Emulsion formation and breaking during in situ combustion.

dc.contributor.advisorMolina Ochoa, Alejandro
dc.contributor.authorÁlvarez Martínez, Felipe
dc.contributor.researchgroupBioprocesos y Flujos Reactivosspa
dc.date.accessioned2021-10-14T18:15:04Z
dc.date.available2021-10-14T18:15:04Z
dc.date.issued2021
dc.descriptionilustraciones, diagramasspa
dc.description.abstractThe behavior of water-in-oil (W/O) emulsions during in situ combustion was studied for three different crude oils. The variables studied were shear rate, water content, level of oxidation, and the addition of silica nanoparticles. The emulsions were characterized on its thermogravimetric behavior, droplet size distribution, rheology, and viscosity. The formation of highly stable W/O emulsions is a common and undesirable consequence of thermal enhanced oil recovery (TEOR) operations. The properties of the crude oil, the amount of energy transferred to the phases, the level of oxidation, and the water content are important factors that affect the formation and breaking of this kind of emulsions. The emulsions were formed in a sealed, continuous, stirred tank with temperature and stirring rate control and at two stirring levels to represent shear rates that were comparable to those present in the pore and close to the wellbore. Oxidation was carried out in a custom-designed setup that aimed to prevent evaporation, while air flowed through the crude. The results indicate that the presence of emulsions reduces the rate of water evaporation as the temperature range at which water evaporates increases by up to 50 K depending on the crude oil. A further increase in the temperature at which the water in the emulsion evaporates is observed in oxidation oil samples. The typical droplet size of the emulsions formed is of the order of 2 m. Interestingly, while the presence of emulsions increases the viscosity of two crude samples (Q and S) it decreases the viscosity for a third sample (C) as the stability of the emulsion for crude C is compromised at the shear rates obtained in the viscosity measurements. The inclusion of 1000 mg/L of silica nanoparticles has a positive, although minor, effect on the emulsion formation process as it increases the rate of evaporation of the emulsified water, reduces the viscosity of the emulsion, and increases the mean droplet size.eng
dc.description.abstractEl comportamiento de emulsiones de agua en aceite (W/O) durante la combustión in situ fue estudiada para tres diferentes crudos. Las variables estudiadas fueron tasa de corte, contenido de agua, nivel de oxidación, y la adición de nanopartículas de sílica. Las emulsiones fueron caracterizadas mediante su comportamiento termogravimétrico, distribución de tamaño de gota, reología y viscosidad. La formación de emulsiones W/O altamente estables es una consecuencia común e indeseable de operaciones de recobro mejorado térmico (TEOR por sus siglas en inglés). Las propiedades del crudo, la cantidad de energía entregada a las fases, el nivel de oxidación, y el contenido de agua son factores importantes que afectan la formación que afectan la formación y rompimiento de este tipo de emulsiones. Las emulsiones fueron formadas en un tanque agitado sellado y continuo que cuenta con control de temperatura y tasa de corte y a dos niveles de agitación para así representar las tasas de corte que pudieran ser comparables con aquellas presentes en el poro y cerca de la cara de pozo. La oxidación se llevó a cabo en un montaje personalizado que buscaba prevenir la evaporación, mientras aire fluía a través del crudo. Los resultados indican que la presencia de emulsiones reduce la tasa de evaporación de agua mientras que el rango de temperatura en el que el agua se evapora incrementa hasta 50 K dependiendo del crudo. Un incremento adicional en la temperatura a la cual el agua presente en la emulsión se evapora se observa en las muestras de crudo oxidado. El tamaño de gota común en las emulsiones formadas es del orden de 2 m. De manera interesante, mientras la presencia de emulsiones incrementa la viscosidad para dos muestras de crudo (Q y S), esta disminuye la viscosidad para la tercera muestra (crudo C) ya que la estabilidad de las emulsiones con curdo C es comprometida a las tasas de corte que se presentan durante las mediciones de viscosidad. La inclusión de 1000 mg/L de nanopartículas de sílica tiene un impacto positivo, aunque bajo, en el proceso de formación de emulsiones ya que la tasa de evaporación del agua en emulsión aumenta, reduce la viscosidad de la emulsión y además aumenta el tamaño medio de las gotas. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaFlujos reactivosspa
dc.format.extentxv, 52 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80553
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] R. G. Santos, W. Loh, A. C. Bannwart, y O. V. Trevisan, «An overview of heavy oil properties and its recovery and transportation methods», Brazilian Journal of Chemical Engineering, vol. 31, n.o 3, Art. n.o 3, 2014, doi: 10.1590/0104-6632.20140313s00001853.spa
dc.relation.references[2] T. Al-Wahaibi, Y. Al-Wahaibi, A. A. R. Al-Hashmi, F. S. Mjalli, y S. Al-Hatmi, «Experimental investigation of the effects of various parameters on viscosity reduction of heavy crude by oil–water emulsion», Petroleum Science, vol. 12, n.o 1, Art. n.o 1, 2015, doi: 10.1007/s12182-014-0009-2.spa
dc.relation.references[3] R. F. Meyer, E. D. Attanasi, y P. A. Freeman, «Heavy oil and natural bitumen resources in geological basins of the world», U.S. Geological Survey, vol. Open File-, p. 36, 2007, doi: 10.1007/BF01944169.spa
dc.relation.references[4] Z. Khansari, P. Kapadia, I. Gates, y N. Mahinpey, «Kinetic Models for Low Temperature Oxidation Subranges based on Reaction Products», SPE Heavy Oil Conference - Canada, 2013, n.o June, Art. n.o June, 2013, doi: 10.2118/165527-MS.spa
dc.relation.references[5] L. M. Castanier y W. E. Brigham, «Upgrading of crude oil via in situ combustion», Journal of Petroleum Science and Engineering, vol. 39, n.o 1-2, Art. n.o 1-2, ago. 2003, doi: 10.1016/S0920-4105(03)00044-5.spa
dc.relation.references[6] M. Latil, C. Bordan, Burger, J. Burger, Sourieau, y P. Sourieau, Enhanced Oil Recovery.pdf. 1980.spa
dc.relation.references[7] J. N. Breston, «Oil Recovery by Heat From In Situ Combustion», Journal of petroleum technology, 1958.spa
dc.relation.references[8] C. Shen, «Limitations and Potentials of In-Situ Combustion Processes for Heavy Oil Reservoirs», n.o 1, Art. n.o 1, 2002.spa
dc.relation.references[9] S. F. Wong, J. S. Lim, y S. S. Dol, «Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions», Journal of Petroleum Science and Engineering, vol. 135, pp. 498-504, nov. 2015, doi: 10.1016/j.petrol.2015.10.006.spa
dc.relation.references[10] S. Llanos, S. Acevedo, F. Cortés, y C. Franco, «Effect of the Asphaltene Oxidation Process on the Formation of Emulsions of Water in Oil (W/O) Model Solutions», Energies, vol. 11, n.o 4, p. 722, mar. 2018, doi: 10.3390/en11040722.spa
dc.relation.references[11] M. Fingas, «Water ‐ in ‐ Oil Emulsions : Formation and Prediction», vol. 3, n.o 1, Art. n.o 1, 2014, doi: 10.14355/jpsr.2014.0301.04.spa
dc.relation.references[12] M. Fingas, J. I. Gersten, y F. W. Smith, «The physics and chemistry of emulsions», pp. xxix, 826 p., 1993.spa
dc.relation.references[13] S. Kokal, «Quantification of Various Factors Affecting Emulsion Stability: Watercut, Temperature, Shear, Asphaltene Content, Demulsifier Dosage and Mixing Different Crudes», p. 9.spa
dc.relation.references[14] C. E. Perles, V. C. B. Guersoni, y A. C. Bannwart, «Rheological study of crude oil/water interface – The effect of temperature and brine on interfacial film», Journal of Petroleum Science and Engineering, vol. 162, pp. 835-843, mar. 2018, doi: 10.1016/j.petrol.2017.11.010.spa
dc.relation.references[15] M. Fingas, «Water-in-oil emulsion formation: A review of physics and mathematical modelling», Spill Science & Technology Bulletin, vol. 2, n.o 1, Art. n.o 1, mar. 1995, doi: 10.1016/1353-2561(95)94483-Z.spa
dc.relation.references[16] M. Fingas y B. Fieldhouse, «Studies on water-in-oil products from crude oils and petroleum products», Marine Pollution Bulletin, vol. 64, n.o 2, pp. 272-283, feb. 2012, doi: 10.1016/j.marpolbul.2011.11.019.spa
dc.relation.references[17] M. Rondón, P. Bouriat, J. Lachaise, y J. L. Salager, «Breaking of water-in-crude oil emulsions. 1. Physicochemical phenomenology of demulsifier action», Energy and Fuels, vol. 20, n.o 4, Art. n.o 4, 2006, doi: 10.1021/ef060017o.spa
dc.relation.references[18] M. Rondón, J. C. Pereira, P. Bouriat, A. Graciaa, J. Lachaise, y J. L. Salager, «Breaking of water-in-crude-oil emulsions. 2. Influence of asphaltene concentration and diluent nature on demulsifier action», Energy and Fuels, vol. 22, n.o 2, Art. n.o 2, 2008, doi: 10.1021/ef7003877.spa
dc.relation.references[19] B. M. Aguilera, J. G. Delgado, y A. L. Cárdenas, «Water-in-oil emulsions stabilized by asphaltenes obtained from venezuelan crude oils», Journal of Dispersion Science and Technology, vol. 31, n.o 3, Art. n.o 3, 2010, doi: 10.1080/01932690903196144.spa
dc.relation.references[20] M. Fingas y B. Fieldhouse, «Studies on crude oil and petroleum product emulsions: Water resolution and rheology», Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 333, n.o 1-3, Art. n.o 1-3, 2009, doi: 10.1016/j.colsurfa.2008.09.029.spa
dc.relation.references[21] C. Negin, S. Ali, y Q. Xie, «Application of nanotechnology for enhancing oil recovery – A review», Petroleum, vol. 2, n.o 4, Art. n.o 4, 2016, doi: 10.1016/j.petlm.2016.10.002.spa
dc.relation.references[22] G. Cheraghian y L. Hendraningrat, «A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding», International Nano Letters, vol. 6, n.o 1, Art. n.o 1, 2016, doi: 10.1007/s40089-015-0170-7.spa
dc.relation.references[23] B. Engeset, «The Potential of Hydrophilic Silica Nanoparticles for EOR Purposes», Norwegian Universitry of Science and technology, n.o May, Art. n.o May, 2012.spa
dc.relation.references[24] A. H. Alagorni, Z. B. Yaacob, y A. H. Nour, «An Overview of Oil Production Stages : Enhanced Oil Recovery Techniques and Nitrogen Injection», vol. 6, n.o 9, Art. n.o 9, 2015, doi: 10.7763/IJESD.2015.V6.682.spa
dc.relation.references[25] J. Salager, «Recuperación mejorada del petróleo», Universidad de los Andes, 2005.spa
dc.relation.references[26] S. Thomas, «Enhanced Oil Recovery – An Overview», Oil & Gas Science and Technology – Rev. IFP, vol. 63, n.o 1, Art. n.o 1, 2008, doi: 10.2516/ogst.spa
dc.relation.references[27] G. J. Stosur, J. R. Hite, N. F. Carnahan, y K. Miller, «The Alphabet Soup of IOR, EOR and AOR: Effective Communication Requires a Definition of Terms», p. 3.spa
dc.relation.references[28] C. A. Espinosa y K. J. Torres, «Técnicas de recobro y recobro mejorado en yacimientos con crudos livianos , pesados y extra-».spa
dc.relation.references[29] P. S. Sarathi, In-Situ Combustion Handbook - Principles and Practices. 1999.spa
dc.relation.references[30] M. G. Ursenbach, R. G. Moore, y S. A. Mehta, «Air Injection in Heavy Oil Reservoirs - A Process Whose Time Has Come (Again)», Journal of Canadian Petroleum Technology, vol. 49, n.o 01, Art. n.o 01, ene. 2010, doi: 10.2118/132487-PA.spa
dc.relation.references[31] D. K. Banerjee, K. J. Laidler, y B. N. Nandi, «Kinetic studies of coke formation in hydrocarbon fractions of heavy crudes», Fuel, vol. 65, mar. 12, 1985.spa
dc.relation.references[32] J. D. M. Belgrave y R. G. Moore, «A comprehensive approach to in-situ combustion modeling», SPE Advanced, 1993.spa
dc.relation.references[33] A. Eguono, «Numerical Simulation of Chemical Reaction of In-Situ Combustion Using SARA Fraction», Delft University of Technology, ago. 2010.spa
dc.relation.references[34] N. P. Freitag y B. Verkoczy, «Low-temperature oxidation of oils in terms of SARA fractions: Why simple reaction models don’t work», Journal of Canadian Petroleum Technology, vol. 44, n.o 3, Art. n.o 3, 2005, doi: 10.2118/05-03-05.spa
dc.relation.references[35] K. O. Adegbesan, J. K. Donnelly, R. G. Moore, y D. W. Bennion, «Low-Temperature Oxidation Kinetic Parameters for In-Situ Combustion Numerical Simulation», SPE Reservoir Engineering, vol. 2, n.o 4, Art. n.o 4, 1987, doi: 10.2118/12004-PA.spa
dc.relation.references[36] B. Gui, Q. Y. Yang, H. J. Wu, X. Zhang, y Y. Lu, «Study of the effects of low-temperature oxidation on the chemical composition of a light crude oil», Energy and Fuels, vol. 24, n.o 2, Art. n.o 2, 2010, doi: 10.1021/ef901056s.spa
dc.relation.references[37] M. R. Fassihi, K. O. Meyers, y P. F. Baslie, «Low-Temperature Oxidation of Viscous Crude Oils», SPE Reservoir Engineering, vol. 5, n.o 04, Art. n.o 04, nov. 1990, doi: 10.2118/15648-PA.spa
dc.relation.references[38] R. G. Moore, «Combustion/Oxidation Behavior of Athabasca Oil Sands Bitumen», SPE Reservoir Eval, 1999.spa
dc.relation.references[39] D. Langevin, S. Poteau, I. Hénaut, y J. F. Argillier, «Crude Oil Emulsion Properties and their Application to Heavy Oil Transportation», Oil & Gas Science and Technology – Rev. IFP, vol. 59, n.o 5, Art. n.o 5, 2004, doi: 10.2516/ogst:2004036.spa
dc.relation.references[40] S. Kokal y S. Aramco, «Crude-Oil Emulsions : A State-Of-The-Art Review», n.o December 2004, Art. n.o December 2004, 2005.spa
dc.relation.references[41] M. M. Abdulredha, H. Siti Aslina, y C. A. Luqman, «Overview on petroleum emulsions, formation, influence and demulsification treatment techniques», Arabian Journal of Chemistry, p. S1878535218302442, nov. 2018, doi: 10.1016/j.arabjc.2018.11.014.spa
dc.relation.references[42] P. V. Hemmingsen, A. Silset, A. Hannisdal, y J. Sjöblom, «Emulsions of Heavy Crude Oils. I: Influence of Viscosity, Temperature, and Dilution», Journal of Dispersion Science and Technology, vol. 26, n.o 5, Art. n.o 5, sep. 2005, doi: 10.1081/DIS-200057671.spa
dc.relation.references[43] M. Bagheri, M. Paydayesh, y S. Al-Ballam, «Monitoring of Steam Injection in a Heavy Oil Reservoir by Integration of Production and 4D Seismic Data», presentado en 80th EAGE Conference and Exhibition, 2018.spa
dc.relation.references[44] U. Sinha, B. Dindoruk, y M. Y. Soliman, «Development of a new correlation to determine relative viscosity of heavy oils with varying asphaltene content and temperature», Journal of Petroleum Science and Engineering, oct. 2018.spa
dc.relation.references[45] A. Silset, A. Hannisdal, P. V. Hemmingsen, y J. Sjöblom, «Emulsions of Heavy Crude Oils. II. Viscous Responses and Their Influence on Emulsion Stability Measurements», Journal of Dispersion Science and Technology, vol. 31, n.o 10, Art. n.o 10, sep. 2010, doi: 10.1080/01932690903210341.spa
dc.relation.references[46] T. J. Jones, E. L. Neustadter, y K. P. Whittingham, «Water-In-Crude Oil Emulsion Stability And Emulsion Destabilization By Chemical Demulsifiers», Journal of Canadian Petroleum Technology, vol. 17, n.o 02, Art. n.o 02, abr. 1978, doi: 10.2118/78-02-08.spa
dc.relation.references[47] M. Orea, J. Bruzual, A. Diaz, T. Árraga, N. Benítez, y J. Castillo, «Formation of stable emulsions under in-situ combustion conditions: An assessment of the injected gas−crude oil−water−rock interplay in Quifa oilfield, Los Llanos Basin, Colombia», Journal of Petroleum Science and Engineering, vol. 159, nov. 2017.spa
dc.relation.references[48] H. Salazar, «Evaluación De La Formación De Emulsiones En Procesos De Combustion In-Situ Bajo Condiciones De Exceso De Oxigeno», Msc Thesis, Universidad Nacional de Colombia, 2016.spa
dc.relation.references[49] M. F. Fakoya y S. N. Shah, «Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles», Petroleum, vol. 3, n.o 4, Art. n.o 4, dic. 2017, doi: 10.1016/j.petlm.2017.03.001.spa
dc.relation.references[50] M. Nur Agista, K. Guo, y Z. Yu, «A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on Enhanced Oil Recovery», Applied science, may 2018.spa
dc.relation.references[51] Md. Amanullah y A. M. Al-Tahini, «Nano-Technology - Its Significance in Smart Fluid Development for Oil and Gas Field Application», presentado en SPE Saudi Arabia Section Technical Symposium, Al-Khobar, Saudi Arabia, 2009. doi: 10.2118/126102-MS.spa
dc.relation.references[52] T. Zhang, A. Davidson, S. L. Bryant, y C. Huh, «Nanoparticle-Stabilized Emulsions for Applications in Enhanced Oil Recovery», p. 18.spa
dc.relation.references[53] N. A. Ogolo, O. A. Olafuyi, y M. O. Onyekonwu, «Enhanced Oil Recovery Using Nanoparticles», presentado en SPE Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 2012. doi: 10.2118/160847-MS.spa
dc.relation.references[54] S. Li, M. Genys, K. Wang, y O. Torsæter, «Experimental Study of Wettability Alteration during Nanofluid Enhanced Oil Recovery Process and Its Effect on Oil Recovery», presentado en SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, 2015. doi: 10.2118/175610-MS.spa
dc.relation.references[55] A. Roustaei y H. Bagherzadeh, «Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs», J Petrol Explor Prod Technol, vol. 5, n.o 1, Art. n.o 1, mar. 2015, doi: 10.1007/s13202-014-0120-3.spa
dc.relation.references[56] N. N. Nassar, M. E. Al-Jabari, y M. M. Husein, «Removal of asphaltenes from heavy oil by nickel nano and micro particle adsorbents», p. 6.spa
dc.relation.references[57] R. Kumar, E. Dao, y K. Mohanty, «Heavy-Oil Recovery by In-Situ Emulsion Formation», SPE Journal, vol. 17, n.o 02, Art. n.o 02, jun. 2012, doi: 10.2118/129914-PA.spa
dc.relation.references[58] B. P. Binks y J. A. Rodrigues, «Enhanced Stabilization of Emulsions Due to Surfactant-Induced Nanoparticle Flocculation», Langmuir, vol. 23, n.o 14, Art. n.o 14, jul. 2007, doi: 10.1021/la700597k.spa
dc.relation.references[59] B. K. Pilapil, H. Jahandideh, S. L. Bryant, y M. Trifkovic, «Stabilization of Oil-in-Water Emulsions with Noninterfacially Adsorbed Particles», Langmuir, vol. 32, n.o 28, Art. n.o 28, jul. 2016, doi: 10.1021/acs.langmuir.6b00873.spa
dc.relation.references[60] S. Riaza, F. B. Cortés, y J. Otalvaro, «Emulsions with heavy crude oil in presence of nanoparticles», Boletín de Ciencias de la Tierra, n.o 36, Art. n.o 36, 2015, doi: 10.15446/rbct.n36.46282.spa
dc.relation.references[61] D. Arab, A. Kantzas, y S. L. Bryant, «Nanoparticle stabilized oil in water emulsions: A critical review», Journal of Petroleum Science and Engineering, vol. 163, pp. 217-242, abr. 2018, doi: 10.1016/j.petrol.2017.12.091.spa
dc.relation.references[62] P. Pillai, R. Kumar Saw, R. Singh, E. Padmanabhan, y A. Mandala, «Effect of synthesized lysine-grafted silica nanoparticle on surfactant stabilized O/W emulsion stability: Application in enhanced oil recovery», Journal of Petroleum Science and Engineering, vol. 177, pp. 861-871, jun. 2019.spa
dc.relation.references[63] S. Llanos y M. D. Vásquez, «Evaluación de la aplicación de nanopartículas para el rompimiento de emulsiones de agua en crudos pesados», Universidad Surcolombiana, Neiva, Colombia, 2016.spa
dc.relation.references[64] A. Perino, C. Noïk, y C. Dalmazzone, «Effect of Fumed Silica Particles on Water-in-Crude Oil Emulsion: Emulsion Stability, Interfacial Properties, and Contribution of Crude Oil Fractions», Energy Fuels, vol. 27, n.o 5, Art. n.o 5, may 2013, doi: 10.1021/ef301627e.spa
dc.relation.references[65] D. Montes, F. B. Cortés, y C. A. Franco, «Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO 2 nanoparticles • Reducción de la viscosidad de crudos pesados mediante cavitación por ultrasonido asistida por nanopartículas de SiO 2 funciona», vol. 85, n.o 207, pp. 153-160, 2018.spa
dc.relation.references[66] I. E, «IP 469: Determination of saturated, aromatic and polar compounds in petroleum products by thin layer chromatography and flame ionization detection». 2006.spa
dc.relation.references[67] F. Civan, Porous media transport phenomena, vol. 1. Wiley, 2011.spa
dc.relation.references[68] S. Chopra, L. R. Lines, D. R. Schmitt, y M. L. Batzle, Eds., Heavy Oils Reservoir: Characterization and Production Monitoring. Society of Exploration Geophysicists, 2010. doi: 10.1190/1.9781560802235.spa
dc.relation.references[69] M. F. Quijada y R. R. Stewart, «Petrophysical and seismic signature of a heavy oil sand reservoir: Manitou Lake, Saskatchewan», vol. 20, p. 17, 2008.spa
dc.relation.references[70] E. A. Taborda, V. Alvarado, C. A. Franco, y F. B. Cortés, «Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles», Fuel, vol. 189, pp. 322-333, 2017, doi: 10.1016/j.fuel.2016.10.110.spa
dc.relation.references[71] J. E. Aristizábal-Fontal, F. B. Cortés, y C. A. Franco, «Viscosity reduction of extra heavy crude oil by magnetite nanoparticle-based ferrofluids», Adsorption Science & Technology, vol. 36, n.o 1-2, Art. n.o 1-2, feb. 2018, doi: 10.1177/0263617417704309.spa
dc.relation.references[72] J. Schindelin et al., «Fiji: an open-source platform for biological-image analysis», Nat Methods, vol. 9, n.o 7, pp. 676-682, jul. 2012, doi: 10.1038/nmeth.2019.spa
dc.relation.references[73] H. Yao, Q. Dai, y Z. You, «Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders», Construction and Building Materials, vol. 101, pp. 1078-1087, dic. 2015, doi: 10.1016/j.conbuildmat.2015.10.085.spa
dc.relation.references[74] D. A. Long, «Infrared and Raman characteristic group frequencies. Tables and chartsGeorge Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135», J. Raman Spectrosc., vol. 35, n.o 10, pp. 905-905, oct. 2004, doi: 10.1002/jrs.1238.spa
dc.relation.references[75] C. A. Franco, T. Montoya, N. N. Nassar, P. Pereira-Almao, y F. B. Cortés, «Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles», Energy and Fuels, vol. 27, n.o 12, Art. n.o 12, 2013, doi: 10.1021/ef4018543.spa
dc.relation.references[76] J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, y F. B. Cortés, «Importance of the Adsorption Method Used for Obtaining the Nanoparticle Dosage for Asphaltene-Related Treatments», Energy Fuels, vol. 30, n.o 3, pp. 2052-2059, mar. 2016, doi: 10.1021/acs.energyfuels.5b02841.spa
dc.relation.references[77] D. Montes, J. Henao, E. A. Taborda, J. Gallego, F. B. Cortés, y C. A. Franco, «Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil», ACS Omega, vol. 5, n.o 10, pp. 5085-5097, mar. 2020, doi: 10.1021/acsomega.9b04041.spa
dc.relation.references[78] D. Montes, W. Orozco, E. Taborda, C. Franco, y F. Cortés, «Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils», Energies, vol. 12, n.o 6, p. 1068, mar. 2019, doi: 10.3390/en12061068.spa
dc.relation.references[79] N. N. Nassar, «Asphaltene Adsorption onto Alumina Nanoparticles: Kinetics and Thermodynamic Studies», Energy Fuels, p. 7, 2010.spa
dc.relation.references[80] T. Zhang, M. Roberts, S. L. Bryant, y C. Huh, «Foams and Emulsions Stabilized With Nanoparticles for Potential Conformance Control Applications», presentado en SPE International Symposium on Oilfield Chemistry, The Woodlands. Texas, 2009. doi: 10.2118/121744-MS.spa
dc.relation.references[81] C. Franco, «Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina», p. 7, 2013.spa
dc.relation.references[82] F. H. Wang, L. B. Shen, H. Zhu, y K. F. Han, «The Preparation of a Polyether Demulsifier Modified by Nano-SiO2 and the Effect on Asphaltenes and Resins», null, vol. 29, n.o 24, pp. 2521-2529, oct. 2011, doi: 10.1080/10916460903393997.spa
dc.relation.references[83] E. A. Taborda, C. A. Franco, S. H. Lopera, V. Alvarado, y F. B. Cortés, «Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions», Fuel, vol. 184, pp. 222-232, 2016, doi: 10.1016/j.fuel.2016.07.013.spa
dc.relation.references[84] J. D. McLean y P. K. Kilpatrick, «Effects of Asphaltene Solvency on Stability of Water-in-Crude-Oil Emulsions», Journal of Colloid and Interface Science, vol. 189, n.o 2, pp. 242-253, may 1997, doi: 10.1006/jcis.1997.4807.spa
dc.relation.references[85] M. Fingas y B. Fieldhouse, «Studies on crude oil and petroleum product emulsions: Water resolution and rheology», Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 333, n.o 1-3, pp. 67-81, 2009, doi: 10.1016/j.colsurfa.2008.09.029.spa
dc.relation.references[86] D. S. Kolotova, Y. A. Kuchina, L. A. Petrova, N. G. Voron’ko, y S. R. Derkach, «Rheology of Water-in-Crude Oil Emulsions: Influence of Concentration and Temperature», Colloids and Interfaces, vol. 2, n.o 4, p. 64, nov. 2018, doi: 10.3390/colloids2040064.spa
dc.relation.references[87] A. N. I. Anisa y A. H. Nour, «Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study», vol. 4, n.o 2, p. 4, 2010.spa
dc.relation.references[88] Y. Tu, J. Kung, T. McCracken, L. Kotlyar, D. Kingston, y B. Sparks, «Effect of Clay Particle Size on the Adsorption of a Pentane Insoluble Bitumen Fraction», Clay science 12(Supplement2) (2006) 194-198, n.o Clay science 12(Supplement2) (2006) 194-198.spa
dc.relation.references[89] K. Y. Jung y S. B. Park, «Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene», Applied Catalysis B: Environmental, vol. 25, n.o 4, pp. 249-256, mar. 2000, doi: 10.1016/S0926-3373(99)00134-4.spa
dc.relation.references[90] R. Al-Oweini y H. El-Rassy, «Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors», Journal of Molecular Structure, vol. 919, n.o 1-3, Art. n.o 1-3, 2009.spa
dc.relation.references[91] C. J. Brinke y G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st Edition. Academic Press, 2013.spa
dc.relation.references[92] Y. Hurtado, C. A. Franco, M. Riazi, y F. B. Cortés, «Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol», Journal of Molecular Liquids, vol. 300, p. 112256, feb. 2020, doi: 10.1016/j.molliq.2019.112256.spa
dc.relation.references[93] C. A. Franco, F. B. Cortés, y N. N. Nassar, «Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue», Journal of Colloid and Interface Science, vol. 425, pp. 168-177, jul. 2014, doi: 10.1016/j.jcis.2014.03.051.spa
dc.relation.references[94] D. E. Tambe y M. M. SHAFtMA, «THE EFFECT OF COLLOIDAL PARTICLES ON FLUID-FLiJID INTERFACIAL PROPERTIES AND EMULSION STABILITY», p. 63.spa
dc.relation.references[95] S. Acevedo et al., «Isolation and Characterization of Low and High Molecular Weight Acidic Compounds from Cerro Negro Extraheavy Crude Oil. Role of These Acids in the Interfacial Properties of the Crude Oil Emulsions», Energy Fuels, vol. 13, n.o 2, pp. 333-335, mar. 1999, doi: 10.1021/ef980180m.spa
dc.relation.references[96] S. Acevedo, M. Ranaudo, G. Escobar, y X. Gutiérrez, «Dynamic interfacial tension measurement of heavy crude oil-alkaline systems. The role of the counterion in the aqueous phase», Fuel and Energy Abstracts, vol. 40, n.o 5, p. 318, sep. 1999, doi: 10.1016/S0140-6701(99)90954-2.spa
dc.relation.references[97] A. Zahabi, M. R. Gray, y T. Dabros, «Kinetics and Properties of Asphaltene Adsorption on Surfaces», Energy Fuels, vol. 26, n.o 2, pp. 1009-1018, feb. 2012, doi: 10.1021/ef2014698.spa
dc.relation.references[98] A. Hannisdal, M.-H. Ese, P. V. Hemmingsen, y J. Sjöblom, «Particle-stabilized emulsions: Effect of heavy crude oil components pre-adsorbed onto stabilizing solids», Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 276, n.o 1-3, pp. 45-58, mar. 2006, doi: 10.1016/j.colsurfa.2005.10.011.spa
dc.relation.references[99] U. Farooq, J. Sjöblom, y G. Øye, «Desorption of Asphaltenes from Silica-Coated Quartz Crystal Surfaces in Low Saline Aqueous Solutions», Journal of Dispersion Science and Technology, vol. 32, n.o 10, pp. 1388-1395, oct. 2011, doi: 10.1080/01932691.2010.505118.spa
dc.relation.references[100] N. N. Nassar, A. Hassan, y P. Pereira-Almao, «Metal Oxide Nanoparticles for Asphaltene Adsorption and Oxidation», Energy Fuels, vol. 25, n.o 3, pp. 1017-1023, mar. 2011, doi: 10.1021/ef101230g.spa
dc.relation.references[101] N. N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, y P. Pereira-Almao, «Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes», Fuel, vol. 95, pp. 257-262, may 2012, doi: 10.1016/j.fuel.2011.09.022.spa
dc.relation.references[102] K. Xie y K. Karan, «Kinetics and Thermodynamics of Asphaltene Adsorption on Metal Surfaces:  A Preliminary Study», Energy Fuels, vol. 19, n.o 4, pp. 1252-1260, jul. 2005, doi: 10.1021/ef049689+.spa
dc.relation.references[103] M. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)», Pure and Applied Chemistry, vol. 87, n.o 9-10, pp. 1051-1069, oct. 2015, doi: 10.1515/pac-2014-1117.spa
dc.relation.references[104] N. N. Nassar, A. Hassan, y P. Pereira-Almao, «Effect of the Particle Size on Asphaltene Adsorption and Catalytic Oxidation onto Alumina Particles», Energy Fuels, vol. 25, n.o 9, pp. 3961-3965, sep. 2011, doi: 10.1021/ef2008387.spa
dc.relation.references[105] F. B. Cortés, J. M. Mejía, M. A. Ruiz, P. Benjumea, y D. B. Riffel, «Sorption of Asphaltenes onto Nanoparticles of Nickel Oxide Supported on Nanoparticulated Silica Gel», Energy Fuels, vol. 26, n.o 3, pp. 1725-1730, mar. 2012, doi: 10.1021/ef201658c.spa
dc.relation.references[106] F. B. Cortés, T. Montoya, S. Acevedo, N. Nassar, y C. A. Franco, «Adsorption-desorption of n–C7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration», CT&F Cienc. Tecnol. Futuro, vol. 6, n.o 4, pp. 89-106, dic. 2016, doi: 10.29047/01225383.06.spa
dc.relation.references[107] H. Rezvani, Y. Kazemzadeh, M. Sharifi, M. Riazi, y S. Shojaei, «A new insight into Fe3O4-based nanocomposites for adsorption of asphaltene at the oil/water interface: An experimental interfacial study», Journal of Petroleum Science and Engineering, vol. 177, pp. 786-797, jun. 2019, doi: 10.1016/j.petrol.2019.02.077.spa
dc.relation.references[108] C. A. Franco, M. M. Lozano, S. Acevedo, N. N. Nassar, y F. B. Cortés, «Effects of Resin I on Asphaltene Adsorption onto Nanoparticles: A Novel Method for Obtaining Asphaltenes/Resin Isotherms», Energy Fuels, vol. 30, n.o 1, pp. 264-272, ene. 2016, doi: 10.1021/acs.energyfuels.5b02504.spa
dc.relation.references[109] Y. Cui et al., «Investigating the dynamical stability of heavy crude oil-water systems using stirred tank», Journal of Petroleum Science and Engineering, vol. 183, p. 106386, dic. 2019, doi: 10.1016/j.petrol.2019.106386.spa
dc.relation.references[110] A. Stockwell, A. S. Taylor, y D. G. Thompson, «The Rheological Properties of Water-in-Crude-Oil Emulsions», en Surfactants in Solution, K. L. Mittal y P. Bothorel, Eds. Boston, MA: Springer US, 1986, pp. 1617-1632. doi: 10.1007/978-1-4613-1833-0_39.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembNanoparticleseng
dc.subject.lembRecobro del petróleospa
dc.subject.lembSecondary recovery of oileng
dc.subject.proposalRecobro mejorado térmicospa
dc.subject.proposalEmulsiónspa
dc.subject.proposalNanopartículasspa
dc.subject.proposalViscosidadspa
dc.subject.proposalAnálisis termogravimétricospa
dc.subject.proposalThermal enhanced oil recovery (TEOR)eng
dc.subject.proposalEmulsionseng
dc.subject.proposalNanoparticleseng
dc.subject.proposalViscosityeng
dc.subject.proposalDroplet sizeeng
dc.subject.proposalThermogravimetric behavioreng
dc.subject.proposalTamaño de gotaspa
dc.titleEmulsion formation and breaking during in situ combustion.eng
dc.title.translatedFormación y rompimiento de emulsiones en combustión in situ.spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis MSc Felipe Álvarez M.pdf
Tamaño:
2.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería – Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: