Diseño de cargador Off-Board para conexión domiciliaria de vehículos eléctricos a nivel nacional y control del fenómeno de burbujeo en inversores electrónicos de potencia

dc.contributor.advisorAngulo García, Fabiola
dc.contributor.advisorMorcillo Bastidas, José Daniel
dc.contributor.authorAbella Ángel, Anderson Fabian
dc.contributor.researchgroupPercepción y Control Inteligente (Pci)spa
dc.date.accessioned2023-02-20T19:35:30Z
dc.date.available2023-02-20T19:35:30Z
dc.date.issued2021
dc.descriptiongraficas, tablasspa
dc.description.abstractEn esta tesis de maestría se realizan 2 estudios, en el primero de ellos se plantea el diseño de un cargador off-board para vehículos eléctricos afianzado al nivel eléctrico residencial de 120 V en Colombia. Este permite realizar la carga de la batería de alta tensión del vehículo con corriente directa, logrando de esta manera un tiempo de carga menor y una potencia de carga más alta estando desde casa. Para desarrollar esta propuesta se realiza una metodología que va desde el diseño de la inductancia, hasta la selección del capacitor y demás dispositivos de la electrónica de potencia. Los resultados permiten destacar el cumplimiento de los requerimientos internacionales para este tipo de aplicaciones, como lo son: factor de potencia, eficiencia del cargador y distorsión armónica total de la corriente de entrada, sin considerar la inductancia de la red eléctrica y considerándola. El segundo estudio está relacionado con un fenómeno conocido como burbujeo, el cual ha afectado a los convertidores de potencia en general; no obstante, se presenta una estrategia de control que elimina el fenómeno y no requiere un cambio físico del sistema, comprobada en varios inversores de potencia monofásicos, aislados y de puente completo, la cual funciona aumentando la frecuencia de conmutación a un nivel establecido por medio de análisis de señales temporales. En medio de las pruebas se detecta un comportamiento oscilatorio en los diagramas de bifurcaciones donde se varía la frecuencia de conmutación, relacionado con el punto de muestreo establecido en cada sistema y el periodo de la señal de referencia. (Texto tomado de la fuente)spa
dc.description.abstractIn this work 2 studies are carried out, in the first one, the design of an off-board charger for electric vehicles is proposed, anchored to the residential electric level of 120 V in Colombia. This allows charging the high voltage battery of the vehicle with direct current, thus achieving a shorter charging time and a higher charging power being from home. In order to develop this proposal, a methodology that goes from the design of the inductance to the selection of the capacitor and other devices of the power electronics is carried out. The results allow highlighting the compliance with international requirements for this type of applications, such as: power factor, charger efficiency, and total harmonic distortion of the input current, without considering the inductance of the electrical network and considering it. The second study is related to a phenomenon known as bubbling, which has affected power converters in general; however, a control strategy is presented that eliminates the phenomenon and does not require a physical change of the system, tested in several single-phase, isolated, and full-bridge power inverters, which works by increasing the switching frequency to a set level by means of time signal analysis. In the middle of the tests, an oscillatory behavior is detected in the bifurcation diagrams where the switching frequency is varied, related to the sampling point established in each system and the period of the reference signal.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaAnálisis de Sistemas Dinámicos, Análisis Numérico y Electrónica de Potenciaspa
dc.format.extentxvi, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83530
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAbdel-rahman, S. and Persson, E. (2019). CoolGaN™ Totem-Pole PFC Design Guide and Power Loss Modeling. Infi neon Technologies, pages 1-23.spa
dc.relation.referencesAG, E. (2018). Ceramic Capacitor Technology CeraLink™ Opens New Dimensions in Power Electronics.spa
dc.relation.referencesANDEMOS (2020). Informe Vehículos HEV, PHEV y BEV. Technical report.spa
dc.relation.referencesAvrutin, V., Morcillo, J. D., Zhusubaliyev, Z. T., and Angulo, F. (2017). Bubbling in a Power Electronic Inverter: Onset, Development and Detection. Chaos, Solitons and Fractals, 104:135-152.spa
dc.relation.referencesBaboselac, I., Bensic, T., and Hederic, Z. (2017). Matlab Simulation Model for Dynamic Mode of the Lithium-Ion Batteries to Power the EV. Tehnicki glasnik, 11(1-2):7-13.spa
dc.relation.referencesBattery University (2018). Charging Lithium-ion.spa
dc.relation.referencesBolognani, S. and Zampieri, S. (2013). A Distributed Control Strategy for Reactive Power Compensation in Smart Microgrids. IEEE Transactions on Automatic Control, 58(11):2818-2833.spa
dc.relation.referencesBrandt, K., Schulthei, J., and Schweizer-Berberich, M. (2019). Managing of Risk by Battery Manufacturers. In Electrochemical Power Sources: Fundamentals, Systems, and Applications Li-Battery Safety, chapter 8B, pages 303-335.spa
dc.relation.referencesBriane, B. and Loudot, S. (2011). Rapid Reversible Charging Device for an Electric Vehicle. US 2011/0254494 A1.spa
dc.relation.referencesCelsia (2020). Nuestra Apuesta por la Movilidad Sostenible.spa
dc.relation.referencesCentelsa (2021). Alambres Magneto.spa
dc.relation.referencesChan, C. C. (2013). The Rise & Fall of Electric Vehicles in 1828-1930: Lessons Learned. Proceedings of the IEEE, 101(1):206-212.spa
dc.relation.referencesChau, K. T. (2014). Pure Electric Vehicles. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, chapter 21, pages 655-684. Elsevier Ltd.spa
dc.relation.referencesChellappan, S. (2018). A Comparative Analysis of Topologies for a Bridgeless-Boost PFC Circuit. Analog Design Journal, pages 1-5.spa
dc.relation.referencesChen, A. (2019). How to Properly Evaluate Junction Temperature with Thermal Metrics. Texas Instruments Application Report SLUA844B, pages 1-12.spa
dc.relation.referencesCheng, H., Chen, W., Wang, C., and Deng, J. (2018). Open Circuit Fault Diagnosis and Fault Tolerance of Three-Phase Bridgeless Recti er. Electronics (Switzerland), 7(11):1.spa
dc.relation.referencesCocconi, A. G. (1994). Combined Motor Drive and Battery Recharge System. US Patent 5,341,075.spa
dc.relation.referencesCongreso de Colombia (2019). Ley 1964.spa
dc.relation.referencesCREG (2005). Gestión del Flujo de Potencia Reactiva.spa
dc.relation.referencesDávila Márquez, L. R. (2014). Relaciones entre las Variables del Circuito Eléctrico, en el Dominio del Tiempo y en el Dominio de la Frecuencia, para Elementos Generadores y Elementos de Carga.spa
dc.relation.referencesDelta Electronics (2019). OBC + APM Combo.spa
dc.relation.referencesDinero (2019). ¿Vale la Pena Comprar un Carro Eléctrico?spa
dc.relation.referencesDreipelcher, W. (2014). Faster Switching in Inverters.spa
dc.relation.referencesEPM (2012). Guía para Seleccionar el Calibre y Protección de la Acometida para Usuario Final Nivel de Tensión 1.spa
dc.relation.referencesEPM (2019). Instalación de Estaciones de Carga para Vehículos Eléctricos.spa
dc.relation.referencesETA (2020). High Voltage Relay - Hybrid and Powerful.spa
dc.relation.referencesEVCompare (2021a). Electric Car Charging Cost and Time Calculator.spa
dc.relation.referencesEVCompare (2021b). Mercado de EVs.spa
dc.relation.referencesEVSpeci cations (2021). Electric Vehicle Speci cations.spa
dc.relation.referencesFigueiredo, J. P. M., Tofoli, F. L., and Silva, B. L. A. (2010). A review of single-phase PFC topologies based on the boost converter. 2010 9th IEEE/IAS International Conference on Industry Applications, INDUSCON 2010.spa
dc.relation.referencesFincan, B., Yilmaz, M., Goynusen, A., and Erenay, H. K. (2017). Design and Optimization of a High Power Density and E ciency Boost PFC. Balkan Journal of Electrical and Computer Engineering, 5(2):50-59.spa
dc.relation.referencesFord (2019). Ventajas de los Carros Eléctricos.spa
dc.relation.referencesGaN (2018). GN003 Application Note: Measurement Techniques for High-Speed GaN E-HEMTs. Technical report.spa
dc.relation.referencesGaN (2020). GN001 Application Note: An Introduction to GaN Enhancement-mode HEMTs. Technical report.spa
dc.relation.referencesGegner, J. P. and Lee, C. Q. (1996). Linear Peak Current Mode Control: A Simple Active Power Factor Correction Control Technique for Continuous Conduction Mode. 27th Annual IEEE Power Electronics Specialists Conference, 1:196-202.spa
dc.relation.referencesGohari, H. S., Abbaszadeh, K., and Gorji, J. G. (2020). A novel O -Board Interleaved Charger for EVs with G2H/G2VH/V2H Functions and Capable of Controlling Reactive Power. 2020 28th Iranian Conference on Electrical Engineering, ICEE 2020.spa
dc.relation.referencesGong, X. and Rangaraju, J. (2020). Taking Charge of Electric Vehicles { Both in the Vehicle and on the Grid. Texas Instruments, pages 1-13.spa
dc.relation.referencesGraovac, D., P urschel, M., and Andreas, K. (2006). MOSFET Power Losses Calculation Using the Data-Sheet Parameters. In neon Technologies AG, pages 1-23.spa
dc.relation.referencesGurpinar, E. and Castellazzi, A. (2016). Single-Phase T-Type Inverter Performance. IEEE Transactions on Power Electronics, 31(10):7148-7160.spa
dc.relation.referencesHabib, S., Mansoor Khan, M., Abbas, F., and Tang, H. (2018). Assessment of Electric Vehicles Concerning Impacts , Charging Infrastructure with Unidirectional and Bidirectional Chargers , and Power Flow Comparisons. Energy Research, pages 1-26.spa
dc.relation.referencesHaghbin, S., Khan, K., Lundmark, S., Alak ula, M., Carlson, O., Leksell, M., and Wallmark, O. (2010). Integrated Chargers for EV's and PHEV's: Examples and New Solutions. 19th International Conference on Electrical Machines, ICEM 2010.spa
dc.relation.referencesHannan, M. A., Hoque, M. M., Hussain, A., Yusof, Y., and Ker, P. J. (2018). State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access, 6:19362-19378.spa
dc.relation.referencesHart, D. W. (2010). Power Electronics. McGraw-Hill Education.spa
dc.relation.referencesHauser, A. and Kuhn, R. (2015). High-Voltage Battery Management Systems (BMS) for Electric Vehicles. In Advances in Battery Technologies for Electric Vehicles, chapter 11, pages 265-282. Elsevier Ltd.spa
dc.relation.referencesHerrmann, H. and Bucksch, H. (2015). Powder Core. Dictionary Geotechnical Engineering/ W orterbuch GeoTechnik, page 104.spa
dc.relation.referencesHuang, Z., Lam, C.-s., Member, S., Mak, P.-i., Paulo, R., Wong, S.-c., Member, S., and Tse, C. K. (2020). A Single-Stage Inductive-Power-Transfer Converter for Constant-Power and Maximum-Eficiency Battery Charging. IEEE Transactions on Power Electronics, 35(9):8973-8984.spa
dc.relation.referencesHurley, W. G. and Wolfle, W. H. (2013). Transformers and Inductors for Power Electronics.spa
dc.relation.referencesHussein, B., Abdi, N., and Massoud, A. (2020). Design of a Three-phase Isolated SEPIC-Based Off- Board Fast Charger for Electric Vehicles. ISCAIE 2020 - IEEE 10th Symposium on Computer Applications and Industrial Electronics, pages 145-150.spa
dc.relation.referencesIberdrola (2018). Efectos Ambientales de la Producción y Distribución de Energía Eléctrica: Acciones para su Control y Corrección.spa
dc.relation.referencesICONTEC (1998). Codigo Eléctrico Colombiano.spa
dc.relation.referencesIEA (2020). Tracking Clean Energy Progress. Technical report, Paris.spa
dc.relation.referencesIT (2020). CoolSiC ™ Schottky diodes 650V G5 y G6.spa
dc.relation.referencesJappe, T. K., Lohn, M. K., and Mussa, S. A. (2019). GaN-Based Single-Phase Bridgeless PFC Boost Recti er. The Journal of Engineering, 2019(17):3614--3617.spa
dc.relation.referencesKaufhold, E., Meyer, J., and Schegner, P. (2020). Impact of Grid Impedance and their Resonance on the Stability of Single-Phase PV-Inverters in Low Voltage Grids. IEEE International Symposium on Industrial Electronics, 2020-June:880-885.spa
dc.relation.referencesKerr, J. (2014). Microsemi SiC Products.spa
dc.relation.referencesKesler, M., Kisacikoglu, M. C., and Tolbert, L. M. (2014). Vehicle-to-grid reactive power operation using plug-in electric vehicle bidirectional o board charger. IEEE Transactions on Industrial Electronics, 61(12):6778-6784.spa
dc.relation.referencesKhaligh, A. and Antonio, M. D. (2019). Global Trends in High-Power On-Board Chargers for Electric Vehicles. IEEE Transactions on Vehicular Technology, 68(4):3306-3324.spa
dc.relation.referencesKhaligh, A. and Tang, Y. (2018). Integrated Dual-Output Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) On-Board Charger for Plug-in Electric Vehicles. US 2018/0222333 A1.spa
dc.relation.referencesKonrad, J., Koini, M., Schossmann, M., and Puff, M. (2014). New Demands on DC Link Power Capacitors. Congress on Automotive Electronic Systems - 3rd and 4th, (Diciembre):1-6.spa
dc.relation.referencesLenka, R. K., Naik N, V., Panda, A. K., Tiwary, N., and Dash, A. R. (2021). Reactive Power Compensation using Vehicle-to- Grid enabled Bidirectional Off-Board EV Battery Charger. 1st International Conference on Power Electronics and Energy.spa
dc.relation.referencesLi, H., Zhang, X., Zhang, Z., Yao, C., Qi, F., Hu, B., Wang, J., and Liu, L. (2016). Design of a 10 kW GaN-Based High Power Density Three-Phase Inverter. ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings.spa
dc.relation.referencesLi, M., Dai, D., Xikui, M., and Iu, H. H. C. (2008). Fast-Scale Period-Doubling Bifurcation in Voltage-Mode Controlled Full-Bridge Inverter. Proceedings - IEEE International Symposium on Circuits and Systems, pages 2829-2832.spa
dc.relation.referencesLiu, P., Chen, C., Zhang, X., and Huang, S. (2019). Online Junction Temperature Estimation Method for SiC Modules With Built-in NTC Sensor. CPSS Transactions on Power Electronics and Applications, 4(1):94-99.spa
dc.relation.referencesLoudot, S., Briane, B., Ploix, O., and Villeneuve, A. (2012). Fast Charging Device for an Eletric Vehicle. US 2012/028674.0 A1.spa
dc.relation.referencesLunz, B. and Sauer, D. U. (2015). Electric Road Vehicle Battery Charging Systems and Infrastructure. In Advances in battery technologies for electric vehicles, chapter 17, pages 445-467. Elsevier Ltd.spa
dc.relation.referencesLyon, W. (1933). Reactive Power and Power Factor Power. Electrical Engineering, 52(5):342.spa
dc.relation.referencesMagnetics (2019). AmoFlux.spa
dc.relation.referencesMarmaras, C., Xydas, E., and Cipcigan, L. (2017). Simulation of Electric Vehicle Driver Behaviour in Road Transport and Electric Power Networks. Transportation Research Part C: Emerging Technologies, 80:239-256.spa
dc.relation.referencesMartínez, E. I. (2019). Tipos de Cables Usados para Instalaciones Eléctricas.spa
dc.relation.referencesMartínez-Lao, J., Montoya, F. G., Montoya, M. G., and Manzano-Agugliaro, F. (2017). Electric vehicles in Spain: An overview of charging systems. Renewable and Sustainable Energy Reviews, 77(November 2016):970-983.spa
dc.relation.referencesMathWorks (2008). Library S-R Flip-Flop.spa
dc.relation.referencesMathWorks (2017). Library Battery.spa
dc.relation.referencesMetwly, M. Y., Abdel-Majeed, M. S., Abdel-Khalik, A. S., Hamdy, R. A., Hamad, M. S., and Ahmed, S. (2020). A Review of Integrated On-Board EV Battery Chargers: Advanced Topologies, Recent Developments and Optimal Selection of FSCW Slot/Pole Combination. IEEE Access, 8:85216-85242.spa
dc.relation.referencesMobility House (2021). Charging Time Summary for EVs.spa
dc.relation.referencesMohan, N., M. Undeland, T., and P. Robbins, W. (2003). Power Electronics: Converters, Applications, and Design. John Wiley & Sons, Inc., third edition.spa
dc.relation.referencesMonteiro, V., Ferreira, J. C., Melendez, A. A., Afonso, J. A., Couto, C., and Afonso, J. L. (2019). Experimental Validation of a Bidirectional Three-Level dc-dc Converter for On-Board or O -Board EV Battery Chargers. IECON Proceedings (Industrial Electronics Conference), 2019-Octob(i):3468-3473.spa
dc.relation.referencesMonteiro, V., Ferreira, J. C., Nogueiras Melendez, A. A., Couto, C., and Afonso, J. L. (2018a). Experimental Validation of a Novel Architecture Based on a Dual-Stage Converter for O -Board Fast Battery Chargers of Electric Vehicles. IEEE Transactions on Vehicular Technology, 67(2):1000-1011.spa
dc.relation.referencesMonteiro, V., Sousa, T. J., Afonso, J. A., and Afonso, J. L. (2018b). Innovative Off-Board EV Home Charging Station as a Smart Home Enabler: Present and Proposed Perspectives. Proceedings - IEEE 16th International Conference on Industrial Informatics, INDIN 2018, pages 966-971.spa
dc.relation.referencesMunari, B. and Schneer, A. (2020). How To Design a Precharge Circuit for Hybrid and Electric Vehicle Applications.spa
dc.relation.referencesMwasilu, F., Justo, J. J., Kim, E. K., Do, T. D., and Jung, J. W. (2014). Electric Vehicles and Smart Grid Interaction: A Review on Vehicle to Grid and Renewable Energy Sources Integration. Renewable and Sustainable Energy Reviews, 34(June):501-516.spa
dc.relation.referencesNassary, M., Orabi, M., and El Aroudi, A. (2020). Single-Loop Control Scheme for Electrolytic Capacitor- Less AC{DC Recti ers with PFC in Continuous Conduction Mode. Electronics Letters, 56(10):506-508.spa
dc.relation.referencesNeI (2019). ¿Cómo y Dónde Recargar Vehículos Eléctricos?spa
dc.relation.referencesNichicon (2015). General Description of Aluminum Electrolytic Capacitors.spa
dc.relation.referencesNissan (2018). Nissan Leaf.spa
dc.relation.referencesNussbaumer, T., Raggl, K., and Kolar, J. W. (2009). Design guidelines for interleaved single-phase boost PFC circuits. IEEE Transactions on Industrial Electronics, 56(7):2559-2573.spa
dc.relation.referencesOgata, K. (2010). Ingeniería de control moderna.spa
dc.relation.referencesONU (2016). ONU Propone Sistemas de Transporte Sostenibles.spa
dc.relation.referencesOta, Y., Taniguchi, H., Suzuki, H., Nakajima, T., Baba, J., and Yokoyama, A. (2012). Implementation of Grid-Friendly Charging Scheme to Electric Vehicle Off-Board Charger for V2G. IEEE PES Innovative Smart Grid Technologies Conference Europe, pages 1-6.spa
dc.relation.referencesPérez, D. (2017). Gran Conquista de la Energía Limpia.spa
dc.relation.referencesPersson, E. (2018). In neon CoolGaN™. In neon, pages 1-17.spa
dc.relation.referencesPoon, N. K., Pong, B. M., and Tse, C. K. (2003). A Constant-Power Battery Charger with Inherent Soft Switching and Power Factor Correction. IEEE Transactions on Power Electronics, 18(6):1262-1269.spa
dc.relation.referencesPressman, A. I., Billings, K., and Morey, T. (2009). Switching Power Supply Design Rules, volume 72. The McGraw-Hill Companies.spa
dc.relation.referencesRaff, R., Golub, V., Pelin, D., and Topic, D. (2019). Overview of Charging Modes and Connectors for the Electric Vehicles. 7th International Youth Conference on Energy, IYCE 2019.spa
dc.relation.referencesRamakrishnan, H. and Rangaraju, J. (2020). Power Topology Considerations for Electric Vehicle Charging Stations. Technical report.spa
dc.relation.referencesRamírez, E. (2008). Distorsión Armónica.spa
dc.relation.referencesRashid, M. H., Vázquez, N., and Vaquero-López, J. (2018). Power Electronics Handbook. Elsevier Inc., fourth edition.spa
dc.relation.referencesRenault (2018). Renault Zoe.spa
dc.relation.referencesRippel, W. E. and Cocconi, A. G. (1992). Integrated Motor Drive and Recharge System. US Patent 5,099,186.spa
dc.relation.referencesRodrigues, M. d. C. B. P., de Oliveira, J. G., Ferreira, A. A., Barbosa, P. G., and Braga, H. A. C. (2014). Conexao de Veículos Elétricos a Rede de Energia Elétrica para Recarga de Baterias: Uma Visao Geral. Eletronica de Potencia, 19(2):194-207.spa
dc.relation.referencesRodríguez-Licea, M. A., Perez-Pinal, F. J., Soriano-Sánchez, A. G., and Vázquez-López, J. A. (2019). Noninvasive Vehicle-to-Load Energy Management Strategy to Prevent Li-Ion Batteries Premature Degradation. Hindawi - Mathematical Problems in Engineering, 2019.spa
dc.relation.referencesRubino, L., Capasso, C., and Veneri, O. (2017). Review on Plug-in Electric Vehicle Charging Architectures Integrated with Distributed Energy Sources for Sustainable Mobility. Applied Energy, 207:438-464.spa
dc.relation.referencesRubycon (2008). Performance of Aluminium Electrolytic Capacitors.spa
dc.relation.referencesRubycon Corporation (2017). Life of Aluminum Electrolytic Capacitors.spa
dc.relation.referencesSchmidt, O., Thomitzek, M., R oder, F., Thiede, S., Herrmann, C., and Krewer, U. (2020). Modeling the Impact of Manufacturing Uncertainties on Lithium-Ion Batteries. Journal of The Electrochemical Society, 167(060501):15.spa
dc.relation.referencesSeth, A. K. and Singh, M. (2021). Control of Two-Stage OFF-Board Electric Vehicle Charger. 1st International Conference on Power Electronics and Energy IEEE, pages 4-9.spa
dc.relation.referencesShankar, D. P., Govindarajan, U., and Karunakaran, K. (2013). Period-Bubbling and Mode-Locking Instabilities in a Full-Bridge DC-AC Buck Inverter. IET Power Electronics, 6(9):1956-1970.spa
dc.relation.referencesShepherd, C. M. (1963). Theoretical Design of Primary and Secondary Cells Part III - Battery Discharge Equation. Technical report, Electrochemistry Branch Chemistry Division.spa
dc.relation.referencesShi, C., Tang, Y., and Khaligh, A. (2018). A Three-Phase Integrated On-board Charger for Plug-In Electric Vehicles. IEEE Transactions on Power Electronics, 33(6):4716-4725.spa
dc.relation.referencesSoldano, M. (2005). Bridge-Less Boost (BLB) Power Factor Correction Topology Controlled With One Cycle Control. WO 2005/033819 A2.spa
dc.relation.referencesST (2011). Calculation of Conduction Losses in a Power Recti er. STMicroelectronics AN-604, pages 1{12.spa
dc.relation.referencesST (2012). Calculation of Reverse Losses in a Power Diode. STMicroelectronics AN-4021, pages 1-10.spa
dc.relation.referencesStyles, J. (2019). Common Misconceptions about the MOSFET Body Diode.spa
dc.relation.referencesSubotic, I., Bodo, N., and Levi, E. (2016a). Single-Phase On-Board Integrated Battery Chargers for EVs Based on Multiphase Machines. IEEE Transactions on Power Electronics, 31(9):6511-6523.spa
dc.relation.referencesSubotic, I., Bodo, N., Levi, E., Dumnic, B., Milicevic, D., and Katic, V. (2016b). Overview of Fast On-Board Integrated Battery Chargers for Electric Vehicles Based on Multiphase Machines and Power Electronics. IET Electric Power Applications, 10(3):217-229.spa
dc.relation.referencesSujitha, N. and Krithiga, S. (2017). RES Based EV Battery Charging System : A Review. Renewable and Sustainable Energy Reviews, 75(July 2016):978-988.spa
dc.relation.referencesTang, Y., Lu, J., Wu, B., Zou, S., Ding, W., and Khaligh, A. (2018). An Integrated Dual-Output Isolated Converter for Plug-in Electric Vehicles. IEEE Transactions on Vehicular Technology, 67(2):966-976.spa
dc.relation.referencesTao, J. (2017). Power Factor Correction (PFC) Topology Comparison.spa
dc.relation.referencesTDK (2016). Aluminum Electrolytic Capacitors General Technical Information.spa
dc.relation.referencesTesla (2020). Battery Day. Technical report, Tesla.spa
dc.relation.referencesThimmesch, D. (1985). An SCR Inverter with an Integral Battery Charger for Electric Vehicles. IEEE Transactions on Industry Applications, IA-21(4):1023-1029.spa
dc.relation.referencesThompson, A. W. and Perez, Y. (2019). Vehicle-to-Anything ( V2X ) Energy Services , Value Streams , and Regulatory Policy Implications. HAL, 1:29.spa
dc.relation.referencesTI (1999). Understanding Buck Power Stages in Switchmode Power Supplies. Texas Instruments, page 36.spa
dc.relation.referencesTI (2020). 98.6% Effciency, 6.6-kW Totem-Pole PFC Reference Design for HEV/EV Onboard Charger. Texas Instruments Designs, pages 1-72.spa
dc.relation.referencesTomaszewska, A., Chu, Z., Feng, X., O'Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M., Marinescu, M., Offer, G., and Wu, B. (2019). Lithium-ion Battery Fast Charging: A Review. eTransportation, 1(100011):28.spa
dc.relation.referencesUPME (2019). Establecer Recomendaciones en Materia de Infraestructura de Recarga para la Movilidad Eléctrica en Colombia para los Diferentes Segmentos: Buses, motos, taxis, BRT.spa
dc.relation.referencesVerma, A. and Singh, B. (2017). Three Phase O -Board Bi-directional Charger for EV with V2G Functionality. 2017 7th International Conference on Power Systems, ICPS 2017, pages 145-150.spa
dc.relation.referencesVerma, A. and Singh, B. (2019). Multi-Objective Recon gurable Three-Phase Off-Board Charger for EV. IEEE Transactions on Industry Applications, 55(4):4192-4203.spa
dc.relation.referencesWang, H. (2016). Capacitors in Power Electronics Applications{Reliability and Circuit Design. IECON, pages 1-82.spa
dc.relation.referencesWare, J. (2006). Power Factor Correction. IEE Wiring Matters, page 3.spa
dc.relation.referencesWei, L., Lukaszewski, R. A., Wijenayake, A. H., Krause, P., and Loth, M. (2010). Power Electronic Module Pre-charge System and Method. US Patent 7,830,036 B2.spa
dc.relation.referencesWei, Y. (2018). A High Frequency, High Efficiency, High Power Factor Isolated On-board Battery Charger for Electric Vehicles. Theses and dissertations. 1949, University of Wisconsin Milwaukee.spa
dc.relation.referencesWirtz, J. (2011). On-Board Vs . Off-Board Charging.spa
dc.relation.referencesWood, P. (2006). BridgeLess Boost Converter With PFC circuit. W0 2006/105247 A2.spa
dc.relation.referencesYilmaz, M. and Krein, P. T. (2013). Review of Battery Charger Topologies , Charging Power Levels , and Infrastructure for Plug-in Electric and Hybrid Vehicles. IEEE Transactions on Power Electronics, 28(5):2151-2169.spa
dc.relation.referencesYong, J. Y., Fazeli, S. M., Ramachandaramurthy, V. K., and Tan, K. M. (2017). Design and Development of a Three-Phase Off-Board Electric Vehicle Charger Prototype for Power Grid Voltage Regulation. Energy, 133:128-141.spa
dc.relation.referencesZehendner, M. and Ulmann, M. (2016). Power Topologies Handbook.spa
dc.relation.referencesZhang, D., Kang, S., Lin, H., and Lv, Z. (2016). Application of Predictive Current Control Based Multi- Pulse Flexible-Topology Thyristor Recti er in O -Board Battery Charger for Electric Vehicle. 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 - Proceedings, (51407151):1-5.spa
dc.relation.referencesZhang, S. S. (2006). The Effect of the Charging Protocol on the Cycle Life of a Li-ion Battery. Journal of Power Sources, 161(2):1385-1391.spa
dc.relation.referencesZhou, B., Lai, J.-S., Ha, D. S., and Nelson, D. J. (2014). CCM Totem-Pole Bridgeless PFC with Ultra-Fast IGBT. Maestría en ingeniería eléctrica, Instituto Politécnico y Universidad Estatal de Virginia.spa
dc.relation.referencesZhusubaliyev, Z. T., Mosekilde, E., Andriyanov, A. I., and Shein, V. V. (2014). Phase Synchronized Quasiperiodicity in Power Electronic Inverter Systems. Physica D, 268:14-24.spa
dc.relation.referencesZou, S., Lu, J., Mallik, A., and Khaligh, A. (2018). Modeling and Optimization of an Integrated Transformer for Electric Vehicle On-Board Charger Applications. IEEE Transactions on Transportation Electri cation, 4(2):355-363.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembCircuitos eléctricosspa
dc.subject.proposalCargador off-boardspa
dc.subject.proposalVehículos eléctricosspa
dc.subject.proposalFactor de potenciaspa
dc.subject.proposalEficienciaspa
dc.subject.proposalDistorsión armónica totalspa
dc.subject.proposalFenómeno de burbujeospa
dc.subject.proposalInversores de potenciaspa
dc.subject.proposalFrecuencia de conmutaciónspa
dc.subject.proposalComportamiento oscilatoriospa
dc.subject.proposalOff-board chargereng
dc.subject.proposalElectric vehicleseng
dc.subject.proposalPower factoreng
dc.subject.proposalEfficiencyeng
dc.subject.proposalTotal harmonic distortioneng
dc.subject.proposalBubbling phenomenoneng
dc.subject.proposalPower inverterseng
dc.subject.proposalSwitching frequencyeng
dc.subject.proposalOscillatory behavioreng
dc.titleDiseño de cargador Off-Board para conexión domiciliaria de vehículos eléctricos a nivel nacional y control del fenómeno de burbujeo en inversores electrónicos de potenciaspa
dc.title.translatedDesign of an Off-Board charger for domestic connection of electric vehicles at national level and control of the bubbling phenomenon in electronic power inverterseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1090492089.2022.pdf
Tamaño:
21.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: