Influencia de la salinidad en la acumulación de carbono en bosques de manglar sin subsidios externos materia orgánica
dc.contributor.advisor | Mancera Pineda, José Ernesto | |
dc.contributor.advisor | Medina , Jairo Humberto | |
dc.contributor.author | Quintero Alvarado, Angélica Paola | |
dc.contributor.orcid | Quintero Alvarado, Angelica Paola [0009000244573815] | |
dc.date.accessioned | 2025-09-15T21:58:43Z | |
dc.date.available | 2025-09-15T21:58:43Z | |
dc.date.issued | 2025-09-02 | |
dc.description.abstract | La capacidad de almacenar carbono orgánico (CO) es uno de los servicios ecosistémicos más conocidos de los manglares; sin embargo, la magnitud de los flujos y reservas presenta una gran variabilidad y diferencias significativas entre tipos geomorfológicos. Los ambientes de aguas abiertas carbonatadas se encuentran entre los de mayor contenido de carbono, debido, según diferentes autores, a las características biofísicas de sus sedimentos. Sin embargo, poco se ha explorado sobre el papel de la salinidad, regulador de la composición y estructura florística de los bosques y, por tanto, de la dinámica del carbono. El presente estudio tuvo como objetivo evaluar la influencia de la salinidad en la acumulación de carbono orgánico en las reservas aéreas y subterráneas (biomasa de área y de raíces), y a su vez en los procesos de retención de carbono en los sedimentos, abordando la producción y descomposición de hojarasca y la producción radicular, en bosques de manglar sin subsidios externos de materia orgánica. Para ello, se seleccionaron tres tipos fisiográficos de manglar, caracterizados por diferentes regímenes salinos en la isla de San Andrés Caribe colombiano; dos bosques de tierra adentro de régimen mesohalino (Smith Channel - SCTA y Sound Bay - SBTA, salinidad media 9.6 ± 6.2 y 11.5 ± 7.4 UPS, respectivamente), un bosque de franja euhalino (Hooker Bay - BHF, salinidad media 37.4 ± 5.7 UPS) y un bosque de cuenca de régimen hiperhalino (Hooker Bay - BHC, salinidad media 62.3 ± 10.5 UPS). La hipótesis de trabajo fue que en bosques con menores valores de salinidad se tendría una mayor acumulación de carbono orgánico total, representado en una mayor biomasa aérea, siendo las reservas de los componentes aéreos inversas a la salinidad y los subterráneos directos a la salinidad. Dando respuesta a estas hipótesis, se establecieron parcelas permanentes de 400 m² (3 en BHC, 5 en BHF, 4 en SBTA y 6 en SCTA), en donde se midió y caracterizó la estructura de cada bosque (especies, el número de individuos, Diámetro a la Altura del Pecho (DAP), área basal y el Índice de Valor de Importancia (IVI); con esta información, y a partir de ecuaciones alométricas, se estimaron los contenidos de carbono en la biomasa aérea. Se determinaron además características del suelo como la densidad aparente, la composición granulométrica y la cantidad de materia orgánica en sedimentos, con esta información se estimaron los contenidos de carbono en los sedimentos. La biomasa radicular se estimó a partir del análisis de tres (3) muestras de suelo por parcela, utilizando un núcleo (10.2 cm diámetro × 45 cm largo) de PVC, seleccionando las raíces vivas en función del diámetro (<2 mm; 2-5 mm y 5-20 mm). Para la producción de hojarasca, se instalaron 90 canastas de 0.25 m² para la colecta mensual de hojarasca. En BHC, BHF y SCTA la recogida se realizó de 2012 a 2019, y para SBTA sólo en 2022. La producción anual de raíces se evaluó mediante la técnica de núcleos de crecimiento (108 núcleos de suelo) y, al igual que en la biomasa, se separaron las raíces por tamaño. La descomposición de hojarasca se midió a partir de la instalación de bolsas de descomposición (litterbag) durante 40 semanas en el bosque de SBTA y según lo referido por Sierra Rozo et al. (2009) para los bosques de BHF y SCTA. Los valores obtenidos para cada componente se expresaron en peso seco y se convirtieron según el factor de conversión establecido por Howard et al. (2014). El contenido medio (±EE) de carbono orgánico total (COT) en los bosques (Mg C ha⁻¹) fue mayor en los bosques mesohalinos de SBTA y SCTA con valores de 424.16 ± 14.67 y 401.03 ± 14.61, y menores en los bosques hiperhalino de BHC 321.05 ± 14.14 Mg C ha⁻¹ y euhalino de BHF 299.89 ± 7 Mg C ha⁻¹. Los contenidos fueron mayores en el sedimento (BHC: 218.5 ± 14.15, BHF: 217 ± 26.24, SBTA: 246.4 ± 20.06 y SCTA: 198.3 ± 20.43 Mg C ha⁻¹) respecto a la biomasa aérea, en la mayoría de los casos, a excepción de SCTA (BHC: 97.48 ± 28.71, BHF: 77.11 ± 11.22, SBTA: 173.82 ± 18.08 y SCTA: 200.20 ± 8.64 Mg C ha⁻¹). En cuanto a la biomasa radicular, los valores encontrados tuvieron una relación directamente proporcional a la salinidad (BHC: 5.04 ± 0.93, BHF: 5.78 ± 0.67, SBTA: 3.9 ± 0.5 y SCTA: 2.5 ± 0.38 Mg C ha⁻¹). Estos hallazgos respaldan la hipótesis propuesta, que plantea una relación inversa entre la salinidad y la biomasa aérea, mientras que la biomasa radicular muestra una correlación positiva. En cuanto al carbono encontrado en los sedimentos, se observó que este se relaciona con la zonificación de especies determinada por la salinidad, la productividad del bosque y los procesos de retención asociados con la densidad aparente y la granulometría del suelo. En relación con los flujos de acumulación de carbono orgánico, la producción de hojarasca fue mayor en los bosques mesohalinos (SCTA: 9.74 ± 0.8 Mg C ha⁻¹ año⁻¹ y SBTA: 6.12 ± 2.7), seguido del hiperhalino (BHF: 6.83 ± 0.79), y euhalino (BHC: 4.68 ± 0.36). La descomposición de hojarasca fue más lenta en los bosques de SBTA (Ag: 0.0068 g día⁻¹, Rm: 0.0042 g día⁻¹ y Lr: 0.0062 g día⁻¹), seguido de SCTA (Rm: 0.0159 g día⁻¹ y Lr: 0.0186 g día⁻¹) y BHF (Ag: 0.0290 g día⁻¹, Rm: 0.0250 g día⁻¹ y Lr: 0.0279 g día⁻¹), diferencias asociadas a la macrofauna descomponedora y al régimen de mareas en BHF. La producción de raíces fue mayor en los bosques con salinidades intermedias (BHF: 1.30 ± 1.68 Mg C ha⁻¹ año⁻¹, SBTA: 1.19 ± 1.17 Mg C ha⁻¹ año⁻¹) y menor en aquellos con salinidades extremas (BHC: 0.24 ± 0.49 Mg C ha⁻¹ año⁻¹ y SCTA: 0.41 ± 0.49 Mg C ha⁻¹ año⁻¹). Estos resultados sugieren que las salinidades extremas generan respuestas contrastantes en los procesos de acumulación de carbono, respaldadas en las diferencias significativas encontradas entre bosques. Sin embargo, se infiere que, además de la salinidad, influyen otras variables como la geomorfología y los regímenes de inundación. Los bosques mesohalinos de tierra adentro, como SBTA y SCTA, destacan por su alta eficiencia en la acumulación de carbono debido al bajo estrés asociado con la salinidad moderada. Estas condiciones favorecen una zonificación más equilibrada, un desarrollo estructural robusto y una alta eficiencia fotosintética, además de una mayor retención de carbono en el sistema por la ausencia de exportación significativa de materia orgánica. En conclusión, los resultados logrados en este estudio constituyen una línea base valiosa para la gestión y manejo de los manglares en ambientes kársticos, aportando evidencia sólida sobre la influencia de la salinidad en este servicio ecosistémico esencial. Asimismo, fortalecen la representatividad del muestreo para mejorar el poder estadístico y detectar diferencias entre ambientes sedimentarios y geomorfológicos, contribuyendo a mejorar las estimaciones del presupuesto global de carbono en los manglares (Texto tomado de la fuente). | spa |
dc.description.abstract | The capacity to store organic carbon (OC) is one of the most recognized ecosystem services of mangroves; however, the magnitude of carbon fluxes and stocks shows great variability and significant differences among geomorphological types. Open carbonate water environments are among those with the highest carbon content, attributed by different authors to the biophysical characteristics of their sediments. Nevertheless, the role of salinity—an important regulator of floristic composition and forest structure, and thus of carbon dynamics—has been less explored. The aim of this study was to evaluate the influence of salinity on organic carbon accumulation in above- and belowground stocks (aboveground biomass and root biomass), as well as in sediment carbon retention processes, by addressing litterfall production and decomposition, and root production, in mangrove forests without external subsidies of organic matter. To this end, three physiographic types of mangroves with different salinity regimes were selected on San Andrés Island, Colombian Caribbean: two inland mesohaline forests (Smith Channel – SCTA, 9.6 ± 6.2 PSU; and Sound Bay SBTA, 11.5 ± 7.4 PSU), one euhaline fringe forest (Hooker Bay – BHF, 37.4 ± 5.7 PSU), and one hyperhaline basin forest (Hooker Bay – BHC, 62.3 ± 10.5 PSU). The working hypothesis was that forests with lower salinity would have higher total organic carbon accumulation, reflected in greater aboveground biomass, with aboveground stocks being inversely related to salinity and belowground stocks directly related to salinity. To test this hypothesis, permanent 400 m² plots were established (3 in BHC, 5 in BHF, 4 in SBTA, and 6 in SCTA), where the forest structure was measured and characterized (species composition, number of individuals, Diameter at Breast Height (DBH), basal area, and Importance Value Index (IVI)). Using this information and allometric equations, carbon content in aboveground biomass was estimated. Soil characteristics such as bulk density, particle size distribution, and organic matter content were also determined to estimate carbon stocks in sediments. Root biomass was estimated from three soil samples per plot, using PVC cores (10.2 cm diameter × 45 cm depth), where live roots were separated by diameter classes (<2 mm, 2–5 mm, and 5–20 mm). For litterfall production, 90 baskets of 0.25 m² were installed for monthly collection. Sampling was conducted from 2012 to 2019 in BHC, BHF, and SCTA, and only in 2022 for SBTA. Annual root production was evaluated using the ingrowth core technique (108 soil cores), with roots separated by size. Litter decomposition was measured using litterbags installed for 40 weeks in SBTA, and for BHF and SCTA values were taken from Sierra Rozo et al. (2009). All results were expressed as dry weight and converted to carbon using the factor proposed by Howard et al. (2014). The mean (±SE) total organic carbon (TOC) content in the forests (Mg C ha⁻¹) was higher in the mesohaline forests of SBTA and SCTA (424.16 ± 14.67 and 401.03 ± 14.61, respectively), and lower in the hyperhaline BHC (321.05 ± 14.14) and the euhaline BHF (299.89 ± 7). Sediment carbon stocks were the largest component in most forests (BHC: 218.5 ± 14.15, BHF: 217 ± 26.24, SBTA: 246.4 ± 20.06, SCTA: 198.3 ± 20.43 Mg C ha⁻¹), except in SCTA, where aboveground biomass contributed slightly more (200.20 ± 8.64 vs. 198.3 ± 20.43 Mg C ha⁻¹). Aboveground biomass values were 97.48 ± 28.71 (BHC), 77.11 ± 11.22 (BHF), 173.82 ± 18.08 (SBTA), and 200.20 ± 8.64 (SCTA). Root biomass showed a direct relationship with salinity (BHC: 5.04 ± 0.93, BHF: 5.78 ± 0.67, SBTA: 3.9 ± 0.5, SCTA: 2.5 ± 0.38 Mg C ha⁻¹). These findings support the hypothesis of an inverse relationship between salinity and aboveground biomass, and a positive correlation with root biomass. Sediment carbon was linked to species zonation regulated by salinity, forest productivity, and retention processes associated with soil bulk density and granulometry. Regarding carbon fluxes, litterfall production was highest in mesohaline forests (SCTA: 9.74 ± 0.8 Mg C ha⁻¹ yr⁻¹; SBTA: 6.12 ± 2.7), followed by the euhaline (BHF: 6.83 ± 0.79) and hyperhaline forests (BHC: 4.68 ± 0.36). Litter decomposition was slowest in SBTA (Ag: 0.0068 g day⁻¹, Rm: 0.0042 g day⁻¹, Lr: 0.0062 g day⁻¹), followed by SCTA (Rm: 0.0159 g day⁻¹, Lr: 0.0186 g day⁻¹), and was fastest in BHF (Ag: 0.0290 g day⁻¹, Rm: 0.0250 g day⁻¹, Lr: 0.0279 g day⁻¹), differences likely related to decomposer macrofauna and tidal regimes in BHF. Root production was higher in forests with intermediate salinity (BHF: 1.30 ± 1.68 Mg C ha⁻¹ yr⁻¹, SBTA: 1.19 ± 1.17) and lower in those with extreme salinity (BHC: 0.24 ± 0.49, SCTA: 0.41 ± 0.49). These results suggest that extreme salinity generates contrasting responses in carbon accumulation processes, as evidenced by the significant differences among forests. However, other variables, such as geomorphology and flooding regimes, also play a role. Mesohaline inland forests, such as SBTA and SCTA, stand out for their high efficiency in carbon accumulation, due to the reduced stress associated with moderate salinity. These conditions favor balanced zonation, robust structural development, and high photosynthetic efficiency, as well as greater carbon retention in the system due to the absence of significant organic matter export. In conclusion, the results of this study provide a valuable baseline for mangrove management in karstic environments, offering strong evidence of the influence of salinity on this key ecosystem service. They also strengthen sampling representativeness, improving statistical power and enabling the detection of differences among sedimentary and geomorphological environments, thereby contributing to refining global carbon budget estimates in mangroves. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en Ciencias – Biología | |
dc.format.extent | 116 paginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88783 | |
dc.language.iso | spa | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Caribe | |
dc.publisher.department | Centro de estudios en Ciencias del mar-CECIMAR | spa |
dc.publisher.faculty | Facultad Caribe | |
dc.publisher.program | Caribe - Caribe - Maestría en Ciencias - Biología | |
dc.relation.references | Adame, M. F., Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. In Forest Ecology and Management (Vol. 403, pp. 52–60). Elsevier B.V. https://doi.org/10.1016/j.foreco.2017.08.016 | |
dc.relation.references | Adame, M. F., Kauffman, J. B., Medina, I., Gamboa, J. N., Torres, O., Caamal, J. P., Reza, M., & Herrera-Silveira, J. A. (2013). Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056569 | |
dc.relation.references | Adame, M. F., Teutli, C., Santini, N. S., Caamal, J. P., Zaldívar-Jiménez, A., Herńndez, R., & Herrera-Silveira, J. A. (2014). Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands, 34(3), 479–488. https://doi.org/10.1007/s13157-014-0514-5 | |
dc.relation.references | Agraz Hernández, C. M., Chan Keb, C. A., Iriarte-Vivar, S., Posada Venegas, G., Serratos, B. V., & Osti Sáenz, J. (2015). Phenological variation of Rhizophora mangle and ground water chemistry associated to changes of the precipitation Variación fenológica de Rhizophora mangle y química del agua intersticial asociada a cambios de la precipitación (Vol. 25, Issue 1). | |
dc.relation.references | Agraz Hernández, C. M., García Zaragoza, C., Iriarte-Vivar, S., Flores-Verdugo, F. J., & Moreno Casasola, P. (2011). Forest structure, productivity and species phenology of mangroves in the La Mancha lagoon in the Atlantic coast of Mexico. Wetlands Ecology and Management, 19(3), 273–293. https://doi.org/10.1007/s11273-0119216-4 | |
dc.relation.references | Agraz-Hernández, C. M., Chan-Keb, C. A., Chávez-Barrera, J., Osti-Sáenz, J., ExpósitoDíaz, G., Alonso-Campos, V. A., Muñiz-Salazar, R., Ruiz-Fernández, A. C., PérezBernal, L. H., Sánchez-Cabeza, J. A., & Rivera-Arriaga, E. (2020). Carbon stocks in a mangrove ecosystem in northern Mexico: Environmental changes for 35 years. Revista Mexicana de Biodiversidad, 91. https://doi.org/10.22201/IB.20078706E.2020.91.2910 | |
dc.relation.references | Ahmed, S., Sarker, S. K., Friess, D. A., Kamruzzaman, Md., Jacobs, M., Islam, Md. A., Alam, Md. A., Suvo, M. J., Sani, Md. N. H., Dey, T., Naabeh, C. S. S., & Pretzsch, H. (2022). Salinity reduces site quality and mangrove forest functions. From monitoring to understanding. Science of The Total Environment, 853, 158662. https://doi.org/10.1016/j.scitotenv.2022.158662 | |
dc.relation.references | Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219. https://doi.org/10.1146/annurev-marine-010213135020 | |
dc.relation.references | Alongi, D. M. (2020). Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci, 2(3), 67. https://doi.org/10.3390/sci2030067 | |
dc.relation.references | Alongi, D. M., Trott, L. A., Wattayakorn, G., & Clough, B. F. (2002). Below-ground nitrogen cycling in relation to net canopy production in mangrove forests of southern Thailand. Marine Biology, 140(4), 855–864. https://doi.org/10.1007/s00227-0010757-6 | |
dc.relation.references | Ananda, K., Sridhar, K. R., Raviraja, N. S., & Bärlocher, F. (2008). Breakdown of fresh and dried Rhizophora mucronata leaves in a mangrove of Southwest India. Wetlands Ecology and Management, 16(1), 1–9. https://doi.org/10.1007/s11273007-9041-y | |
dc.relation.references | Arnaud, M., Krause, S., Norby, R. J., Dang, T. H., Acil, N., Kettridge, N., Gauci, V., & Ullah, S. (2023). Global mangrove root production, its controls and roles in the blue carbon budget of mangroves. In Global Change Biology (Vol. 29, Issue 12, pp. 3256–3270). John Wiley and Sons Inc. https://doi.org/10.1111/gcb.16701 | |
dc.relation.references | Arnaud, M., Morris, P. J., Baird, A. J., Dang, H., & Nguyen, T. T. (2021). Fine rooproduction in a chronosequence of mature reforested mangroves. New Phytologist232(4), 1591–1602. https://doi.org/10.1111/nph.17480 | |
dc.relation.references | Ball, M. C., & Farquhar, G. D. (1984). Photosynthetic and Stomatal Responses of the Grey Mangrove, Avicennia marina , to Transient Salinity Conditions. Plant Physiology, 74(1), 7–11. https://doi.org/10.1104/pp.74.1.7 | |
dc.relation.references | Battaglia, L., Woodrey, M. S., Peterson, M. S., & Dillon, K. (2012). Wetland Habitats of North America: Ecology and Conservation Concerns. In Wetlands of the northern Gulf coast (pp. 75–88). https://www.researchgate.net/publication/269111770 | |
dc.relation.references | Bompy, F., Lequeue, G., Imbert, D., & Dulormne, M. (2014). Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species. Plant and Soil, 380(1–2), 399–413. https://doi.org/10.1007/s11104-014-2100-2 | |
dc.relation.references | Bouillon, S. (2011). Storage beneath mangroves. Nature Geoscience, 4(5), 282–283. https://doi.org/10.1038/ngeo1130 | |
dc.relation.references | Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB003052 | |
dc.relation.references | Bouillon, S., Dahdouh-Guebas, F., Rao, A. V. V. S., Koedam, N., & Dehairs, F. (2003). Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia, 495(1/3), 33–39. https://doi.org/10.1023/A:1025411506526 | |
dc.relation.references | Breithaupt, J. L., & Steinmuller, H. E. (2022). Refining the Global Estimate of Mangrove Carbon Burial Rates Using Sedimentary and Geomorphic Settings. Geophysical Research Letters, 49(18). https://doi.org/10.1029/2022GL100177 | |
dc.relation.references | Camacho-Rico, A., Herrera-Silveira, J., Caamal-Sosa, J. P., & Teutli-Hernández, C. (2021). Influence of salinity in the carbon storage and fluxes in fringe mangroves of a karstic zone. Madera y Bosques, 27(4). https://doi.org/10.21829/myb.2021.2742426 | |
dc.relation.references | Castañeda-Moya, E., Twilley, R. R., Rivera-Monroy, V. H., Marx, B. D., CoronadoMolina, C., & Ewe, S. M. L. (2011). Patterns of Root Dynamics in Mangrove Forests Along Environmental Gradients in the Florida Coastal Everglades, USA. Ecosystems, 14(7), 1178–1195. https://doi.org/10.1007/s10021-011-9473-3 | |
dc.relation.references | Chen, G. C., Tam, N. F. Y., & Ye, Y. (2010). Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China. Science of The Total Environment, 408(13), 2761–2767. https://doi.org/10.1016/j.scitotenv.2010.03.007 | |
dc.relation.references | Cintrón G, & Schaeffer Novelli. (1984). Methods for studying mangrove structure. Monographs on oceanographic methodology. 8, 91–113. | |
dc.relation.references | CORALINA, & INVEMAR. (2012). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina -CORALINA (D. I. Gómez López, C. Segura Quintero, P. C. Sierra Correa, & J. Garay Tinoco, Eds.). Serie de Publicaciones Especiales de INVEMAR # 28. https://aquadocs.org/bitstream/handle/1834/5918/Atlas_Seaflower.pdf?sequence= 1&isAllowed=y | |
dc.relation.references | Coronado-Molina, C., Alvarez-Guillen, H., Day, J. W., Reyes, E., Perez, B. C., VeraHerrera, F., & Twilley, R. (2012). Litterfall dynamics in carbonate and deltaic mangrove ecosystems in the Gulf of Mexico. Wetlands Ecology and Management, 20(2), 123–136. https://doi.org/10.1007/s11273-012-9249-3 | |
dc.relation.references | Dahdouh-Guebas, F., Ajonina, G. N., Amir, A. A., Andradi-Brown, D. A., Aziz, I., Balke, T., Barbier, E. B., Cannicci, S., Cragg, S. M., Cunha-Lignon, M., Curnick, D. J., Duarte, C. M., Duke, N. C., Endsor, C., Fratini, S., Feller, I. C., Fromard, F., Hugé, J., Huxham, M., … Friess, D. A. (2020). Public Perceptions of Mangrove Forests Matter for Their Conservation. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.603651 | |
dc.relation.references | Dahdouh-Guebas, F., Ajonina, G. N., Amir, A. A., Andradi-Brown, D. A., Aziz, I., Balke, T., Barbier, E. B., Cannicci, S., Cragg, S. M., Cunha-Lignon, M., Curnick, D. J., Duarte, C. M., Duke, N. C., Endsor, C., Fratini, S., Feller, I. C., Fromard, F., Hugé, J., Huxham, M., … Friess, D. A. (2020). Public Perceptions of Mangrove Forests Matter for Their Conservation. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.603651 | |
dc.relation.references | Day, J. W., Conner, W. H., Ley-Lou, F., Day, R. H., & Navarro, A. M. (1987). Theproductivity and composition of mangrove forests, Laguna de Términos, Mexico.Aquatic Botany, 27(3), 267–284. https://doi.org/10.1016/0304-3770(87)90046-5 | |
dc.relation.references | Day, J. W., Coronado-Molina, C., Vera-Herrera, F. R., Twilley, R., Rivera-Monroy, V. H., Alvarez-Guillen, H., Day, R., & Conner, W. (1996). Aquatic botany A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. In Aquatic Botany (Vol. 55, Issue 96). | |
dc.relation.references | Day, J. W., Coronado-Molina, C., Vera-Herrera, F. R., Twilley, R., Rivera-Monroy, V. H., Alvarez-Guillen, H., Day, R., & Conner, W. (1996). Aquatic botany A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. In Aquatic Botany (Vol. 55, Issue 96). | |
dc.relation.references | Donato, D. , K. J. , M. D. et al. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geosci, 4, 293–297. | |
dc.relation.references | Duke, N. C., Meynecke, J.-O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., Field, C. D., Koedam, N., Lee, S. Y., Marchand, C., Nordhaus, I., & Dahdouh-Guebas, F. (2007). A World Without Mangroves? Science, 317(5834), 41–42. https://doi.org/10.1126/science.317.5834.41b | |
dc.relation.references | Ellison, J. C. (2021). Factors Influencing Mangrove Ecosystems. In Mangroves: Ecology, Biodiversity and Management (pp. 97–115). Springer Singapore. https://doi.org/10.1007/978-981-16-2494-0_4 | |
dc.relation.references | Ewel, K. C., Twilley, R. R., & Ong, J. E. (1998). Different kinds of mangrove forests provide different goods and services. Global Ecology and Biogeography Letters, 7(1), 83–94. https://doi.org/10.2307/2997700 | |
dc.relation.references | Feller, I. C., Whigham, D. F., McKee, K. L., & Lovelock, C. E. (2003). Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia, 134(3), 405–414. https://doi.org/10.1007/s00442-0021117-z | |
dc.relation.references | Flower-Ellis, J. G. K., & Persson, H. (1980). Investigation of Structural Properties and Dynamics of Scots Pine Stands (Vol. 32). http://www.jstor.org/stable/20112806 | |
dc.relation.references | Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L., & Cadamuro, L. (1998). Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. | |
dc.relation.references | García- Hansen, I., Gaviria- Chiquazuque, J. F., Prada- Triana, M. C., & Alvarez-León, R. (2002). Producción de hojarasca de los manglares de la Isla de San Andrés, Caribe colombiano. Revista Biología Tropical, 50(1), 273–291. | |
dc.relation.references | Gavio, B., Palmer-Cantillo, S., & Mancera, J. E. (2010). Historical analysis (2000-2005) of the coastal water quality in San Andrés Island, SeaFlower Biosphere Reserve, Caribbean Colombia. Marine Pollution Bulletin, 60(7). https://doi.org/10.1016/j.marpolbul.2010.01.025 | |
dc.relation.references | Ghosh, S. M., Behera, M. D., Jagadish, B., Das, A. K., & Mishra, D. R. (2021). A novel approach for estimation of aboveground biomass of a carbon-rich mangrove site in India. Journal of Environmental Management, 292, 112816. https://doi.org/10.1016/j.jenvman.2021.112816 | |
dc.relation.references | Goussi, R., Manaa, A., Derbali, W., Cantamessa, S., Abdelly, C., & Barbato, R. (2018). Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. Journal of Photochemistry and Photobiology B: Biology, 183, 275–287. https://doi.org/10.1016/j.jphotobiol.2018.04.047 | |
dc.relation.references | Harmon, M. E., Nadelhoffer, K. J., & Blair, J. M. (1999). Measuring decomposition, nutrient turnover, and stores in plant litter. Standard Soil Methods for Long-Term Ecological Research, 202–240. | |
dc.relation.references | Herrera Silveira, J. A., Camacho Rico, A., Pech, E., Pech, M., Ramírez Ramírez, J., & Teutli Hernández, C. (2016). Dinámica del carbono (almacenes y flujos) en manglares de México. Terra Latinoamamericana, 34, 61–72. https://www.scielo.org.mx/pdf/tl/v34n1/2395-8030-tl-34-01-00061.pdf | |
dc.relation.references | Herrera-Silveira, J. A. (1994). Nutrients from underground water discharges in a coastal lagoon (Celestun, Yucatan, Mexico). SIL Proceedings, 1922-2010, 25(3), 1398– 1401. https://doi.org/10.1080/03680770.1992.11900401 | |
dc.relation.references | Hogarth, P. (2007). The Biology of Mangroves and Seagrasses. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198568704.001.0001 | |
dc.relation.references | Howard J, Hoyt S, Isensee K, Telszewski M, & Pidgeon E. (2014). Coastal Blue Carbon methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. www.ioc.unesco.org | |
dc.relation.references | Jithesh, M. N., Prashanth, S. R., Sivaprakash, K. R., & Parida, A. (2006). Monitoringexpression profiles of antioxidant genes to salinity, iron, oxidative, light andhyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Reports, 25(8), 865–876.https://doi.org/10.1007/s00299-006-0127-4 | |
dc.relation.references | Jobse, J. (2008). Title: Impacts of Forest-to-Agriculture Conversion on Aboveground and Soil Carbon and Nitrogen Stocks along a Bioclimatic Gradient in Costa Rica. https://ir.library.oregonstate.edu/downloads/mp48sg125 | |
dc.relation.references | Juman, R. A. (2005). Biomass,litterfall and decomposition rates for the fringed Rhizophora mangle forest lining the Bon Accord Lagoon,Tobago. Revista de Biología Tropical, 53, 207–217. | |
dc.relation.references | Kamal, A. H. M., Hoque, M. M., Idris, M. H., Ahmed, O. H., Bhuiyan, Md. K. A., Billah, Md. M., Hoque, Md. N., & Rosli, Z. (2020). Decay of Rhizophora apiculata (Blume) and Xylocarpus granatum (Koenig) detrital sources in the Sarawak Mangrove, Malaysia. Journal of Forestry Research, 31(2), 613–623. https://doi.org/10.1007/s11676-018-0776-5 | |
dc.relation.references | Kauffman, J. B., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Jesus Garcia, M. del C., MacKenzie, R. A., Megonigal, J. P., Murdiyarso, D., Simpson, L., & Hernández Trejo, H. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2). https://doi.org/10.1002/ecm.1405 | |
dc.relation.references | Kauffman, J. B., & Donato, D. C. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. (Vol. 86). CIFOR. https://www.climatelinks.org/sites/default/files/asset/document/WP86CIFOR.pdf | |
dc.relation.references | Komiyama, A. (1988). Primary productivity of mangrove forest. Biological system of mangroves.. A Report of East Indonesian mangrove expedition. https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=KOMIYAMA%2 C+A.%2C+MORIYA%2C+H.%2C+PRAWIROATMODJO%2C+S.%2C+TOMA%2 C+T.+%26+OGINO%2C+K.+1988.+Primary+productivity+of+mangrove+forest.+P p.+97%E2%80%93+117+in+Ogino%2C+K.+%26+Chihara%2C+M.+%28eds%29. +Biological+system+of+mangroves.+Ehime+University%2C+Matsuyama.&btnG=# d=gs_cit&t=1719187758724&u=%2Fscholar%3Fq%3Dinfo%3AkxBX0L6d3MsJ% 3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Des | |
dc.relation.references | Krauss, K. W., McKee, K. L., Lovelock, C. E., Cahoon, D. R., Saintilan, N., Reef, R., & Chen, L. (2014). How mangrove forests adjust to rising sea level. New Phytologist, 202(1), 19–34. https://doi.org/10.1111/nph.12605 | |
dc.relation.references | Krauss, K. W., Twilley, R. R., Doyle, T. W., & Gardiner, E. S. (2006). Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod. Tree Physiology, 26(7), 959–968. https://doi.org/10.1093/treephys/26.7.959 | |
dc.relation.references | Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008a). Organic carbon dynamics in mangrove ecosystems: A review. In Aquatic Botany (Vol. 89, Issue 2, pp. 201–219). https://doi.org/10.1016/j.aquabot.2007.12.005 | |
dc.relation.references | Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008b). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2), 201–219. https://doi.org/10.1016/j.aquabot.2007.12.005 | |
dc.relation.references | Lewis, D. B., Brown, J. A., & Jimenez, K. L. (2014). Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes. Estuarine, Coastal and Shelf Science, 139, 11– 19. https://doi.org/10.1016/j.ecss.2013.12.032 | |
dc.relation.references | Lopes, D. M. S., Tognella, M. M. P., Falqueto, A. R., & Soares, M. L. G. (2019). Salinity variation effects on photosynthetic responses of the mangrove species rhizophora mangle l. Growing in natural habitats. Photosynthetica, 57(4), 1142–1155. https://doi.org/10.32615/ps.2019.121 | |
dc.relation.references | Lovelock, C. E., Adame, M. F., Bennion, V., Hayes, M., Reef, R., Santini, N., & Cahoon, D. R. (2015). Sea level and turbidity controls on mangrove soil surface elevation change. Estuarine, Coastal and Shelf Science, 153, 1–9. https://doi.org/10.1016/j.ecss.2014.11.026 | |
dc.relation.references | Lovelock, C. E., & Feller, I. C. (2003). Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. Oecologia, 134(4), 455–462. https://doi.org/10.1007/s00442-002-1118-y | |
dc.relation.references | Lovelock, C. E., Krauss, K. W., Osland, M. J., Reef, R., & Ball, M. C. (2016). The Physiology of Mangrove Trees with Changing Climate (pp. 149–179). https://doi.org/10.1007/978-3-319-27422-5_7 | |
dc.relation.references | Lugo, A. E., & Snedaker S C. (1974). The ecology of mangroves. Annual Review of Ecology and Systematics. 5, 39–4. | |
dc.relation.references | MacIntyre, S., Alldredge, A. L., & Gotschalk, C. C. (1995). Accumulation of marines now at density discontinuities in the water column. Limnology and Oceanography, 40(3), 449–468. https://doi.org/10.4319/lo.1995.40.3.0449 | |
dc.relation.references | Macreadie, P. I., Costa, M. D. P., Atwood, T. B., Friess, D. A., Kelleway, J. J., Kennedy, H., Lovelock, C. E., Serrano, O., & Duarte, C. M. (2021). Blue carbon as a natural climate solution. Nature Reviews Earth & Environment, 2(12), 826–839. https://doi.org/10.1038/s43017-021-00224-1 | |
dc.relation.references | McKee, K. L. (1995). Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physico-chemical factors. Oecologia, 101(4), 448–460. https://doi.org/10.1007/BF00329423 | |
dc.relation.references | Mckee, K. L., Cahoon, D. R., & Feller, I. C. (2007). Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16(5), 545–556. https://doi.org/10.1111/j.1466-8238.2007.00317.x | |
dc.relation.references | McKee, K. L., Krauss, K. W., & Cahoon, D. R. (2021). Does geomorphology determine vulnerability of mangrove coasts to sea-level rise? In Dynamic Sedimentary Environments of Mangrove Coasts (pp. 255–272). Elsevier. https://doi.org/10.1016/B978-0-12-816437-2.00005-7 | |
dc.relation.references | Mckee, K. L., Mendelssohn, I. A., & Hester, M. W. (1988). Reexamination of Pore Water Sulfide Concentrations and Redox Potentials Near the Aerial Roots of Rhizophora mangle and Avicennia germinans. In Source: American Journal of Botany (Vol. 75, Issue 9). | |
dc.relation.references | Medina Calderon, J. H. (2016). ESTRUCTURA, BIOMASA Y PRODUCCIÓN PRIMARIA NETA. | |
dc.relation.references | Medina Calderon, J. H., & Toro, C. (2018). Caracterización de la Demanda, Presiones por Uso y Tensores Contaminantes de la Explotación Doméstica de Agua Subterránea en San Andrés por Unidad de Planificación Insular. San Andrés: Universidad Nacional de Colombia- Sede Caribe. | |
dc.relation.references | Medina-Calderón, J. H., Mancera-Pineda, J. E., Castañeda-Moya, E., & Rivera-Monroy, V. H. (2021). Hydroperiod and Salinity Interactions Control Mangrove Root Dynamics in a Karstic Oceanic Island in the Caribbean Sea (San Andres, Colombia). Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.598132 | |
dc.relation.references | Meera, S. P., Bhattacharyya, M., & Kumar, A. (2023). Dynamics of mangrove functional traits under osmotic and oxidative stresses. Plant Growth Regulation, 101(2), 285– 306. https://doi.org/10.1007/s10725-023-01034-9 | |
dc.relation.references | Middleton, B. A., & Mckee, K. L. (2001). Degradation of Mangrove Tissues and Implications for Peat Formation in Belizean Island. In Source: Journal of Ecology (Vol. 89, Issue 5). | |
dc.relation.references | Mitsch, W. J., & Gosselink, J. G. (2000). The value of wetlands: importance of scale and landscape setting. Ecological Economics, 35(200), 25–33. https://doi.org/10.1016/S0921-8009(00)00165-8 | |
dc.relation.references | Moreno, E., .Guerrero, A., Gutiérrez, M. D. C. , Ortiz, C. A., & Palma, D. J. (2002). Los manglares de Tabasco, una reserva natural de carbono. . . Madera y Bosques, 8(1), 115–128. https://www.redalyc.org/articulo.oa?id=61780107 | |
dc.relation.references | Muhammad-Nor, S. M., Huxham, M., Salmon, Y., Duddy, S. J., Mazars-Simon, A., Mencuccini, M., Meir, P., & Jackson, G. (2019). Exceptionally high mangrove root production rates in the Kelantan Delta, Malaysia; An experimental and comparative study. Forest Ecology and Management, 444, 214–224. https://doi.org/10.1016/j.foreco.2019.04.026 | |
dc.relation.references | Naidoo, G., Tuffers, A. V., & von Willert, D. J. (2002). Changes in gas exchange and chlorophyll fluorescence characteristics of two mangroves and a mangrove associate in response to salinity in the natural environment. Trees, 16(2–3), 140– 146. https://doi.org/10.1007/s00468-001-0134-6 | |
dc.relation.references | Nandy, P., Das, S., Ghose, M., & Spooner-Hart, R. (2007). Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecology and Management, 15(4), 347–357. https://doi.org/10.1007/s11273-007-9036-8 | |
dc.relation.references | Nguyen, H. T., Stanton, D. E., Schmitz, N., Farquhar, G. D., & Ball, M. C. (2015). Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. Annals of Botany, 115(3), 397– 407. https://doi.org/10.1093/aob/mcu257 | |
dc.relation.references | Núñez-Ravelo, F., Ugas-Pérez, M., Calderón-Castellanos, R., & Rivas-Meriño, F. (2021). Cuantificación del carbono orgánico y materia orgánica en suelos no rizosféricos o cubiertos por Avicennia germinans (L.) y Conocarpus erectus (L.) emplazados en Boca de Uchire, laguna de Unare, Estado de Anzoátegui, Venezuela. Revista Geográfica de América Central, 1(66), 371–398. https://doi.org/10.15359/rgac.66-1.13 | |
dc.relation.references | Palacios Peñaranda, M. L., Cantera Kintz, J. R., & Peña Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227, 106299. https://doi.org/10.1016/j.ecss.2019.106299 | |
dc.relation.references | Parida, A. K., Das, A. B., Sanada, Y., & Mohanty, P. (2004). Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquatic Botany, 80(2), 77–87. https://doi.org/10.1016/j.aquabot.2004.07.005 | |
dc.relation.references | Pezeshki, S. R., DeLaune, R. D., & Meeder, J. F. (1997). Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environmental and Experimental Botany, 37(2– 3), 161–171. https://doi.org/10.1016/S0098-8472(96)01051-9 | |
dc.relation.references | Poveda, G., & Mesa, Ó. J. (1996). Las fases extremas del fenómeno ENSO (El Niño y La Niña) y su influencia sobre la hidrología de Colombia. Ingenieria Hidráulica En México, 9, 21–37. | |
dc.relation.references | Quadros, A. F., Nordhaus, I., Reuter, H., & Zimmer, M. (2019). Modelling of mangrove annual leaf litterfall with emphasis on the role of vegetation structure. Estuarine, Coastal and Shelf Science, 218, 292–299. https://doi.org/10.1016/j.ecss.2018.12.012 | |
dc.relation.references | Rahman, M. S., Donoghue, D. N. M., Bracken, L. J., & Mahmood, H. (2021). Biomass estimation in mangrove forests: a comparison of allometric models incorporating species and structural information. Environmental Research Letters, 16(12), 124002. https://doi.org/10.1088/1748-9326/ac31ee | |
dc.relation.references | Rajaniemi, T. K., & Allison, V. J. (2009). Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biology and Biochemistry, 41(1), 102–109. https://doi.org/10.1016/j.soilbio.2008.10.001 | |
dc.relation.references | Ramírez Carmona, A. J. (2011). Determinación de los conceptos técnico operativos para el Plan de Manejo de Aguas Subterráneas de la Isla de San Andrés. Universidad Nacional de Colombia. | |
dc.relation.references | Ramírez Martínez, L. D., & Vargas Mora, T. A. (2018). EVALUACIÓN DE LA VULNERABILIDAD A LA CONTAMINACIÓN POR CUÑA MARINA EN LOS ACUÍFEROS DE LA ISLA DE SAN ANDRÉS (COLOMBIA) BAJO ESCENARIOS DE CAMBIO CLIMÁTICO [UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS].https://repository.udistrital.edu.co/bitstream/handle/11349/13992/Vargas MoraTatianaAndrea2018.pdf?sequence=1&isAllowed=y | |
dc.relation.references | Reef, R., Feller, I. C., & Lovelock, C. E. (2023). Phosphorus and salinity as constraints to mangrove growth and productivity. Frontiers in Forests and Global Change, 6, 1181542. https://doi.org/10.3389/ffgc.2023.1181542 | |
dc.relation.references | Ribeiro, R. de A., Rovai, A. S., Twilley, R. R., & Castañeda‐Moya, E. (2019). Spatial variability of mangrove primary productivity in the neotropics. Ecosphere, 10(8). https://doi.org/10.1002/ecs2.2841 | |
dc.relation.references | Robles Sánchez, A. (2019). RESPUESTAS MORFOANATÓMICAS DE RHIZOPHORA MANGLE A DIFERENTES REGÍMENES DE SALINIDAD EN LA ISLA DE SAN ANDRÉS-COLOMBIA-CARIBE COLOMBIANO. Universidad Nacional de Colombia. | |
dc.relation.references | Robles Sanchéz, A., Mancera Pineda José Ernesto, Marquínez Casas Xavier, & Medina Calderón Jairo Humberto. (2021). Influence of Edaphic Salinity on Leaf Morphoanatomical Functional Traits on Juvenile and Adult Trees of Red Mangrove (Rhizophora mangle): Implications with Relation to Climate Change. Forests, 12(11), 1586. https://doi.org/10.3390/f12111586 | |
dc.relation.references | Rodríguez-Chila, J. D., Mancera-Pineda, J. E., & López-Salgado, H. J. (2009). fectos de la recomunicación del Río Magdalena con su antiguo delta: cambios en la producción primaria fitoplanctónica y respiración en el complejo Pajarales. Boletín de Investigaciones Marinas y Costeras-INVEMAR,1989 A 2005, 38(2), 119–144. | |
dc.relation.references | Rodríguez-Rodríguez, J. A., Mancera Pineda, J. E., Melgarejo, L. M., & Medina Calderón, J. H. (2018). Functional traits of leaves and forest structure of neotropical mangroves under different salinity and nitrogen regimes. Flora: Morphology, Distribution, Functional Ecology of Plants, 239, 52–61. https://doi.org/10.1016/j.flora.2017.11.004 | |
dc.relation.references | Rovai, A. S., Riul, P., Twilley, R. R., Castañeda‐Moya, E., Rivera‐Monroy, V. H., Williams, A. A., Simard, M., Cifuentes‐Jara, M., Lewis, R. R., Crooks, S., Horta, P. A., Schaeffer‐Novelli, Y., Cintrón, G., Pozo‐Cajas, M., & Pagliosa, P. R. (2016). Scaling mangrove aboveground biomass from site‐level to continental‐scale. Global Ecology and Biogeography, 25(3), 286–298. https://doi.org/10.1111/geb.12409 | |
dc.relation.references | Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., ManrowVillalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L., & Pagliosa, P. R. (2018). Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6), 534–538. https://doi.org/10.1038/s41558-018-0162-5 | |
dc.relation.references | Rovai, A. S., Twilley, R. R., Worthington, T. A., & Riul, P. (2022). Brazilian Mangroves: Blue Carbon Hotspots of National and Global Relevance to Natural Climate Solutions. Frontiers in Forests and Global Change, 4. https://doi.org/10.3389/ffgc.2021.787533 | |
dc.relation.references | Saintilan, N., Khan, N. S., Ashe, E., Kelleway, J. J., Rogers, K., Woodroffe, C. D., & Horton, B. P. (2020). Thresholds of mangrove survival under rapid sea level rise. Science, 368(6495), 1118–1121. https://doi.org/10.1126/science.aba2656 | |
dc.relation.references | Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1–18. https://doi.org/10.1007/s10750-013-1617-3 | |
dc.relation.references | Sánchez-Núñez, D. A., & Mancera-Pineda, J. E. (2011). Flowering patterns in three neotropical mangrove species: Evidence from a Caribbean island. Aquatic Botany, 94(4), 177–182. https://doi.org/10.1016/j.aquabot.2011.02.005 | |
dc.relation.references | Sanders, C. J., Maher, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z., & Santos, I. R. (2016). Are global mangrove carbon stocks driven by rainfall? Journal of Geophysical Research: Biogeosciences, 121(10), 2600–2609. https://doi.org/10.1002/2016JG003510 | |
dc.relation.references | Saravanakumar, A., & Mayalagu, R. (2008). Seasonal variations in physico-chemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh-Gujarat. In Article in Journal of Environmental Biology. https://www.researchgate.net/publication/24209113 | |
dc.relation.references | Sherman, R. E., Fahey, T. J., & Martinez, P. (2003). Spatial Patterns of Biomass and Aboveground Net Primary Productivity in a Mangrove Ecosystem in the Dominican Republic. Ecosystems, 6(4), 384–398. https://doi.org/10.1007/s10021-002-0191-8 | |
dc.relation.references | Sierra-Rozo, O., Ernesto, J., Pineda, M., Santos-Martínez, A., & Co, J. E. (2009). ISLA, CARIBE COLOMBIANO*. | |
dc.relation.references | Sitoe, A. A., Mandlate, L. J. C., & Guedes, B. S. (2014). Biomass and carbon stocks of Sofala Bay mangrove forests. Forests, 5(8), 1967–1981. https://doi.org/10.3390/f5081967 | |
dc.relation.references | Taillardat, P., Friess, D. A., & Lupascu, M. (2018). Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biology Letters, 14(10). https://doi.org/10.1098/rsbl.2018.0251 | |
dc.relation.references | Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I., & Dubinsky, Z. (2000). Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany, 68(1), 15–28. https://doi.org/10.1016/S03043770(00)00106-6 | |
dc.relation.references | Taylor, M. D., Gaston, T. F., & Raoult, V. (2018). The economic value of fisheries harvest supported by saltmarsh and mangrove productivity in two Australian estuaries. Ecological Indicators, 84, 701–709. https://doi.org/10.1016/j.ecolind.2017.08.044 | |
dc.relation.references | Torres, J. R., Barba, E., & Choix, F. J. (2019). Production and biomass of mangrove roots in relation to hydroperiod and physico-chemical properties of sediment and water in the Mecoacan Lagoon, Gulf of Mexico. Wetlands Ecology and Management, 27(2–3), 427–442. https://doi.org/10.1007/s11273-019-09669-0 | |
dc.relation.references | Torres, J. R., Sánchez-Mejía, Z. M., Arreola-Lizárraga, J. A., Galindo-Félix, J. I., Mascareño-Grijalva, J. J., & Rodríguez-Pérez, G. (2022). Environmental factors controlling structure, litter productivity, and phenology of mangroves in arid region of the Gulf of California. Acta Oecologica, 117, 103861. https://doi.org/10.1016/j.actao.2022.103861 | |
dc.relation.references | Torres V., J. R., Barba-Macías, E., & Sánchez, A. J. (2023). Tres años de producción de hojarasca del manglar y su relación con las condiciones ambientales en la Laguna Mecoacán, Golfo de México. Ecosistemas, 32(3), 2368. https://doi.org/10.7818/ECOS.2368 | |
dc.relation.references | Torres-Fernández del Campo, J., Olvera-Vargas, M., Figueroa-Rangel, B. L., CuevasGuzmán, R., & Iñiguez-Dávalos, L. I. (2018). Patterns of Spatial Diversity and Structure of Mangrove Vegetation in Pacific West-Central Mexico. Wetlands, 38(5), 919–931. https://doi.org/10.1007/s13157-018-1041-6 | |
dc.relation.references | Trissanti, V. N., Amalo, L. F., Handayani, L. D. W., Nugroho, D., Yuliani, A. R., & Mulyana, D. (2022). The estimation of biomass and carbon stocks in mangrove forest ecosystem of Karawang Regency, West Java. IOP Conference Series: Earth and Environmental Science, 1109(1), 012099. https://doi.org/10.1088/17551315/1109/1/012099 | |
dc.relation.references | Twilley, R. R., & Chen, R. (1998). A water budget and hydrology model of a basin mangrove forest in Rookery Bay, Florida. Marine and Freshwater Research , 49 (4), 309–323. | |
dc.relation.references | Twilley, R. R., & Rivera-Monroy, V. H. (2005). Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. In Article in Journal of Coastal Research. https://www.researchgate.net/publication/254593611 | |
dc.relation.references | Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E., & Davis, S. (2019). Mangrove Biogeochemistry at Local to Global Scales Using Ecogeomorphic Approaches. In Coastal Wetlands (pp. 717–785). Elsevier. https://doi.org/10.1016/B978-0-444-63893-9.00021-6 | |
dc.relation.references | Twilley, R. R., Twllley, R. R., Chen, R. I., & Hargis, T. (1992). CARBON SINKS IN MANGROVES AND THEIR IMPLICATIONS TO CARBON BUDGET OF TROPICAL COASTAL ECOSYSTEMS. https://www.researchgate.net/publication/245611409 | |
dc.relation.references | Urrego, L. E., Polanía, J., Buitrago, M. F., Cuartas, L. F., & Lema, A. (2009). DISTRIBUTION OF MANGROVES ALONG ENVIRONMENTAL gRADIENTS ON SAN ANDRES ISLAND (COLOMBIAN CARIBBEAN). In BULLETIN OF MARINE SCIENCE (Vol. 85, Issue 1). | |
dc.relation.references | Vargas, G. (2004). Geología y Aspectos Geográficos de la Isla de San Andrés, Colombia. Geología Colombiana, 29, 71–87. | |
dc.relation.references | Vovides, A. G., Berger, U., Grueters, U., Guevara, R., Pommerening, A., Lara‐ Domínguez, A. L., & López‐Portillo, J. (2018). Change in drivers of mangrove crown displacement along a salinity stress gradient. Functional Ecology, 32(12), 2753– 2765. https://doi.org/10.1111/1365-2435.13218 | |
dc.relation.references | Wang’ondu, V. W., Bosire, J. O., Kairo, J. G., Kinyamario, J. I., Mwaura, F. B., DahdouhGuebas, F., & Koedam, N. (2014). Litter Fall Dynamics of Restored Mangroves (Rhizophora mucronata Lamk. and Sonneratia alba Sm.) in Kenya. Restoration Ecology, 22(6), 824–831. https://doi.org/10.1111/rec.12149 | |
dc.relation.references | Yáñez-Arancibia, A., Twilley, R. R., & Lara-Domínguez, A. L. (1998). Los ecosistemas de m | |
dc.relation.references | Yepes, A. (2016). Ecuaciones alométricas de biomasa aérea para la estimación de los contenidos de carbono en manglares del Caribe Colombiano. Revista de Biología Tropical, 64(2), 897. https://doi.org/10.15517/rbt.v64i2.18141 | |
dc.relation.references | Zhang, Z.-F., Pan, J., Pan, Y.-P., & Li, M. (2021). Biogeography, Assembly Patterns, Driving Factors, and Interactions of Archaeal Community in Mangrove Sediments. MSystems, 6(3). https://doi.org/10.1128/msystems.01381-20 | |
dc.relation.references | Zlatev, Z. S., & Yordanov, I. T. (2004). EFFECTS OF SOIL DROUGHT ON PHOTOSYNTHESIS AND CHLOROPHYLL FLUORESCENCE IN BEAN PLANTS (Vol. 30, Issue 4). | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 570 - Biología | |
dc.subject.proposal | Carbono azul | spa |
dc.subject.proposal | Salinidad | spa |
dc.subject.proposal | Flujos | spa |
dc.subject.proposal | Acumulación | spa |
dc.subject.proposal | Autóctono | spa |
dc.subject.proposal | Mangroves | eng |
dc.subject.proposal | Salinity | eng |
dc.subject.proposal | Blue carbon | eng |
dc.subject.proposal | Flows | eng |
dc.subject.proposal | Accumulation | eng |
dc.subject.proposal | Autochthonous | eng |
dc.title | Influencia de la salinidad en la acumulación de carbono en bosques de manglar sin subsidios externos materia orgánica | spa |
dc.title.translated | Influence of salinity on carbon accumulation in mangrove forests without external organic matter inputs | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | DataPaper | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |