Estrategia descentralizada de gestión de un supercapacitor para microrredes

dc.contributor.advisorCortés Guerrero, Camilo Andrés
dc.contributor.advisorMartínez, Wilmar Hernán
dc.contributor.authorFracica Rodriguez, Fabian Alejandro
dc.contributor.researchgroupGrupo de Investigación Emc-Un
dc.date.accessioned2026-01-20T18:28:10Z
dc.date.available2026-01-20T18:28:10Z
dc.date.issued2025
dc.descriptionIlustraciones, fotografías, gráficos
dc.description.abstractLos sistemas de almacenamiento híbrido compuestos por baterías y supercapacitores representan una solución eficiente para la gestión de energía en aplicaciones eléctricas. En este esquema, la batería suministra la potencia en régimen estacionario, mientras que el supercapacitor absorbe o entrega corrientes rápidas, reduciendo el esfuerzo dinámico sobre la batería y extendiendo su vida útil. Dentro de estas configuraciones, la topología semiactiva se presenta como una alternativa atractiva, al permitir un control parcial del sistema de almacenamiento híbrido, incrementando la eficiencia y reduciendo costos en comparación con otras topologías. En este trabajo se aborda el diseño e implementación de dos topologías de convertidores de potencia, una no aislada y otra aislada, que actúan como interfaz para la conexión controlada del supercapacitor, habilitando su gestión dentro del sistema híbrido. Se desarrolla una estrategia de gestión de energía en la que el supercapacitor responde a los transitorios de carga, mientras la batería entrega la potencia requerida en estado estable. Además, se integra un lazo de control externo para la restauración del estado de carga del supercapacitor, garantizando su operación en un valor nominal adecuado. La validación de las estrategias se realizó mediante diferentes enfoques experimentales. Para el convertidor no aislado, se utilizó un esquema de Power Hardware-in-the-Loop, en el cual el conjunto supercapacitor–convertidor se evaluó como dispositivo bajo prueba frente a variaciones de carga. En el caso del convertidor aislado de tipo Dual Active Bridge, la estrategia de control fue validada inicialmente a través de Control Hardware-in-the-Loop, verificando la implementación del algoritmo en una tarjeta de control. Posteriormente, se llevó a cabo la construcción de un prototipo físico que emula el sistema híbrido de almacenamiento con fuentes programables y una carga electrónica. Los resultados experimentales demuestran la correcta operación del sistema híbrido, en el que el supercapacitor compensa los picos de corriente ocasionados por cambios súbitos en la carga, mientras que la batería suministra la potencia en régimen estacionario. De esta manera, se valida la efectividad del sistema propuesto y se resalta su potencial aplicación en sistemas de almacenamiento para microrredes. (Texto tomado de la fuente)spa
dc.description.abstractHybrid energy storage systems made up of batteries and supercapacitors offer an efficient solution for energy management in electrical applications. In this setup, the battery provides steady-state power, while the supercapacitor handles fast current changes. This reduces the dynamic stress on the battery and helps extend its lifespan. Among different configurations, the semi-active topology stands out as an attractive option, as it allows partial control of the hybrid system, improving efficiency and reducing costs compared to other topologies. This work focuses on the design and implementation of two power converter topologies—one non-isolated and one isolated—that serve as the interface for controlled connection of the supercapacitor, enabling its management within the hybrid system. An energy management strategy is developed where the supercapacitor responds to load transients, while the battery supplies the required power under steady-state conditions. An external control loop is also included to restore the supercapacitor's state of charge, ensuring it operates within a proper nominal range. The proposed strategies were validated using different experimental approaches. For the non-isolated converter, a Power Hardware-in-the-Loop setup was used, where the supercapacitor–converter unit was tested as a device under test (DUT) against load variations. For the isolated Dual Active Bridge converter, the control strategy was first validated using Control Hardware-in-the-Loop, confirming that the algorithm worked correctly on the control board. Afterwards, a physical prototype was built to emulate the hybrid storage system using programmable power sources and an electronic load. The experimental results confirm the correct operation of the hybrid system. The supercapacitor successfully compensates for current spikes caused by sudden load changes, while the battery delivers steady-state power. These results validate the effectiveness of the proposed system and highlight its potential for use in microgrid energy storage applications.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Automatización Industrial
dc.description.researchareaConvertidores de Electrónica de Potencia y Sistemas de Almacenamiento de Energía
dc.format.extentxvi, 76 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89265
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.relation.referencesA. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” 2018.
dc.relation.referencesS. Hajiaghasi, A. Salemnia, and M. Hamzeh, “Hybrid energy storage system for microgrids applications: A review,” 2019.
dc.relation.referencesL. Zhang, X. Hu, Z. Wang, F. Sun, and D. G. Dorrell, “A review of supercapacitor modeling, estimation, and applications: A control/management perspective,” 2018.
dc.relation.referencesF. Naseri, S. Karimi, E. Farjah, and E. Schaltz, “Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques,” 2022.
dc.relation.referencesY. Tahir, M. F. Nadeem, A. Ahmed, I. A. Khan, and F. Qamar, “A review on hybrid energy storage systems in microgrids,” in 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 2020, pp. 1–7.
dc.relation.referencesX. Wei, X. Xiangning, and C. Pengwei, “Overview of key microgrid technologies,” International Transactions on Electrical Energy Systems, vol. 28, 2018.
dc.relation.referencesT. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “Dc microgrids—part i: A review of control strategies and stabilization techniques,” IEEE Transactions on Power Electronics, vol. 31, pp. 4876–4891, 2016.
dc.relation.referencesT. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “Dc microgrids—part i: A review of control strategies and stabilization techniques,” IEEE Transactions on Power Electronics, vol. 31, pp. 4876–4891, 2016.
dc.relation.referencesT. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “Dc microgrids—part ii: A review of power architectures, applications, and standardization issues,” IEEE Transactions on Power Electronics, vol. 31, pp. 3528–3549, 2016.
dc.relation.referencesF. Nejabatkhah and Y. W. Li, “Overview of power management strategies of hybrid ac/dc microgrid,” IEEE Transactions on Power Electronics, vol. 30, pp. 7072–7089, 2015.
dc.relation.referencesS. D. Dwivedi and P. K. Ray, “Energy management and control of grid-connected microgrid integrated with hess,” 2022.
dc.relation.referencesN. M. Ismail and M. K. Mishra, “A multi-objective control scheme of a voltage source converter with battery–supercapacitor energy storage system used for power quality improvement,” International Journal of Electrical Power and Energy Systems, vol. 142, 2022.
dc.relation.referencesA. Narvaez, C. Cortes, and C. Trujillo, “Comparative analysis of topologies for the interconnection of batteries and supercapacitors in a hybrid energy storage system,” in 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2017, pp. 1–6.
dc.relation.referencesX. Lin and R. Zamora, “Controls of hybrid energy storage systems in microgrids: Critical review, case study and future trends,” 2022.
dc.relation.referencesE. A. N. Cubillos, C. A. C. Guerrero, and C. L. T. Rodríguez, “Topologies for battery and supercapacitor interconnection in residential microgrids with intermittent generation,” Ingenier´ıa, vol. 25, 2020.
dc.relation.referencesV. Mali, B. Tripathi, K. Kumar, S. Dwivedi, and R. Behera, “Exploring various topology using dc-dc converter in hybrid energy storage system for electric vehicles,” in IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 2022, pp. 1–6.
dc.relation.referencesM. A. Takrouri, S. M. Ayob, N. R. N. Idris, M. J. A. Aziz, R. Ayop, and M. F. B. M. Said, “Comparative analysis of passive and semi-active hybrid energy storage system topologies for electric vehicle,” in 2023 IEEE Conference on Energy Conversion (CENCON), 2023, pp. 75–80.
dc.relation.referencesT. Rout, M. K. Maharana, A. Chowdhury, and S. Samal, “A comparative study of stand-alone photo-voltaic system with battery storage system and battery supercapacitor storage system,” in 2018 4th International Conference on Electrical Energy Systems (ICEES), 2018, pp. 77–81.
dc.relation.referencesI. Shchur and Y. Biletskyi, “Interconnection and damping assignment passivity-based control of semi-active and active battery/supercapacitor hybrid energy storage systems for stand-alone photovoltaic installations,” in 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), 2018, pp. 324–329.
dc.relation.referencesY. Tong, I. Salhi, Q. Wang, G. Lu, and S. Wu, “Bidirectional dc-dc converter topologies for hybrid energy storage systems in electric vehicles: A comprehensive review,” Energies, vol. 18, 2025.
dc.relation.referencesK. Tytelmaier, O. Husev, O. Veligorskyi, and R. Yershov, “A review of non-isolated bidirectional dc-dc converters for energy storage systems,” in 2016 II International Young Scientists Forum on Applied Physics and Engineering (YSF), 2016, pp. 22–28.
dc.relation.referencesN. A. Al-Obaidi, R. A. Abbas, and H. F. Khazaal, “A review of non-isolated bidirectional dc-dc converters for hybrid energy storage system,” in 2022 5th International Conference on Engineering Technology and its Applications (IICETA), 2022, pp. 248–253.
dc.relation.referencesL. C. J. Alejandro, “Control de convertidores de potencia para un sistema híbrido de almacenamiento de energía en aplicaciones de microrredes residenciales,” 2020-11-25.
dc.relation.referencesD. W. Hart, Electrónica de Potencia. México: Pearson Educación, 2011.
dc.relation.referencesF. Krismer, “Modeling and optimization of bidirectional dual active bridge dc-dc converter topologies,” 2010.
dc.relation.referencesS. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional dc–dc power converters: An overview,” IEEE Access, vol. 7, pp. 117 997– 118 019, 2019.
dc.relation.referencesR. K. Kanaparthi, J. P. Singh, and M. S. Ballal, “A review on multi-port bidirectional isolated and non-isolated dc-dc converters for renewable applications,” in 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2022, pp. 1–6.
dc.relation.referencesS. Rahman, H. Shehada, and I. A. Khan, “Review of isolated dc-dc converters for applications in data center power delivery,” in 2023 IEEE Texas Power and Energy Conference (TPEC), 2023, pp. 1–6.
dc.relation.referencesR. D. Doncker, D. M. Divan, and M. H. Kheraluwala, “A three-phase soft-switched high-power-density dc/dc converter for high-power applications,” IEEE Transactions on Industry Applications, vol. 27, pp. 63–73, 1991.
dc.relation.referencesF. Yang, “Design and simulation of a 10kw high-efficiency dual active bridge converter,” Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS), 2023.
dc.relation.referencesI. R. Erni, E. Vidal-Idiarte, J. Calvente, and L. Guasch-Pesquer, “Small signal modelling for variable frequency control with maximum efficiency point tracking of dab converter,” IEEE Access, vol. 9, pp. 85 289–85 299, 2021.
dc.relation.referencesImperix. (2025) Dab converter control - implementation. Accedido el 24 de julio de 2025.
dc.relation.referencesT. S. Babu, K. R. Vasudevan, V. K. Ramachandaramurthy, S. B. Sani, S. Chemud, and R. M. Lajim, “A comprehensive review of hybrid energy storage systems: Converter topologies, control strategies and future prospects,” IEEE Access, vol. 8, 2020.
dc.relation.referencesQ. Xu, X. Hu, P. Wang, J. Xiao, P. Tu, C. Wen, and M. Y. Lee, “A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous dc microgrid,” IEEE Transactions on Industrial Electronics, vol. 64, 2017.
dc.relation.referencesQ. Xu, J. Xiao, X. Hu, P. Wang, and M. Y. Lee, “A decentralized power management strategy for hybrid energy storage system with autonomous bus voltage restoration and state-of-charge recovery,” IEEE Transactions on Industrial Electronics, vol. 64, 2017.
dc.relation.referencesY. Bai, Q. Li, X. Zhang, Z. Wang, H. Yi, and Y. Liu, “A decentralized power coordination strategy for battery/supercapacitor in dc microgrids,” 2023.
dc.relation.referencesM. Zhang, Q. Xu, C. Zhang, L. Nordstrom, and F. Blaabjerg, “Decentralized coordination and stabilization of hybrid energy storage systems in dc microgrids,” IEEE Transactions on Smart Grid, vol. 13, 2022.
dc.relation.referencesA. Narvaez, C. Cortes, and C. Trujillo, “Real-time frequency-decoupling control for a hybrid energy storage system in an active parallel topology connected to a residential microgrid with intermittent generation,” vol. 915, 2018.
dc.relation.referencesA. Latorre, C. A. Cortes, and W. Martinez, “Ems for bidirectional boost converters of a of a hybrid energy storage system for residential microgrid applications,” 2018.
dc.relation.referencesA. Latorre, W. Martinez, and C. A. Cortes, “Average current control with internal model control and real-time frequency decoupling for hybrid energy storage systems in microgrids,” Journal of Modern Power Systems and Clean Energy, vol. 11, 2023.
dc.relation.referencesQ. Song, J. Chen, J. Chen, and G. Chen, “Completely decentralized energy management system for fuel cell-battery-ultracapacitor hybrid energy storage system,” IEEE Transactions on Industrial Electronics, vol. 71, 2024.
dc.relation.referencesY. Zhang and Y. W. Li, “Energy management strategy for supercapacitor in droopcontrolled dc microgrid using virtual impedance,” IEEE Transactions on Power Electronics, vol. 32, 2017.
dc.relation.referencesT. S. Babu, K. R. Vasudevan, V. K. Ramachandaramurthy, S. B. Sani, S. Chemud, and R. M. Lajim, “A comprehensive review of hybrid energy storage systems: Converter topologies, control strategies and future prospects,” IEEE Access, vol. 8, 2020.
dc.relation.referencesI. Aharon and A. Kuperman, “Design of semi-active battery-ultracapacitor hybrids,” in 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel, 2010, pp. 000 593–000 597.
dc.relation.referencesC. Lerman, A. Horosov, and A. Kuperman, “Capacitor semi-active batteryultracapacitor hybrid energy source,” in 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, 2012, pp. 1–4.
dc.relation.referencesV. Yuhimenko, C. Lerman, and A. Kuperman, “Dc active power filter-based hybrid energy source for pulsed power loads,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 1001–1010, 2015.
dc.relation.referencesE. M. Asensio, G. A. Magallán, and C. H. De Angelo, “Control de un sistema híbrido de almacenamiento de energía para vehículos eléctricos,” in 2014 IEEE Biennial Congress of Argentina (ARGENCON), 2014, pp. 570–575.
dc.relation.referencesY. Kozhushko, T. Karbivska, D. Pavković, and O. Bondarenko, “Peak current control of battery-supercapacitor hybrid energy storage,” in 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), 2020, pp. 396–401.
dc.relation.referencesP. Bhattacharyya, A. Banerjee, S. Sen, S. K. Giri, and S. Sadhukhan, “A modified semi-active topology for battery-ultracapacitor hybrid energy storage system for ev applications,” in 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 2020, pp. 1–6.
dc.relation.referencesQ. Zhang and G. Li, “Experimental study on a semi-active battery-supercapacitor hybrid energy storage system for electric vehicle application,” IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 1014–1021, 2020.
dc.relation.referencesM. Asensio, G. Magallán, and C. De Angelo, “Control por modos deslizantes de un sistema híbrido de almacenamiento de energía para vehículos eléctricos,” in 2016 IEEE Biennial Congress of Argentina (ARGENCON), 2016, pp. 1–6.
dc.relation.referencesA. Russo and A. Cavallo, “Supercapacitor stability and control for more electric aircraft application,” in 2020 European Control Conference (ECC), 2020, pp. 1909–1914.
dc.relation.referencesJ. P. Trovao, M. R. Dubois, O. Gomozov, X. Kestelyn, and A. Bouscayrol, “A model predictive control with non-uniform sampling times for a hybrid energy storage system in electric vehicle application,” in 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), 2015, pp. 1–6.
dc.relation.referencesF. Yi, D. Lu, X. Wang, C. Pan, Y. Tao, J. Zhou, and C. Zhao, “Energy management strategy for hybrid energy storage electric vehicles based on pontryagin’s minimum principle considering battery degradation,” Sustainability, vol. 14, 2022.
dc.relation.referencesF. Fracica-Rodriguez, M. Acevedo-Iles, D. Romero-Quete, W. Martinez, and C. A. Cortes, “Passivity-based control for transient power sharing and state of charge restoration in a semi-active supercapacitor-battery system,” Batteries, vol. 10, no. 9, 2024.
dc.relation.referencesQ. Xu, J. Xiao, P. Wang, X. Pan, and C. Wen, “A decentralized control strategy for autonomous transient power sharing and state-of-charge recovery in hybrid energy storage systems,” IEEE Transactions on Sustainable Energy, vol. 8, no. 4, pp. 1443–1452, 2017.
dc.relation.referencesR. Ortega and E. García-Canseco, “Interconnection and damping assignment passivitybased control: A survey,” European Journal of Control, vol. 10, pp. 432–450, 1 2004.
dc.relation.referencesR. Ortega, J. A. Loria Perez, P. J. Nicklasson, and H. J. Sira-Ramirez, Passivity-based Control of Euler–Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, 1st ed., ser. Communications and Control Engineering. London: Springer London, 1998.
dc.relation.referencesC. A. Beltrán, L. H. Diaz-Saldierna, D. Langarica-Cordoba, and P. R. Martinez- Rodriguez, “Passivity-based control for output voltage regulation in a fuel cell/boost converter system,” Micromachines, vol. 14, 2023.
dc.relation.referencesS. Bacha, I. Munteanu, and A. I. Bratcu, Power Electronic Converters Modeling and Control: with Case Studies, 1st ed., ser. Advanced Textbooks in Control and Signal Processing. London: Springer, 2013.
dc.relation.referencesB. Sparn, D. Krishnamurthy, A. Pratt, M. Ruth, and H. Wu, “Hardware-in-the-loop (hil) simulations for smart grid impact studies,” in 2018 IEEE Power Energy Society General Meeting (PESGM), 2018, pp. 1–5.
dc.relation.referencesL.-A. Grégoire, K. Al-Haddad, and G. Nanjundaiah, “Hardware-in-the-loop (hil) to reduce the development cost of power electronic converters,” in India International Conference on Power Electronics 2010 (IICPE2010), 2011, pp. 1–6.
dc.relation.referencesW. Li, G. Joos, and J. Belanger, “Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1137–1145, 2010.
dc.relation.referencesC. Flack, E. Ucer, C. P. Smith, and M. Kisacikoglu, “Controller hardware-in-the-loop (c-hil) testing of decentralized ev-grid integration,” in 2022 IEEE Power Energy Society General Meeting (PESGM), 2022, pp. 01–05.
dc.relation.referencesN. D. Marks, W. Y. Kong, and D. S. Birt, “Stability of a switched mode power amplifier interface for power hardware-in-the-loop,” IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8445–8454, 2018.
dc.relation.referencesW. Ren, M. Steurer, and T. L. Baldwin, “Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms,” in 2007 IEEE/IAS Industrial Commercial Power Systems Technical Conference, 2007, pp. 1–7.
dc.relation.referencesG. F. Lauss, M. O. Faruque, K. Schoder, C. Dufour, A. Viehweider, and J. Langston, “Characteristics and design of power hardware-in-the-loop simulations for electrical power systems,” IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 406–417, 2016.
dc.relation.referencesM. Asensio, G. Magallán, G. Amaya, and C. D. Angelo, “Efficiency and performance analysis of battery-ultracapacitor based semi-active hybrid energy systems for electric vehicles,” IEEE Latin America Transactions, vol. 16, pp. 2581–2590, 2018.
dc.relation.referencesZ. Cabrane and S. H. Lee, “Electrical and mathematical modeling of supercapacitors: Comparison,” Energies, vol. 15, 2022.
dc.relation.referencesA. Viehweider, G. Lauss, and L. Felix, “Stabilization of power hardware-in-the-loop simulations of electric energy systems,” Simulation Modelling Practice and Theory, vol. 19, pp. 1699–1708, 8 2011.
dc.relation.referencesF. Fracica-Rodriguez, M. Acevedo-Iles, D. Romero-Quete, W. Martinez, and C. Cortes, “Simulink model for a hybrid energy storage system in semi-active topology,” https: //github.com/ffracica/PBC-semiactive-HESS.git, 2024, accessed on 1 July 2024.
dc.relation.referencesC. W. T. McLyman, Transformer and Inductor Design Handbook, 4th ed. CRC Press, 2011.
dc.relation.referencesS. Shao, L. Chen, Z. Shan, F. Gao, H. Chen, D. Sha, and T. Dragiˇcevi´c, “Modeling and advanced control of dual-active-bridge dc–dc converters: A review,” IEEE Transactions on Power Electronics, vol. 37, no. 2, pp. 1524–1547, 2022.
dc.relation.referencesPowerTech Systems, “Lfp solid state battery 48v 53ah 2.71kwh powerbrick,” 2023, accedido: 5 de agosto de 2025.
dc.relation.referencesLicap Technologies, “Sm0165-048-ath ultracapacitor module,” 2023, accedido: 5 de agosto de 2025.
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.subject.lembAlmacenamiento de energíaspa
dc.subject.lembMétodos de simulaciónspa
dc.subject.proposalAlmacenamiento de energía híbridospa
dc.subject.proposalSupercondensadorspa
dc.subject.proposalSimulación en tiempo realspa
dc.subject.proposalConvertidor de potenciaspa
dc.subject.proposalMicrorredspa
dc.subject.proposalHybrid energy storageeng
dc.subject.proposalHardware in the loopeng
dc.subject.proposalPower convertereng
dc.subject.proposalMicrogrideng
dc.subject.wikidataSupercondensadorspa
dc.subject.wikidataSupercapacitoreng
dc.titleEstrategia descentralizada de gestión de un supercapacitor para microrredesspa
dc.title.translatedDecentralized management strategy for a supercapacitor in microgridseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisMaestriaFinal_FabianFracica.pdf
Tamaño:
16.63 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: