 530-537. doi: https://doi.org/10.12720/jcm.14.7.530-537spa
dc.relation.referencesToussaint, J. F., y Restrepo, J. J. (2020). Tectonostratigraphic Terranes in Colombia. In S. G. Colombiano, The Geology of Colombia (pp. 237–260). Bogotá: Publicaciones Geológicas Especiales. doi: https://doi.org/10.32685/pub.esp.36.2019.07spa
dc.relation.referencesTurcotte, D., y Schubert, G. (2001). Geodynamics. En D. Turcotte, y G. Schubert, Geodynamics (págs. 185-188). Cambridge: Cambridge University. doi: https://doi.org/10.1017/CBO9780511807442spa
dc.relation.referencesVargas, C. A. (2020). Subduction Geometries in Northwestern South America. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales. doi: https://doi.org/10.32685/pub.esp.38.2019.11spa
dc.relation.referencesVargas, C. A., y Durán Tovar, J. (2005). State of strain and stress in northwestern of South America. Earth sciences research journal, 43-50. Obtenido de http://www.scielo.org.co/scielo.php?script=sci_arttex t&pid=S1794-61902005000100005spa
dc.relation.referencesZhu, S., Chen, J., y Shi, Y. (2022). Earthquake potential in the peripheral zones of the Ordos Block based on contemporary GPS strain rates and seismicity. Tectonophysics, 229224. doi: https://doi.org/10.1016/j.tecto.2022.229224spa
dc.relation.referencesZoback, M. (1992). First and second order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res., 97, 11703-11728, http://doi.org/10.1029/92jb00132spa
dc.relation.referencesAndersen, O. B. (2013). Marine gravity and geoid from satellite altimetry. Lecture Notes in Earth System Sciences, 401–451. doi:https://doi.org/10.1007/978-3-540-74700-0_9spa
dc.relation.referencesAntokoletz, E. D. (2017). Red gravimétrica de primer orden de la República Argentina. Mar de Plata: Doctoral Dissertation, Universidad Nacional de La Plata.spa
dc.relation.referencesBlakely, R. (1996). Potential Theory in gravity and magnetic applications. Cambridge, United Kingdom: Cambridge University Press.spa
dc.relation.referencesChai, Y. H. (1988). Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 837–845. doi:https://doi.org/10.1190/1.1442518spa
dc.relation.referencesGómez-Ortiz, D. A. (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers and Geosciences, 513–520. doi:https://doi.org/10.1016/j.cageo.2004.11.004spa
dc.relation.referencesHackney, R. I. (2003). Geodetic versus geophysical perspectives of the ’gravity anomaly. Geophysical Journal International, 35–43. doi:https://doi.org/10.1046/j.1365-246X.2003.01941.xspa
dc.relation.referencesHall A. R. y Tilling L., (1978). The Correspondence of Isaac Newton. Cambridge University Press. Vol. 2 (1676-1687). doi:https://doi.org/10.1017/9781108651820spa
dc.relation.referencesHernández Moraleda, A. y. (2013). Determinación de la profundidad de la discontinuidad de Mohorovičić en la península lbérica a partir del problema isostático inverso de Vening Meinesz. comparación con el método sísmico. Boletín Geológico y Minero, 563–571.spa
dc.relation.referencesHernandez, F. S. (2000). Altimetric Mean Sea Surfaces and Gravity Anomaly maps. (I. o. Development, Ed.) d’Etudes Spatiales.spa
dc.relation.referencesHofmann Wellenhof, B. M. (2005). Physical geodesy. Springer Science y Business Media. Kane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044spa
dc.relation.referencesLópez, E. (2020). Estudio de microgravimetría urbana en el centro histórico de Querétaro en relación con el proceso de subsidencia en el área metropolitana. IPICYT, 1-15.spa
dc.relation.referencesLowrie, W. (2007). Fundamentals of Geophysics. Cambridge University Press, Cambridge, UK. doi: https://doi.org/10.1017/CBO9780511807107spa
dc.relation.referencesKane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044spa
dc.relation.referencesNagy, D. (1966). The gravitational attraction of a right rectangular prism. GEOPHYSICS, 320-428. doi:https://doi.org/10.1190/1.1439779spa
dc.relation.referencesNiño Ferro, E. M. (2018). Sistema de Inversión de Datos Gravimétricos Basados en Simulated Annealing para Objetos Geométricos Simples. Bucaramanga: Universidad Industrial de Santander.spa
dc.relation.referencesParker R.L. y Oldenburg L. (1972). The rapid calculation of potential anomalies. Geophys, J. R. astr. Soc. 31, 447-455.spa
dc.relation.referencesPham, L. T. (2018). GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers and Geosciences, 40–47. doi:https://doi.org/10.1016/j.cageo.2018.07.009spa
dc.relation.referencesSandwell, D. T. (2002). Laplace’s Equation in Cartesian Coordinates and Satellite Altimetry. Science, 346.spa
dc.relation.referencesSears, F. W. (2005). Física Universitaria Con Física Moderna Vol II. México: Pearson Education. doi:https://doi.org/10.2307/j.ctvvn8f6.8spa
dc.relation.referencesSLRG. (2020). Sea Level Research Group. University of Colorado. https://sealevel.colorado.eduspa
dc.relation.referencesSmith, W. H. (2010). The Marine Geoid and Satellite Altimetry. Oceanography from Space: Revisited, 1–375. doi:https://doi.org/10.1007/978-90-481-8681-5spa
dc.relation.referencesSuriñach, E. F.-M. (2006). Inversión numérica 3D de datos gravimétricos procedentes de campañas marinas y de satélite. Aplicación a un área antártica. (Dialnet, Ed.) Madrid: Física de La Tierra. doi:https://doi.org/10.5209/rev_FITE. 2006.v18.12515spa
dc.relation.referencesSutra, E. M. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the iberia margin. Geology, 139–142. Obtenido de https://doi.org/10.1130/G32786.1 Torge, W. (1991). Geodesy. Berlin: Gruyter.spa
dc.relation.referencesAlken, P. T. (11 de 02 de 2021). International Geomagnetic Reference Field: the thirteenth generation. doi:https://doi.org/10.1186/s40623-020-01288-xspa
dc.relation.referencesANH, 2010. Agencia Nacional de Hidrocarburos. Anomaías intensidad magnética total. https://www.anh.gov.co/es/hidrocarburos/informaci%C3%B3n-geol%C3%B3gica-y-geof%C3%ADsica/m%C3%A9todos-remotos/anomal%C3%ADas-intensidad-magn%C3%A9tica-total/spa
dc.relation.referencesBlakely, R. (1996). Potential Theory in gravity and magnetic applications. Cambridge, United Kingdom: Cambridge University Press.spa
dc.relation.referencesButler, R. (2004). PALEOMAGNETISM: Magnetic Domains to Geologic Terranes. Portland, Oregon: University of Portland. Obtenido de https://www.geo.arizona.edu/Paleomag/tocpref.pdfspa
dc.relation.referencesCooper, G., y Cowan, D. (2005). Differential reduction to the pole. Computers y Geosciences, 989-999. doi:10.1016/j.cageo.2005.02.005spa
dc.relation.referencesDobrin, M., y Sabit, C. (1988). Introduction to geophysical prospecting Fourth edition. New York: McGraw-Hill.spa
dc.relation.referencesGombert, B., Duputel, Z., Jolivet, R., Simons, M., Jiang, J., Liang, C., . . . Rivera, L. (2018). Strain budget of the Ecuador–Colombia subduction zone a stochastic. Earth and Planetary Science Letters, 288-299. doi:https://doi.org/10.1016/j.epsl.2018.06.046spa
dc.relation.referencesGubbins, D., y Herrero, E. (2007). Encyclopedia of Geomagnetism and Paleomagnetism. Dordrecht, The Netherlands: Springer.spa
dc.relation.referencesHuangu, P., Wang, Y., Fan, W., Li, Z., y Zhou, Y. (2007). Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research, 1-19. doi:10.1029/2007JB005021spa
dc.relation.referencesIdárraga-García, J., y Vargas, C. (2018). Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior. Geodesy and Geodynamics, 93-107.spa
dc.relation.referencesKearey, P., Brooks, M., & Hill, I.A. (2002). An Introduction to Geophysical Exploration. Oxford U.K. Blackwell Science Ltd.spa
dc.relation.referencesKaufman, A. (1992). Geophysical Field Theory and Method. Colorado: Academic Press, Inc.spa
dc.relation.referencesLallemand, S., y Arcay, D. (2021). Magnetic anomaly interpretation across the southern central. Earth-Science Reviews, 103779. doi: https://doi.org/10.1016/j.earscirev.2021.103779spa
dc.relation.referencesLangel, R., y Hinze, W. (1998). The magnetic field of the earth's Lithosphere. Cambridge, United Kindom: Cambridge University Press.spa
dc.relation.referencesLeón, S., Monsalve, G., Jaramillo, C., Posada, G., Siquiera, T., Echeverri, S., y Valencia, V. (2021). Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics, 229132spa
dc.relation.referencesMonsalve-Jaramillo, H., Valencia-Mina, W., Cano-Saldaña, L., y Vargas, C. (2018). Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 47-61. doi: https://doi.org/10.1016/j.jog.2018.02.005spa
dc.relation.referencesMoreno, E., y Manea, M. (2021). Geodynamic evaluation of the pacific tectonic model for chortis block evolution using 3D numerical models of subduction. Journal of South American Earth Sciences, 103604. doi:https://doi.org/10.1016/j.jsames.2021.103604spa
dc.relation.referencesValenta, J. (2015). Introduction to Geophysics. Czech: Development Cooperation. Obtenido de http://www.geology.cz/projekt681900/english/learning-resources/Geophysics_lecture_notes.pdfspa
dc.relation.referencesVargas, C. A. (2020). Subduction Geometries in Northwestern. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales.spa
dc.relation.referencesYáñez, G., Ranero, C., Huene, R., y Díaz, J. (2001). Magnetic anomaly interpretation across the southern central Andes (32°-34°S): The role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. Journal of Geophtsical Research, 6325-6345. doi:https://doi.org/10.1029/2000JB900337spa
dc.relation.referencesBarrero, D., Pardo, A., Vargas, C., y Martínez, J. (2007). Colombian Sedimentary Basins. Bogotá: ANH and ByM Exploration Ltda.spa
dc.relation.referencesBaumann, J. (2016). Appraisal of geodynamic inversion results: a data mining approach. Geophysical Journal International, 667–679. doi:10.1093/gji/ggw279 Becker, T., y Boris, K. (2011). Numerical Geodynamics. California: University of Southern California.spa
dc.relation.referencesBriseño Guarupe, L. A., y Díaz Campos, R. (1995). Medidas de propiedades dinámicas en rocas "in situ" y computo de parámetros elastomecánicos. Geofísica Colombiana, 73-79.spa
dc.relation.referencesCardozo, N., Allmendinger, R., y Fisher, D. (2012). Structural Geology Algorithms vector and tensor. New York: CAMBRIDGE UNIVERSITY PRESS.spa
dc.relation.referencesCediel, F., Shaw, R.P., Cáceres, C., 2003, Tectonic assembly of the Northern Andean Block, in C. Bartolini, R.T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. Am. Assoc. Petrol. Geol., Memoir, v. 79, p. 815-848.spa
dc.relation.referencesChai, Y. H. (1988). Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 837–845. doi:https://doi.org/10.1190/1.1442518spa
dc.relation.referencesCrameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geoscientific Model Development, 2541–2562.spa
dc.relation.referencesDobrin, M., y Sabit, C. (1988). Introduction to geophysical prospecting Fourth edition. New York: McGraw-Hill.spa
dc.relation.referencesDabrowski, M., M. Krotkiewski, and D. W. Schmid, (2008). MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9, Q04030, doi:10.1029/2007GC001719.spa
dc.relation.referencesEarle, S. y Panchuk, K. (2019). Physical Geology – 2nd Edition. British, Columbia. Retrieved from https://opentextbc.ca/physicalgeology2ed/spa
dc.relation.referencesEgbue, O., Kellogg, J., Aguirre, H., y Torres, C. (2013). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 8-21.spa
dc.relation.referencesFraters, M., Thieulot, C., den, A., y Spakman, W. (2019). The Geodynamic World Builder: a solution for complex initial conditions in numerical modelling. Journal Solid Earth, 1-27. doi:10.5194/se-2019-24spa
dc.relation.referencesJaillard, E. (1987), Sedimentary evolution of an active margin during middle and upper Cretaceous times: the North Peruvian margin from Late Aptian up to Senonian. Geologische Rundschau, 76, 677-697.spa
dc.relation.referencesJaillard, E. P., Solar, P., Carlier, G. and Mourier, T., (1990), Geodynamic evolution of the northern and central Andes during early to midle Mesozoic times: a Tethyan model. Jour. Geol. Soc., London, 147:1009-1022.spa
dc.relation.referencesJaillard, E., Soler, P., Carlier, G., Mourier, T., (1990), Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. Journal of the Geological Society, London 147, 1009e1022.spa
dc.relation.referencesFullsack, P., (1995). An arbitrary Lagrangian-Eulerian formulation for creeping flows and applications in tectonic models, Geophys. J. Int ., 120 , 1-23.spa
dc.relation.referencesGerya, T.V., y Meilick, F.I., (2011). Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology. 29, 7-39. doi:10.1111/j.1525-1314.2010.00904.xspa
dc.relation.referencesGerya, T. (2010). Introduction to Numerical Geodynamic Modelling. Cambridge. Cambridge University Press.spa
dc.relation.referencesGerya, T. (2018). Numerical Geodynamic Modelling. Second Edition. Swiss Federal University (ETH), Zürich. http://jupiter.ethz.ch/~tgerya/Bookspa
dc.relation.referencesGombert, B., Duputel, Z., Jolivet, R., Simons, M., Jiang, J., Liang, C., Rivera, L. (2018). Strain budget of the Ecuador–Colombia subduction zone a stochastic. Earth and Planetary Science Letters, 288-299. doi:https://doi.org/10.1016/j.epsl.2018.06.046spa
dc.relation.referencesGómez Ortiz, D. A. (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers and Geosciences, 513–520. doi:https://doi.org/10.1016/j.cageo.2004.11.004spa
dc.relation.referencesGonzález, C. P., Quintana, P. R., y Montes, L. V. (2019). Cálculo de la elongación, dilatación y vectores de rotación de la deformación con algunas estaciones GPS en Colombia. Vínculos, 16, 262–269. Obtenido de https://revistas.udistrital.edu.co/index.php/vinculos/article/view/15749spa
dc.relation.referencesGray, R. (2013). Numerical Geodynamic Experiments of Continental Collision: Past and Present. Toronto: University of Toronto.spa
dc.relation.referencesGuerrero, J. (1 de Octubre de 2018). Pre-andean tectonic events from albian to eocene in the middle magdalena valley and situation of the western flank of the proto-eastern cordillera (Colombia). Tesis. Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesKane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044spa
dc.relation.referencesKaufman, A. (1992). Geophysical Field Theory and Method. Colorado: Academic Press, Inc.spa
dc.relation.referencesKaus, B. (2010). Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophysics, 36-47. doi:10.1016/j.tecto.2009.08.042spa
dc.relation.referencesKaus, B., y Mühlhaus, H. (2009). A stabilization algorithm for geodynamic numerical simulations with a free surface. Physics of the Earth and Planetary Interiors, 9-18. doi:10.1016/j.pepi.2010.04.007spa
dc.relation.referencesKlos, A., Bogusz, J., Figurski, M., y Kosek, W. (2014). Uncertainties of geodetic velocities from permanent GPS observations: the sudeten case study. Geomater, 201–209.spa
dc.relation.referencesLallemand, S., y Arcay, D. (2021). Magnetic anomaly interpretation across the southern central. Earth-Science Reviews, 103779. doi:https://doi.org/10.1016/j.earscirev.2021.103779spa
dc.relation.referencesLangel, R., y Hinze, W. (1998). The magnetic field of the earth's Lithosphere. Cambridge, United Kindom: Cambridge University Press.spa
dc.relation.referencesLeón, S., Monsalve, G., Jaramillo, C., Posada, G., Siquiera, T., Echeverri, S., y Valencia, V. (2021). Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics, 229132.spa
dc.relation.referencesLópez, E. (2020). Estudio de microgravimetría urbana en el centro histórico de Querétaro en relación con el proceso de subsidencia en el área metropolitana. IPICYT, 1-15.spa
dc.relation.referencesMonsalve-Jaramillo, H., Valencia-Mina, W., Cano-Saldaña, L., y Vargas, C. (2018). Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 47-61. doi:https://doi.org/10.1016/j.jog.2018.02.005spa
dc.relation.referencesMonsalve-Jaramillo, H. y Mora-Páez, H., 2005. Esquema geodinámico regional para el noroccidente de Suramérica (Modelo de subducción y desplazamientos relativos). Boletín de Geología, Vol. 27, No. 1. Bogotá, Colombia. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/download/865/1195/2543spa
dc.relation.referencesMora-Páez, H., y Audemard, F. (2021). GNSS Networks for Geodynamics in the Caribbean, Northwestern South America, and Central America. En B. E. Erol, Geodetic Sciences - Theory, Applications and Recent Developments (págs. 1-22). Bogotá, Colombia: Intechopen.spa
dc.relation.referencesMora-Páez, H., J. R. Peléz-Gaviria, H. Diederix, O. Bohórquez-Orozco, L. Cardona-Piedrahita, y. Cochuelo-Cuervo, . . . F. Díaz-Mila. (2018). Space Geodesy Infrastructure in Colombia for Geodynamics Research. Seismological Research Letter, 446-451. doi:10.1785/0220170185spa
dc.relation.referencesMoreno, E., y Manea, M. (2021). Geodynamic evaluation of the pacific tectonic model for chortis block evolution using 3D numerical models of subduction. Journal of South American Earth Sciences, 103604. doi:https://doi.org/10.1016/j.jsames.2021.103604spa
dc.relation.referencesMoseri L., Quenette S., Lemiale V., Meriaux C., Appelbe B., and Mühlhaus H. B. (2007). Computational approaches to studying non-linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interiors 163, 69 - 82.spa
dc.relation.referencesMoseri, L.N., F. Dufour, and H.-B. Mühlhaus, (2003). A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, J. Comp. Phys., 184, pp. 476-497.spa
dc.relation.referencesNagy, D. (1966). The gravitational attraction of a right rectangular prism. GEOPHYSICS, 320-428. doi:https://doi.org/10.1190/1.1439779spa
dc.relation.referencesNiño Ferro, E. M. (2018). Sistema de Inversión de Datos Gravimétricos Basados en Simulated Annealing para Objetos Geométricos Simples. Bucaramanga: Universidad Industrial de Santander.spa
dc.relation.referencesOlivella, X., y Saracíbar, C. (2010). Mecánica de los medios continuos para ingenieros. Barcelona: Universiad Politécnica de Cataluña.spa
dc.relation.referencesPham, L. T. (2018). GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers and Geosciences, 40–47. doi:https://doi.org/10.1016/j.cageo.2018.07.009spa
dc.relation.referencesPindell, J., Kennan, L., (2001), Kinematic evolution of the Gulf of Mexico and Caribbean, in R.H. Fillon, N.C. Rosen, and P. Weimer (Eds.), Petroleum Systems of Deep-Water Basins: Global and Gulf of Mexico Experience: GCS-SEPM Foundation, XXI Annual Research Conference, Transactions, p.193-220.spa
dc.relation.referencesPindell, J.L., Kennan, L. (2001), Kinematic evolution of the Gulf of Mexico and Caribbean. In: Petroleum Systems of Deep-water Basins: Global and Gulf of Mexico Experience, SEPM Gulf Coast Section, Proceedings of the 21st Annual Research Conference. Society for Sedimentary Geology (SEPM), 193–220.spa
dc.relation.referencesPindell, J., Kennan, L., (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: The Origin and Evolution of the Caribbean Plate (K.H. James, M.A. Lorente and J. Pindell, eds), Geol.Soc. [Lond.] Spec. Publ., 328, 1–56. doi:10.1144/SP328.1spa
dc.relation.referencesPindell, J.L. and Kennan, L., (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update.spa
dc.relation.referencesRamos, V. A. (2010). The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geological Journal, 45, 2-25. DOI:10.1002/gj.1193spa
dc.relation.referencesRestrepo-Pace P. A., Colmenares, F., Higuera, C., and Mayorga, M., et al., (2004), A fold and Thrust belt along the western flank of the Eastern Cordillera of Colombia. Style, Kinematics, and timing constrains derived from seismic data and detailed surface mapping. In: McClay, K. R. (ed.) Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, Tulsa, OK, Memoirs, 82, 598-613.spa
dc.relation.referencesSaikia, M., y Hussain, A. (2019). Delaunay Triangulation Based Key Distribution for Wireless Sensor Network. Journal of Communications, 530-537spa
dc.relation.referencesSears, F. W. (2005). Física Universitaria Con Física Moderna Vol II. México: Pearson Education. doi:https://doi.org/10.2307/j.ctvvn8f6.8spa
dc.relation.referencesStrauss, W. (2008). Partial Differencial Equations. Danvers: John Wiley y Sons, Inc.spa
dc.relation.referencesStüwe, K. (2007). Geodynamics of the Lithosphere. Austria: Springer.spa
dc.relation.referencesSuriñach, E. F.-M. (2006). Inversión numérica 3D de datos gravimétricos procedentes de campañas marinas y de satélite. Aplicación a un área antártica. (Dialnet, Ed.) Madrid: Física de La Tierra. doi:https://doi.org/10.5209/rev_FITE.2006.v18.12515spa
dc.relation.referencesSutra, E. M. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the iberia margin. Geology, 139–142. Obtenido de https://doi.org/10.1130/G32786.1spa
dc.relation.referencesTarbuck, E. J. (2017). Earth: an introduction to physical geology. Canadá: Pearson.spa
dc.relation.referencesToussaint, J. F., y Restrepo, J. J. (2020). Tectonostratigraphic Terranes in Colombia. In S. G. Colombiano, The Geology of Colombia (pp. 237–260). Bogotá: Publicaciones Geológicas Especiales. doi:https://doi.org/10.32685/pub.esp.36.2019.07spa
dc.relation.referencesTurcotte, D., y Schubert, G. (2001). Geodynamics. En D. Turcotte, y G. Schubert, Geodynamics (págs. 185-188). Cambridge: Cambridge University.spa
dc.relation.referencesValenta, J. (2015). Introduction to Geophysics. Czech: Development Cooperation. Obtenido de http://www.geology.cz/projekt681900/english/learning-resources/Geophysics_lecture_notes.pdfspa
dc.relation.referencesVargas, C. A. (2020). Subduction Geometries in Northwestern. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales. Vargas, C. A., y Durán Tovar, J. (2005). State of strain and stress in northwestern of south America. Earth sciences research journal, 43-50.spa
dc.relation.referencesVillagómez D. D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America. Terre & Environement. Thesis.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.ddc530 - Física::532 - Mecánica de fluidosspa
dc.subject.ddc510 - Matemáticas::518 - Análisis numéricospa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembTopografíaspa
dc.subject.lembSurveyingeng
dc.subject.lembMedición de superficiesspa
dc.subject.lembArea measurementeng
dc.subject.lembModelos geométricosspa
dc.subject.lembGeometrical modelseng
dc.subject.proposalModelo 2Dspa
dc.subject.proposalSubducciónspa
dc.subject.proposalModelamiento termo-mecánicospa
dc.subject.proposalEulerianospa
dc.subject.proposalLagrangiano y Colombiaspa
dc.subject.proposal2D modeleng
dc.subject.proposalSubductioneng
dc.subject.proposalThermo-mechanicaleng
dc.subject.proposalEulerianeng
dc.subject.proposalLagrangian and Colombia modelingeng
dc.titleModelado de deformación termo-mecánico de la zona de subducción del sur de Colombiaspa
dc.title.translatedThermo-mechanical deformation modeling of the southern Colombian subduction zoneeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79512283.2022.pdf
Tamaño:
7.91 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Geociencias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: