Método de Aprendizaje de Máquina para la subclasificación del Cáncer de Mama Triple Negativo
dc.contributor.advisor | Niño Vasquez, Luis Fernando | |
dc.contributor.advisor | Parra Lopez, Carlos Alberto | |
dc.contributor.author | Padilla Fino, David Santiago | |
dc.contributor.cvlac | 0002020596 | spa |
dc.contributor.researchgroup | Inmunología y Medicina Traslacional (IM&T) | spa |
dc.contributor.researchgroup | Laboratorio de Investigación en Sistemas Inteligentes (LISI) | spa |
dc.date.accessioned | 2025-04-09T14:55:49Z | |
dc.date.available | 2025-04-09T14:55:49Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El cáncer de mama triple negativo es el subtipo de cáncer mama con peor pronóstico clínico. Esta característica se ha asociado a la dificultad de desarrollar tratamientos específicos, debido a su elevada diversidad molecular. Aunque se han realizado múltiples esfuerzos de clasificación, estos no han logrado proporcionar una solución efectiva para diseñar terapias más dirigidas. No obstante, en los últimos años, los avances en el uso de herramientas como la transcriptómica y el aprendizaje de máquinas han abierto nuevas posibilidades para abordar este desafío. En este trabajo, se emplearon datos de secuenciación del transcriptoma junto con técnicas de aprendizaje de máquinas para optimizar y generar una nueva clasificación del cáncer de mama triple negativo, resaltando su relevancia tanto desde el punto de vista clínico como biológico (Texto tomado de la fuente) | spa |
dc.description.abstract | Triple-negative breast cancer is the breast cancer subtype with the worst clinical prognosis. This characteristic has been associated with the difficulty of developing specific treatments due to its high molecular diversity. Although multiple classification efforts have been made, they have not been able to provide an effective solution for designing more targeted therapies. However, in recent years, advances in the use of tools such as transcriptomics and machine learning have opened new possibilities for addressing this challenge. In this work, transcriptome sequencing data were used along with machine learning techniques to optimize and generate a new classification of triple-negative breast cancer, highlighting its relevance from both clinical and biological perspectives. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Tecnologías computacionales en Bioinformática | spa |
dc.format.extent | xii, 79 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87911 | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Bioinformática | spa |
dc.relation.references | Aarhus, M.; Lund-Johansen, M. & Knappskog, P. M.: , 2011; Gene expression profiling of meningiomas: current status after a decade of microarray-based transcriptomic studies; Acta Neurochirurgica; 153 (3): 447--456; doi:10.1007/s00701-010-0906-0; URL http://dx.doi.org/10.1007/s00701-010-0906-0. | spa |
dc.relation.references | Abdolrasol, M. G. M.; Hussain, S. M. S.; Ustun, T. S.; Sarker, M. R.; Hannan, M. A.; Mohamed, R.; Ali, J. A.; Mekhilef, S. & Milad, A.: , 2021; Artificial neural networks based optimization techniques: A review; Electronics; 10 (21): 2689; doi:10.3390/electronics10212689; URL http://dx.doi.org/10.3390/electronics10212689. | spa |
dc.relation.references | Abrams, Z. B.; Johnson, T. S.; Huang, K.; Payne, P. R. O. & Coombes, K.: , 2019; A protocol to evaluate rna sequencing normalization methods; BMC Bioinformatics; 20 (S24); doi:10.1186/s12859-019-3247-x; URL http://dx.doi. org/10.1186/s12859-019-3247-x. | spa |
dc.relation.references | Akin, M.; Cinkaya, A. & Sengul, A.: , 2016; Evaluation of treatment outcomes of triple-negative breast cancer; Journal of Cancer Research and Therapeutics; 12 (1): 150; doi:10.4103/0973-1482.154000; URL http://dx.doi.org/10.4103/ 0973-1482.154000. | spa |
dc.relation.references | Alberts, B.; Heald, R.; Johnson, A.; Morgan, D.; Raff, M.; Roberts, K. & Walter, P.: , 2022; Molecular Biology of the Cell; W. W. Norton & Company. | spa |
dc.relation.references | Alinejad, V.; Dolati, S.; Motallebnezhad, M. & Yousefi, M.: , 2017; The role of il17b-il17rb signaling pathway in breast cancer; Biomedicine & Pharmacotherapy; 88: 795--803; doi:10.1016/j.biopha.2017.01.120; URL http://dx.doi.org/ 10.1016/j.biopha.2017.01.120. | spa |
dc.relation.references | Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A. & Aljaaf, A. J.: , 2019; A systematic review on supervised and unsupervised machine learning algorithms for data science; en Unsupervised and Semi-Supervised Learning; Springer International Publishing; ISBN 9783030224745; págs. 3--21; doi:10.1007/978-3-030-22475-2_1; URL http://dx.doi.org/10. 1007/978-3-030-22475-2_1. | spa |
dc.relation.references | Alyass, A.; Turcotte, M. & Meyre, D.: , 2015; From big data analysis to personalized medicine for all: challenges and opportunities; BMC Medical Genomics; 8 (1); doi:10.1186/s12920-015-0108-y; URL http://dx.doi.org/10.1186/ s12920-015-0108-y | spa |
dc.relation.references | Anders, S.; Pyl, P. T. & Huber, W.: , 2014; Htseq – a python framework to work with high-throughput sequencing data; doi:10.1101/002824; URL http://dx.doi.org/10.1101/002824. | spa |
dc.relation.references | Andrzejczak, A. & Karabon, L.: , 2024; Btla biology in cancer: from bench discoveries to clinical potentials; Biomarker Research; 12 (1); doi:10.1186/s40364-024-00556-2; URL http://dx.doi.org/10.1186/s40364-024-00556-2. | spa |
dc.relation.references | Angerer, P.; Simon, L.; Tritschler, S.; Wolf, F. A.; Fischer, D. & Theis, F. J.: , 2017; Single cells make big data: New challenges and opportunities in transcriptomics; Current Opinion in Systems Biology; 4: 85--91; doi:10.1016/j.coisb.2017.07. 004; URL http://dx.doi.org/10.1016/j.coisb.2017.07.004. | spa |
dc.relation.references | Animesh, S.; Ren, X.; An, O.; Chen, K.; Lee, S. C.; Yang, H. & Fullwood, M. J.: , 2022; Exploring the neoantigen burden in breast carcinoma patients; bioRxiv; doi:10.1101/2022.03.03.482669; URL https://www.biorxiv.org/content/ early/2022/03/04/2022.03.03.482669. | spa |
dc.relation.references | Aniogo, E. C.; Plackal Adimuriyil George, B. & Abrahamse, H.: , 2019; The role of photodynamic therapy on multidrug resistant breast cancer; Cancer Cell International; 19 (1); doi:10.1186/s12935-019-0815-0; URL http://dx.doi.org/10. 1186/s12935-019-0815-0. | spa |
dc.relation.references | Aparicio, B.; Repáraz, D.; Ruiz, M.; Llopiz, D.; Silva, L.; Vercher, E.; Theunissen, P.; Tamayo, I.; Smerdou, C.; Igea, A.; Santisteban, M.; Gónzalez-Deza, C.; Lasarte, J. J.; Hervás-Stubbs, S. & Sarobe, P.: , 2022; Identification of hla class i-restricted immunogenic neoantigens in triple negative breast cancer; Frontiers in Immunology; 13; doi:10.3389/fimmu.2022.985886; URL https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu. 2022.985886. | spa |
dc.relation.references | Bae, J. S.; Lee, J. W.; Yoo, J. E.; Joung, J.-G.; Yoo, K. H.; Koo, H. H.; Song, Y.-M. & Sung, K. W.: , 2020; Genomewide association study for the identification of novel genetic variants associated with the risk of neuroblastoma in korean children; Cancer Research and Treatment; doi:10.4143/crt.2020.140; URL http://dx.doi.org/10.4143/crt.2020.140. | spa |
dc.relation.references | Barbierato, E. & Gatti, A.: , 2024; The challenges of machine learning: A critical review; Electronics; 13 (2): 416; doi:10.3390/electronics13020416; URL http://dx.doi.org/10.3390/electronics13020416. | spa |
dc.relation.references | Bareche, Y.; Venet, D.; Ignatiadis, M.; Aftimos, P.; Piccart, M.; Rothe, F. & Sotiriou, C.: , 2018; Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis; Annals of Oncology; 29 (4): 895--902; doi:10.1093/annonc/mdy024; URL http://dx.doi.org/10.1093/annonc/mdy024. | spa |
dc.relation.references | Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M. H.; Moradi-Kalbolandi, S.; Safari, E. & Farahmand, L.: , 2020; Breast cancer: Biology, biomarkers, and treatments; International Immunopharmacology; 84: 106535; doi:10.1016/j.intimp.2020.106535; URL http://dx.doi.org/10.1016/j.intimp.2020.106535. | spa |
dc.relation.references | Bastian, M.; Heymann, S. & Jacomy, M.: , 2009; Gephi: An open source software for exploring and manipulating networks; Proceedings of the International AAAI Conference on Web and Social Media; 3 (1): 361--362; doi:10.1609/icwsm.v3i1.13937; URL http://dx.doi.org/10.1609/icwsm.v3i1.13937. | spa |
dc.relation.references | Bastid, J.; Dejou, C.; Docquier, A. & Bonnefoy, N.: , 2020; The emerging role of the il-17b/il-17rb pathway in cancer; Frontiers in Immunology; 11; doi:10.3389/fimmu.2020.00718; URL http://dx.doi.org/10.3389/fimmu.2020.00718. | spa |
dc.relation.references | Bayrak, E. A.; Kirci, P. & Ensari, T.: , 2019; Comparison of machine learning methods for breast cancer diagnosis; 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science (EBBT); IEEE; doi:10.1109/ebbt.2019.8741990; URL http://dx.doi.org/10.1109/EBBT.2019.8741990. | spa |
dc.relation.references | Bei, Y.; Cheng, N.; Chen, T.; Shu, Y.; Yang, Y.; Yang, N.; Zhou, X.; Liu, B.; Wei, J.; Liu, Q.; Zheng, W.; Zhang, W.; Su, H.; Zhu, W.; Ji, J. & Shen, P.: , 2020; Cdk5 inhibition abrogates tnbc stem-cell property and enhances anti-pd-1 therapy; Advanced Science; 7 (22); doi:10.1002/advs.202001417; URL http://dx.doi.org/10.1002/advs.202001417. | spa |
dc.relation.references | Ben Azzouz, F.; Michel, B.; Lasla, H.; Gouraud, W.; François, A.-F.; Girka, F.; Lecointre, T.; Guérin-Charbonnel, C.; Juin, P. P.; Campone, M. & Jézéquel, P.: , 2021; Development of an absolute assignment predictor for triplenegative breast cancer subtyping using machine learning approaches; Computers in Biology and Medicine; 129: 104171; doi:10.1016/j.compbiomed.2020.104171; URL http://dx.doi.org/10.1016/j.compbiomed.2020.104171. | spa |
dc.relation.references | Bera, T. K.; Iavarone, C.; Kumar, V.; Lee, S.; Lee, B. & Pastan, I.: , 2002; Mrp9, an unusual truncated member of the abc transporter superfamily, is highly expressed in breast cancer; Proceedings of the National Academy of Sciences; 99 (10): 6997--7002; doi:10.1073/pnas.102187299; URL http://dx.doi.org/10.1073/pnas.102187299. | spa |
dc.relation.references | Berahmand, K.; Daneshfar, F.; Salehi, E. S.; Li, Y. & Xu, Y.: , 2024; Autoencoders and their applications in machine learning: a survey; Artificial Intelligence Review; 57 (2); doi:10.1007/s10462-023-10662-6; URL http://dx.doi.org/10. 1007/s10462-023-10662-6. | spa |
dc.relation.references | Bernemann, C.; Hülsewig, C.; Ruckert, C.; Schäfer, S.; Blümel, L.; Hempel, G.; Götte, M.; Greve, B.; Barth, P. J.; Kiesel, L. & Liedtke, C.: , 2014; Influence of secreted frizzled receptor protein 1 (sfrp1) on neoadjuvant chemotherapy in triple negative breast cancer does not rely on wnt signaling; Molecular Cancer; 13 (1): 174; doi:10.1186/1476-4598-13-174; URL http://dx.doi.org/10.1186/1476-4598-13-174. | spa |
dc.relation.references | Bianchini, G.; Balko, J. M.; Mayer, I. A.; Sanders, M. E. & Gianni, L.: , 2016; Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease; Nature Reviews Clinical Oncology; 13 (11): 674--690; doi:10.1038/nrclinonc. 2016.66; URL https://doi.org/10.1038/nrclinonc.2016.66. | spa |
dc.relation.references | Bissanum, R.; Chaichulee, S.; Kamolphiwong, R.; Navakanitworakul, R. & Kanokwiroon, K.: , 2021; Molecular classification models for triple negative breast cancer subtype using machine learning; Journal of Personalized Medicine; 11 (9): 881; doi:10.3390/jpm11090881; URL http://dx.doi.org/10.3390/jpm11090881 | spa |
dc.relation.references | Borin, T.; Angara, K.; Rashid, M.; Achyut, B. & Arbab, A.: , 2017; Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis; International Journal of Molecular Sciences; 18 (12): 2661; doi:10.3390/ijms18122661; URL http://dx.doi.org/10.3390/ijms18122661. | spa |
dc.relation.references | Bradford, J. R.; Cox, A.; Bernard, P. & Camp, N. J.: , 2016; Consensus analysis of whole transcriptome profiles from two breast cancer patient cohorts reveals long non-coding rnas associated with intrinsic subtype and the tumour microenvironment; PLOS ONE; 11 (9): 1--18; doi:10.1371/journal.pone.0163238; URL https://doi.org/10.1371/journal.pone.0163238. | spa |
dc.relation.references | Bray, F.; Laversanne, M.; Weiderpass, E. & Soerjomataram, I.: , 2021; The ever-increasing importance of cancer as a leading cause of premature death worldwide; Cancer; 127 (16): 3029--3030; doi:10.1002/cncr.33587; URL http: //dx.doi.org/10.1002/cncr.33587. | spa |
dc.relation.references | Britt, K. L.; Cuzick, J. & Phillips, K.-A.: , 2020; Key steps for effective breast cancer prevention; Nature Reviews Cancer; 20 (8): 417--436; doi:10.1038/s41568-020-0266-x; URL http://dx.doi.org/10.1038/s41568-020-0266-x. | spa |
dc.relation.references | Brown, S. R.; Vomhof-DeKrey, E. E.; Al-Marsoummi, S.; Brown, N. D.; Hermanson, K. & Basson, M. D.: , 2023; Schlafen family intra-regulation by ifn-alpha2 in triple-negative breast cancer; Cancers; 15 (23): 5658; doi:10.3390/ cancers15235658; URL http://dx.doi.org/10.3390/cancers15235658 | spa |
dc.relation.references | Bruno, R. D. & Njar, V. C.: , 2007; Targeting cytochrome p450 enzymes: A new approach in anti-cancer drug development; Bioorganic & Medicinal Chemistry; 15 (15): 5047--5060; doi:10.1016/j.bmc.2007.05.046; URL http://dx.doi.org/10.1016/ j.bmc.2007.05.046. | spa |
dc.relation.references | Burstein, M. D.; Tsimelzon, A.; Poage, G. M.; Covington, K. R.; Contreras, A.; Fuqua, S. A.; Savage, M. I.; Osborne, C. K.; Hilsenbeck, S. G.; Chang, J. C.; Mills, G. B.; Lau, C. C. & Brown, P. H.: , 2015; Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer; Clinical Cancer Research; 21 (7): 1688--1698; doi:10.1158/1078-0432.ccr-14-0432; URL http://dx.doi.org/10.1158/1078-0432.CCR-14-0432. | spa |
dc.relation.references | Cambiaghi, V.; Giuliani, V.; Lombardi, S.; Marinelli, C.; Toffalorio, F. & Pelicci, P. G.: , 2012; Trim proteins in cancer; en Advances in Experimental Medicine and Biology; Springer New York; ISBN 9781461453970; págs. 77--91; doi:10.1007/978-1-4614-5398-7_6; URL http://dx.doi.org/10.1007/978-1-4614-5398-7_6. | spa |
dc.relation.references | Cao, W.; Jiang, Y.; Ji, X.; Guan, X.; Lin, Q. & Ma, L.: , 2021; Identification of novel prognostic genes of triple-negative breast cancer using meta-analysis and weighted gene co-expressed network analysis; Annals of Translational Medicine; 9 (3): 205--205; doi:10.21037/atm-20-5989; URL http://dx.doi.org/10.21037/atm-20-5989. | spa |
dc.relation.references | Celià-Terrassa, T. & Kang, Y.: , 2024; How important is emt for cancer metastasis?; PLOS Biology; 22 (2): e3002487; doi:10.1371/journal.pbio.3002487; URL http://dx.doi.org/10.1371/journal.pbio.3002487. | spa |
dc.relation.references | Chang, Z.; Zhang, Y.; Fan, J.; Zhang, L.; Liu, S.; Liu, G. & Tu, J.: , 2022; The potential effects and mechanisms of breast inflammatory lesions on the occurrence and development of breast cancer; Frontiers in Oncology; 12; doi: 10.3389/fonc.2022.932743; URL https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.932743. | spa |
dc.relation.references | CHEN, C.; LIANG, Z.; HUANG, W.; LI, X.; ZHOU, F.; HU, X.; HAN, M.; DING, X. & XIANG, S.: , 2014; Eps8 regulates cellular proliferation and migration of breast cancer; International Journal of Oncology; 46 (1): 205--214; doi:10.3892/ijo.2014.2710; URL http://dx.doi.org/10.3892/ijo.2014.2710. | spa |
dc.relation.references | Chen, F.; Li, Y.; Qin, N.; Wang, F.; Du, J.; Wang, C.; Du, F.; Jiang, T.; Jiang, Y.; Dai, J.; Hu, Z.; Lu, C. & Shen, H.: , 2020a; Rna-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer; The Journal of Biomedical Research; 34 (2): 129; doi:10.7555/jbr.34.20190111; URL http://dx.doi.org/10.7555/ JBR.34.20190111. | spa |
dc.relation.references | Chen, L.; Han, S.; Li, Y.; Zheng, Y. & Zhang, Q.: , 2022; Sez6l2, regulated by usf1, accelerates the growth and metastasis of breast cancer; Experimental Cell Research; 417 (1): 113194; doi:10.1016/j.yexcr.2022.113194; URL http: //dx.doi.org/10.1016/j.yexcr.2022.113194. | spa |
dc.relation.references | Chen, Y.; Jiang, T.; Zhang, H.; Gou, X.; Han, C.; Wang, J.; Chen, A. T.; Ma, J.; Liu, J.; Chen, Z.; Jing, X.; Lei, H.; Wang, Z.; Bao, Y.; Baqri, M.; Zhu, Y.; Bindra, R. S.; Hansen, J. E.; Dou, J.; Huang, C. & Zhou, J.: , 2020b; Lrrc31 inhibits dna repair and sensitizes breast cancer brain metastasis to radiation therapy; Nature Cell Biology; 22 (10): 1276--1285; doi:10.1038/s41556-020-00586-6; URL http://dx.doi.org/10.1038/s41556-020-00586-6. | spa |
dc.relation.references | Chen, Z.; Wang, M.; De Wilde, R. L.; Feng, R.; Su, M.; Torres-de la Roche, L. A. & Shi, W.: , 2021; A machine learning model to predict the triple negative breast cancer immune subtype; Frontiers in Immunology; 12; doi:10.3389/fimmu.2021.749459; URL http://dx.doi.org/10.3389/fimmu.2021.749459. | spa |
dc.relation.references | Clusan, L.; Ferrière, F.; Flouriot, G. & Pakdel, F.: , 2023; A basic review on estrogen receptor signaling pathways in breast cancer; International Journal of Molecular Sciences; 24 (7); doi:10.3390/ijms24076834; URL https://www.mdpi.com/ 1422-0067/24/7/6834. | spa |
dc.relation.references | Crompton, B. D.; Stewart, C.; Taylor-Weiner, A.; Alexe, G.; Kurek, K. C.; Calicchio, M. L.; Kiezun, A.; Carter, S. L.; Shukla, S. A.; Mehta, S. S.; Thorner, A. R.; de Torres, C.; Lavarino, C.; Suñol, M.; McKenna, A.; Sivachenko, A.; Cibulskis, K.; Lawrence, M. S.; Stojanov, P.; Rosenberg, M.; Ambrogio, L.; Auclair, D.; Seepo, S.; Blumenstiel, B.; DeFelice, M.; Imaz-Rosshandler, I.; Schwarz-Cruz y Celis, A.; Rivera, M. N.; Rodriguez-Galindo, C.; Fleming, M. D.; Golub, T. R.; Getz, G.; Mora, J. & Stegmaier, K.: , 2014; The genomic landscape of pediatric ewing sarcoma; Cancer Discovery; 4 (11): 1326--1341; doi:10.1158/2159-8290.cd-13-1037; URL http://dx.doi.org/10.1158/2159-8290.CD-13-1037. | spa |
dc.relation.references | Dafni, U.; Tsourti, Z. & Alatsathianos, I.: , 2019; Breast cancer statistics in the european union: Incidence and survival across european countries; Breast Care; 14 (6): 344--353; doi:10.1159/000503219; URL http://dx.doi.org/10.1159/000503219. | spa |
dc.relation.references | De Castro Korgi, R.: , 2010; El Universo LaTeX; Universidad Nacional de Colombia, Bogota DC; 2a edición; ISBN 958701060-4. | spa |
dc.relation.references | de Guia, J. M.; Devaraj, M. & Leung, C. K.: , 2019; Deepgx; ASONAM ’19: International Conference on Advances in Social Networks Analysis and Mining; ACM; doi:10.1145/3341161.3343516; URL http://dx.doi.org/10.1145/3341161.3343516 | spa |
dc.relation.references | De Palma, F. D. E.; Del Monaco, V.; Pol, J. G.; Kremer, M.; D’Argenio, V.; Stoll, G.; Montanaro, D.; Uszczyńska-Ratajczak, B.; Klein, C. C.; Vlasova, A.; Botti, G.; D’Aiuto, M.; Baldi, A.; Guigó, R.; Kroemer, G.; Maiuri, M. C. & Salvatore, F.: , 2020; The abundance of the long intergenic non-coding rna 01087 differentiates between luminal and triple-negative breast cancers and predicts patient outcome; Pharmacological Research; 161: 105249; doi:10.1016/j.phrs.2020.105249; URL http://dx.doi.org/10.1016/j.phrs.2020.105249. | spa |
dc.relation.references | Dent, R.; Trudeau, M.; Pritchard, K. I.; Hanna, W. M.; Kahn, H. K.; Sawka, C. A.; Lickley, L. A.; Rawlinson, E.; Sun, P. & Narod, S. A.: , 2007; Triple-negative breast cancer: Clinical features and patterns of recurrence; Clinical Cancer Research; 13 (15): 4429--4434; doi:10.1158/1078-0432.ccr-06-3045; URL http://dx.doi.org/10.1158/1078-0432. CCR-06-3045. | spa |
dc.relation.references | Developers, T.: , 2024; TensorFlow; Zenodo; doi:10.5281/ZENODO.4724125; URL https://zenodo.org/doi/10.5281/zenodo. 4724125. | spa |
dc.relation.references | Ding, L.; Zeng, J. & Zhao, J.: , 2023; Overexpression of sez6l2 is associated with unfavourable prognosis and immune infiltrates in breast cancer; doi:10.21203/rs.3.rs-2661875/v1; URL http://dx.doi.org/10.21203/rs.3.rs-2661875/v1. | spa |
dc.relation.references | Dobin, A.; Davis, C. A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M. & Gingeras, T. R.: , 2012; Star: ultrafast universal rna-seq aligner; Bioinformatics; 29 (1): 15--21; doi:10.1093/bioinformatics/bts635; URL http://dx.doi.org/10.1093/bioinformatics/bts635. | spa |
dc.relation.references | Echavarria, I.; López-Tarruella, S.; Picornell, A.; García-Saenz, J. A.; Jerez, Y.; Hoadley, K.; Gómez, H. L.; Moreno, F.; Monte-Millan, M. D.; Márquez-Rodas, I.; Alvarez, E.; Ramos-Medina, R.; Gayarre, J.; Massarrah, T.; Ocaña, I.; Cebollero, M.; Fuentes, H.; Barnadas, A.; Ballesteros, A. I.; Bohn, U.; Perou, C. M. & Martin, M.: , 2018; Pathological Response in a Triple-Negative Breast Cancer Cohort Treated with Neoadjuvant Carboplatin and Docetaxel According to Lehmann’s Refined Classification; Clinical Cancer Research; 24 (8): 1845--1852; doi:10.1158/ 1078-0432.CCR-17-1912; URL https://doi.org/10.1158/1078-0432.CCR-17-1912 | spa |
dc.relation.references | Elango, R.; Vishnubalaji, R.; Shaath, H. & Alajez, N. M.: , 2021; Molecular subtyping and functional validation of ttk, tpx2, ube2c, and lrp8 in sensitivity of tnbc to paclitaxel; Molecular Therapy - Methods & Clinical Development; 20: 601--614; doi:10.1016/j.omtm.2021.01.013; URL http://dx.doi.org/10.1016/j.omtm.2021.01.013. | spa |
dc.relation.references | Ensenyat-Mendez, M.; Llinàs-Arias, P.; Orozco, J. I. J.; Íñiguez Muñoz, S.; Salomon, M. P.; Sesé, B.; DiNome, M. L. & Marzese, D. M.: , 2021; Current triple-negative breast cancer subtypes: Dissecting the most aggressive form of breast cancer; Frontiers in Oncology; 11; doi:10.3389/fonc.2021.681476; URL http://dx.doi.org/10.3389/fonc.2021.681476. | spa |
dc.relation.references | Esmaeili, M.; Mirzaahmadi, S. & Asaadi Tehrani, G.: , 2019; Evaluation of additional abcc12 gene expression character in breast cancer samples using formal diagnostic profile; Gene, Cell and Tissue; In Press (In Press); doi:10.5812/gct.84392; URL http://dx.doi.org/10.5812/gct.84392. | spa |
dc.relation.references | Feldner-Busztin, D.; Firbas Nisantzis, P.; Edmunds, S. J.; Boza, G.; Racimo, F.; Gopalakrishnan, S.; Limborg, M. T.; Lahti, L. & de Polavieja, G. G.: , 2023; Dealing with dimensionality: the application of machine learning to multiomics data; Bioinformatics; 39 (2); doi:10.1093/bioinformatics/btad021; URL http://dx.doi.org/10.1093/bioinformatics/ btad021. | spa |
dc.relation.references | Foulkes, W. D.; Smith, I. E. & Reis-Filho, J. S.: , 2010; Triple-negative breast cancer; New England Journal of Medicine; 363 (20): 1938--1948; doi:10.1056/NEJMra1001389; URL https://www.nejm.org/doi/full/10.1056/NEJMra1001389. | spa |
dc.relation.references | Gu, W.; Qi, G. & Chen, L.: , 2023; Spib knockdown inhibits the immune escape of ovarian cancer cells by reducing pd-l1 cd274) expression and inactivating the jak/stat pathway; Iranian Journal of Immunology; (Online First); doi: 10.22034/iji.2023.98236.2559; URL https://doi.org/10.22034/iji.2023.98236.2559. | spa |
dc.relation.references | Guo, Y.; Chen, X.; Zhang, X. & Hu, X.: , 2023; Ube2s and ube2c confer a poor prognosis to breast cancer via downregulation of numb; Frontiers in Oncology; 13; doi:10.3389/fonc.2023.992233; URL http://dx.doi.org/10.3389/fonc.2023.992233. | spa |
dc.relation.references | Gyamfi, J.; Kim, J. & Choi, J.: , 2022; Cancer as a metabolic disorder; International Journal of Molecular Sciences; 23 (3): 1155; doi:10.3390/ijms23031155; URL http://dx.doi.org/10.3390/ijms23031155. | spa |
dc.relation.references | Győrffy, B.: , 2021; Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer; Computational and Structural Biotechnology Journal; 19: 4101--4109; doi:10.1016/j.csbj.2021.07.014; URL http://dx.doi.org/10.1016/j.csbj.2021.07.014. | spa |
dc.relation.references | Hagberg, A. A.; Schult, D. A. & Swart, P. J.: , 2008; Exploring network structure, dynamics, and function using networkx; en Proceedings of the 7th Python in Science Conference (Editado por Varoquaux, G.; Vaught, T. & Millman, J.); Pasadena, CA USA; págs. 11 -- 15. | spa |
dc.relation.references | Han, J.; Xie, R.; Yang, Y.; Chen, D.; Liu, L.; Wu, J. & Li, S.: , 2021; Cenpa is one of the potential key genes associated with the proliferation and prognosis of ovarian cancer based on integrated bioinformatics analysis and regulated by mybl2; Translational Cancer Research; 10 (9): 4076--4086; doi:10.21037/tcr-21-175; URL http://dx.doi.org/10.21037/ tcr-21-175. | spa |
dc.relation.references | Hanahan, D. & Weinberg, R.: , 2011; Hallmarks of cancer: The next generation; Cell; 144 (5): 646--674; doi:10.1016/j.cell. 2011.02.013; URL http://dx.doi.org/10.1016/j.cell.2011.02.013. | spa |
dc.relation.references | Hansen, E. & Read, A. F.: , 2020; Cancer therapy: Attempt cure or manage drug resistance?; Evolutionary Applications; 13 (7): 1660--1672; doi:10.1111/eva.12994; URL http://dx.doi.org/10.1111/eva.12994 | spa |
dc.relation.references | He, W. & Meng, J.: , 2023; Cdc20: a novel therapeutic target in cancer; American journal of translational research; 15 (2): 678--693. | spa |
dc.relation.references | He, Y.; Jiang, Z.; Chen, C. & Wang, X.: , 2018; Classification of triple-negative breast cancers based on immunogenomic profiling; Journal of Experimental and Clinical Cancer Research; 37 (1); doi:10.1186/s13046-018-1002-1; URL http: //dx.doi.org/10.1186/s13046-018-1002-1. | spa |
dc.relation.references | Hellec, C.; Delos, M.; Carpentier, M.; Denys, A. & Allain, F.: , 2018; The heparan sulfate 3-o-sulfotransferases (hs3st) 2, 3b and 4 enhance proliferation and survival in breast cancer mda-mb-231 cells; PLOS ONE; 13 (3): e0194676; doi:10.1371/journal.pone.0194676; URL http://dx.doi.org/10.1371/journal.pone.0194676. | spa |
dc.relation.references | Heo, K. & Lee, S.: , 2020; Tspan8 as a novel emerging therapeutic target in cancer for monoclonal antibody therapy; Biomolecules; 10 (3): 388; doi:10.3390/biom10030388; URL http://dx.doi.org/10.3390/biom10030388. | spa |
dc.relation.references | Hlaváč, V.; Brynychová, V.; Václavíková, R.; Ehrlichová, M.; Vrána, D.; Pecha, V.; Koževnikovová, R.; Trnková, M.; Gatěk, J.; Kopperová, D.; Gut, I. & Souček, P.: , 2013; The expression profile of atp-binding cassette transporter genes in breast carcinoma; Pharmacogenomics; 14 (5): 515--529; doi:10.2217/pgs.13.26; URL http: //dx.doi.org/10.2217/pgs.13.26. | spa |
dc.relation.references | Horvath, A.; Pakala, S. B.; Mudvari, P.; Reddy, S. D. N.; Ohshiro, K.; Casimiro, S.; Pires, R.; Fuqua, S. A. W.; Toi, M.; Costa, L.; Nair, S. S.; Sukumar, S. & Kumar, R.: , 2013; Novel insights into breast cancer genetic variance through rna sequencing; Scientific Reports; 3 (1): 2256; doi:10.1038/srep02256; URL https://doi.org/10.1038/srep02256. | spa |
dc.relation.references | Hou, P.; Luo, Y. & Wu, N.: , 2023; Tcl1a+ b cells predict prognosis in triple-negative breast cancer through integrative analysis of single-cell and bulk transcriptomic data; Open Life Sciences; 18 (1); doi:10.1515/biol-2022-0707; URL http: //dx.doi.org/10.1515/biol-2022-0707. | spa |
dc.relation.references | Huang, C.-K.; Yang, C.-Y.; Jeng, Y.-M.; Chen, C.-L.; Wu, H.-H.; Chang, Y.-C.; Ma, C.; Kuo, W.-H.; Chang, K.-J.; Shew, J.-Y. & Lee, W.-H.: , 2013; Autocrine/paracrine mechanism of interleukin-17b receptor promotes breast tumorigenesis through nf-kb-mediated antiapoptotic pathway; Oncogene; 33 (23): 2968--2977; doi:10.1038/onc.2013.268; URL http://dx.doi.org/10.1038/onc.2013.268. | spa |
dc.relation.references | Huang, N.; Sun, X.; Li, P.; liu, X.; Zhang, X.; Chen, Q. & Xin, H.: , 2022; Trim family contribute to tumorigenesis, cancer development, and drug resistance; Experimental Hematology & Oncology; 11 (1); doi:10.1186/s40164-022-00322-w; URL http://dx.doi.org/10.1186/s40164-022-00322-w. | spa |
dc.relation.references | Hubalek, M.; Czech, T. & Müller, H.: , 2017; Biological subtypes of triple-negative breast cancer; Breast care (Basel, Switzerland); 12 (1): 8--14; doi:10.1159/000455820; [Online; accessed 2024-10-22]. | spa |
dc.relation.references | Huertas-Caro, C. A.; Ramírez, M. A.; Rey-Vargas, L.; Bejarano-Rivera, L. M.; Ballen, D. F.; Nuñez, M.; Mejía, J. C.; Sua-Villegas, L. F.; Cock-Rada, A.; Zabaleta, J.; Fejerman, L.; Sanabria-Salas, M. C. & Serrano-Gomez, S. J.: , 2023; Tumor infiltrating lymphocytes (tils) are a prognosis biomarker in colombian patients with triple negative breast cancer; Scientific Reports; 13 (1); doi:10.1038/s41598-023-48300-4; URL http://dx.doi.org/10.1038/s41598-023-48300-4. | spa |
dc.relation.references | Janiesch, C.; Zschech, P. & Heinrich, K.: , 2021; Machine learning and deep learning; Electronic Markets; 31 (3): 685--695; doi:10.1007/s12525-021-00475-2; URL https://doi.org/10.1007/s12525-021-00475-2. | spa |
dc.relation.references | Jarrar, Y. B. & Lee, S.-J.: , 2019; Molecular functionality of cytochrome p450 4 (cyp4) genetic polymorphisms and their clinical implications; International Journal of Molecular Sciences; 20 (17): 4274; doi:10.3390/ijms20174274; URL http://dx.doi.org/10.3390/ijms20174274. | spa |
dc.relation.references | Jeong, S. M.; Bui, Q. T.; Kwak, M.; Lee, J. Y. & Lee, P. C.-W.: , 2022; Targeting cdc20 for cancer therapy; Biochimica et Biophysica Acta (BBA) - Reviews on Cancer; 1877 (6): 188824; doi:10.1016/j.bbcan.2022.188824; URL http://dx.doi.org/10.1016/j.bbcan.2022.188824. | spa |
dc.relation.references | Jia, W.; Chen, S.; Wei, R.; Yang, X.; Zhang, M.; Qian, Y.; Liu, H. & Lei, D.: , 2023; Cyp4f12 is a potential biomarker and inhibits cell migration of head and neck squamous cell carcinoma via emt pathway; Scientific Reports; 13 (1); doi:10.1038/s41598-023-37950-z; URL http://dx.doi.org/10.1038/s41598-023-37950-z. | spa |
dc.relation.references | Jiang, Y.; Liu, Y.; Tan, X.; Yu, S. & Luo, J.: , 2019; Tpx2 as a novel prognostic indicator and promising therapeutic target in triple-negative breast cancer; Clinical Breast Cancer; 19 (6): 450--455; doi:10.1016/j.clbc.2019.05.012; URL http://dx.doi.org/10.1016/j.clbc.2019.05.012 | spa |
dc.relation.references | Joshi, C. J.; Ke, W.; Drangowska-Way, A.; O’Rourke, E. J. & Lewis, N. E.: , 2022; What are housekeeping genes?; PLOS Computational Biology; 18 (7): e1010295; doi:10.1371/journal.pcbi.1010295; URL http://dx.doi.org/10.1371/ journal.pcbi.1010295. | spa |
dc.relation.references | Jézéquel, P.; Kerdraon, O.; Hondermarck, H.; Guérin-Charbonnel, C.; Lasla, H.; Gouraud, W.; Canon, J.-L.; Gombos, A.; Dalenc, F.; Delaloge, S.; Lemonnier, J.; Loussouarn, D.; Verrièle, V. & Campone, M.: , 2019; Identification of three subtypes of triple-negative breast cancer with potential therapeutic implications; Breast Cancer Research; 21 (1); doi:10.1186/s13058-019-1148-6; URL http://dx.doi.org/10.1186/s13058-019-1148-6. | spa |
dc.relation.references | Kahvejian, A.; Quackenbush, J. & Thompson, J. F.: , 2008; What would you do if you could sequence everything?; Nature Biotechnology; 26 (10): 1125--1133; doi:10.1038/nbt1494; URL http://dx.doi.org/10.1038/nbt1494. | spa |
dc.relation.references | Kalsotra, A. & Strobel, H. W.: , 2006; Cytochrome p450 4f subfamily: At the crossroads of eicosanoid and drug metabolism; Pharmacology & Therapeutics; 112 (3): 589--611; doi:10.1016/j.pharmthera.2006.03.008; URL http://dx.doi.org/10.1016/ j.pharmthera.2006.03.008. | spa |
dc.relation.references | Kanehisa, M.: , 2000; Kegg: Kyoto encyclopedia of genes and genomes; Nucleic Acids Research; 28 (1): 27--30; doi: 10.1093/nar/28.1.27; URL http://dx.doi.org/10.1093/nar/28.1.27. | spa |
dc.relation.references | Kang, S. Y.; Kim, Y. S.; Kim, Z.; Kim, H. Y.; Kim, H. J.; Park, S.; Bae, S. Y.; Yoon, K. H.; Lee, S. B.; Lee, S. K.; Jung, K.-W.; Han, J. & Youn, H. J.: , 2020; Breast cancer statistics in korea in 2017: Data from a breast cancer registry; Journal of Breast Cancer; 23 (2): 115; doi:10.4048/jbc.2020.23.e24; URL http://dx.doi.org/10.4048/jbc.2020.23.e24. | spa |
dc.relation.references | Karim, Z.; Zulkifli, N.; Sheikh Abdul Kadir, S.; Abd Khalil, K. & Musa, M.: , 2018; Emt markers gene expression in bpifb2 overexpressed gastric cancer cell lines; Annals of Oncology; 29: ix55; doi:10.1093/annonc/mdy432.026; URL http://dx.doi.org/10.1093/annonc/mdy432.026. | spa |
dc.relation.references | Kawano, Y. & Kypta, R.: , 2003; Secreted antagonists of the wnt signalling pathway; Journal of Cell Science; 116 (13): 2627--2634; doi:10.1242/jcs.00623; URL http://dx.doi.org/10.1242/jcs.00623. | spa |
dc.relation.references | Kim, J.-Y.; Park, S.; Cho, E. Y.; Lee, J. E.; Jung, H. H.; Chae, B. J.; Kim, S. W.; Nam, S. J.; Cho, S. Y.; Park, Y. H.; Ahn, J. S.; Lee, S. & Im, Y.-H.: , 2023; Genomic characteristics of triple negative apocrine carcinoma: a comparison to triple negative breast cancer; Experimental & Molecular Medicine; 55 (7): 1451--1461; doi:10.1038/s12276-023-01030-z; URL https://doi.org/10.1038/s12276-023-01030-z. | spa |
dc.relation.references | Komili, S. & Silver, P. A.: , 2008; Coupling and coordination in gene expression processes: a systems biology view; Nature Reviews Genetics; 9 (1): 38--48; doi:10.1038/nrg2223; URL http://dx.doi.org/10.1038/nrg2223. | spa |
dc.relation.references | Kou, T.; Kanai, M.; Matsumoto, S.; Okuno, Y. & Muto, M.: , 2016; The possibility of clinical sequencing in the management of cancer; Japanese Journal of Clinical Oncology; 46 (5): 399--406; doi:10.1093/jjco/hyw018; URL http: //dx.doi.org/10.1093/jjco/hyw018. | spa |
dc.relation.references | kumar, D. T. V.: , 2019; Classification of brain cancer type using machine learning; Journal of Artificial Intelligence and Capsule Networks; 2019 (2); doi:10.36548/jaicn.2019.2.006; URL http://dx.doi.org/10.36548/jaicn.2019.2.006. | spa |
dc.relation.references | Lamartine, J.: , 2006; The benefits of dna microarrays in fundamental and applied bio-medicine; Materials Science and Engineering: C; 26 (2-3): 354--359; doi:10.1016/j.msec.2005.10.068; URL http://dx.doi.org/10.1016/j.msec.2005.10.068. | spa |
dc.relation.references | Langfelder, P. & Horvath, S.: , 2008; Wgcna: an r package for weighted correlation network analysis; BMC Bioinformatics; 9 (1); doi:10.1186/1471-2105-9-559; URL http://dx.doi.org/10.1186/1471-2105-9-559. | spa |
dc.relation.references | Lehmann, B. D.; Bauer, J. A.; Chen, X.; Sanders, M. E.; Chakravarthy, A. B.; Shyr, Y. & Pietenpol, J. A.: , 2011; Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies; Journal of Clinical Investigation; 121 (7): 2750--2767; doi:10.1172/jci45014; URL http://dx.doi.org/10.1172/JCI45014. | spa |
dc.relation.references | Lehmann, B. D.; Jovanović, B.; Chen, X.; Estrada, M. V.; Johnson, K. N.; Shyr, Y.; Moses, H. L.; Sanders, M. E. & Pietenpol, J. A.: , 2016; Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection; PLOS ONE; 11 (6): e0157368; doi:10.1371/journal.pone.0157368; URL http://dx.doi.org/10. 1371/journal.pone.0157368. | spa |
dc.relation.references | LeNail, A.: , 2019; Nn-svg: Publication-ready neural network architecture schematics; Journal of Open Source Software; 4 (33): 747; doi:10.21105/joss.00747; URL http://dx.doi.org/10.21105/joss.00747. | spa |
dc.relation.references | Leon-Ferre, R. A.; Jonas, S. F.; Salgado, R.; Loi, S.; de Jong, V.; Carter, J. M.; Nielsen, T. O.; Leung, S.; Riaz, N.; Chia, S.; Jules-Clément, G.; Curigliano, G.; Criscitiello, C.; Cockenpot, V.; Lambertini, M.; Suman, V. J.; Linderholm, B.; Martens, J. W. M.; van Deurzen, C. H. M.; Timmermans, A. M.; Shimoi, T.; Yazaki, S.; Yoshida, M.; Kim, S.-B.; Lee, H. J.; Dieci, M. V.; Bataillon, G.; Vincent-Salomon, A.; André, F.; Kok, M.; Linn, S. C.; Goetz, M. P. & Michiels, S.: , 2024; Tumor-infiltrating lymphocytes in triple-negative breast cancer; JAMA; 331 (13): 1135; doi:10.1001/jama.2024.3056; URL http://dx.doi.org/10.1001/jama.2024.3056. | spa |
dc.relation.references | Li, R.; Li, L.; Xu, Y. & Yang, J.: , 2021; Machine learning meets omics: applications and perspectives; Briefings in Bioinformatics; 23 (1); doi:10.1093/bib/bbab460; URL http://dx.doi.org/10.1093/bib/bbab460 | spa |
dc.relation.references | Li, S.; Zhang, Z.; Li, Z.; Yang, L.; Liu, J.; Liu, Y.; Liu, Y.; Hou, Y.; Mei, M. & Huang, Y.: , 2024; Cenpa promotes glutamine metabolism and tumor progression by up-regulating slc38a1 in endometrial cancer; Cellular Signalling; 117: 111110; doi:10.1016/j.cellsig.2024.111110; URL http://dx.doi.org/10.1016/j.cellsig.2024.111110. | spa |
dc.relation.references | Li, W.; Guo, X.; Chen, C. & Li, J.: , 2022; The prognostic value of arachidonic acid metabolism in breast cancer by integrated bioinformatics; Lipids in Health and Disease; 21 (1); doi:10.1186/s12944-022-01713-y; URL http://dx.doi.org/ 10.1186/s12944-022-01713-y. | spa |
dc.relation.references | Lin, C.-J.; Xiao, W.-X.; Fu, T.; Jin, X.; Shao, Z.-M. & Di, G.-H.: , 2023; Calcifications in triple-negative breast cancer: Molecular features and treatment strategies; npj Breast Cancer; 9 (1): 26; doi:10.1038/s41523-023-00531-4; URL https://doi.org/10.1038/s41523-023-00531-4. | spa |
dc.relation.references | Lin, Z.; Tan, C.; Qiu, Q.; Kong, S.; Yang, H.; Zhao, F.; Liu, Z.; Li, J.; Kong, Q.; Gao, B.; Barrett, T.; Yang, G.-Y.; Zhang, J. & Fang, D.: , 2015; Ubiquitin-specific protease 22 is a deubiquitinase of ccnb1; Cell Discovery; 1 (1); doi:10.1038/celldisc.2015.28; URL http://dx.doi.org/10.1038/celldisc.2015.28. | spa |
dc.relation.references | Liu, H.; Xiang, L. & Mei, Y.: , 2022; mir-877-5p inhibits epithelial mesenchymal transformation of breast cancer cells by targeting fgb; Disease Markers; 2022: 1--7; doi:10.1155/2022/4882375; URL http://dx.doi.org/10.1155/2022/4882375. | spa |
dc.relation.references | Liu, W.; Li, J.; Song, Y.-S.; Li, Y.; Jia, Y.-H. & Zhao, H.-D.: , 2017; Cdk5 links with dna damage response and cancer; Molecular Cancer; 16 (1); doi:10.1186/s12943-017-0611-1; URL http://dx.doi.org/10.1186/s12943-017-0611-1. | spa |
dc.relation.references | Liu, Y.; Zhang, Q.; Wu, J.; Zhang, H.; Li, X.; Zheng, Z.; Luo, M.; Li, L.; Xiang, Y.; Yang, F. & Wu, L.: , 2020; Long non-coding rna a2m-as1 promotes breast cancer progression by sponging microrna-146b to upregulate muc19; International Journal of General Medicine; Volume 13: 1305--1316; doi:10.2147/ijgm.s278564; URL http://dx.doi.org/10.2147/IJGM. S278564. | spa |
dc.relation.references | Liu, Y.-R.; Jiang, Y.-Z.; Xu, X.-E.; Yu, K.-D.; Jin, X.; Hu, X.; Zuo, W.-J.; Hao, S.; Wu, J.; Liu, G.-Y.; Di, G.-H.; Li, D.-Q.; He, X.-H.; Hu, W.-G. & Shao, Z.-M.: , 2016; Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific rnas of triple-negative breast cancer; Breast Cancer Research; 18 (1); doi:10.1186/s13058-016-0690-8; URL http://dx.doi.org/10.1186/s13058-016-0690-8. | spa |
dc.relation.references | LO, P. H. Y.; TANIKAWA, C.; KATAGIRI, T.; NAKAMURA, Y. & MATSUDA, K.: , 2014; Identification of novel epigenetically inactivated gene pamr1 in breast carcinoma; Oncology Reports; 33 (1): 267--273; doi:10.3892/or.2014.3581; URL http://dx.doi.org/10.3892/or.2014.3581 | spa |
dc.relation.references | Loeb, K. R. & Loeb, L. A.: , 2000; Significance of multiple mutations in cancer; Carcinogenesis; 21 (3): 379--385; doi:10.1093/carcin/21.3.379; URL https://doi.org/10.1093/carcin/21.3.379 | spa |
dc.relation.references | Loza, M.; Vandenbon, A. & Nakai, K.: , 2023; Epigenetic characterization of housekeeping core promoters and their importance in tumor suppression; Nucleic Acids Research; 52 (3): 1107--1119; doi:10.1093/nar/gkad1164; URL http: //dx.doi.org/10.1093/nar/gkad1164. | spa |
dc.relation.references | Lu, X.; An, L.; Fan, G.; Zang, L.; Huang, W.; Li, J.; Liu, J.; Ge, W.; Huang, Y.; Xu, J.; Du, S.; Cao, Y.; Zhou, T.; Yin, H.; Yu, L.; Jiao, S. & Wang, H.: , 2022; Egfr signaling promotes nuclear translocation of plasma membrane protein tspan8 to enhance tumor progression via stat3-mediated transcription; Cell Research; 32 (4): 359--374; doi:10.1038/s41422-022-00628-8; URL http://dx.doi.org/10.1038/s41422-022-00628-8. | spa |
dc.relation.references | Luo, X.; Chen, X.; Chen, S.; Gao, Q.; Yang, H. & Zhao, D.: , 2022; High expression of sez6l2 as an independent prognostic indicator in thyroid carcinoma; Gland Surgery; 11 (2): 412--425; doi:10.21037/gs-22-37; URL http://dx.doi. org/10.21037/gs-22-37. | spa |
dc.relation.references | Mahin, K. F.; Robiuddin, M.; Islam, M.; Ashraf, S.; Yeasmin, F. & Shatabda, S.: , 2022; Panclassif: Improving pan cancer classification of single cell rna-seq gene expression data using machine learning; Genomics; 114 (2): 110264; doi:10.1016/j.ygeno.2022.01.001; URL http://dx.doi.org/10.1016/j.ygeno.2022.01.001. | spa |
dc.relation.references | Makuch-Kocka, A.; Kocki, J.; Brzozowska, A.; Bogucki, J.; Kołodziej, P. & Bogucka-Kocka, A.: , 2023; Analysis of changes in the expression of selected genes from the abc family in patients with triple-negative breast cancer; International Journal of Molecular Sciences; 24 (2): 1257; doi:10.3390/ijms24021257; URL http://dx.doi.org/10.3390/ijms24021257. | spa |
dc.relation.references | Mamoor, S.: , 2020; Atp-binding cassette transporter sub-family c member 8, abcc8, is a differentially expressed gene in brain metastatic human breast cancer.; doi:10.31219/osf.io/u74wy; URL http://dx.doi.org/10.31219/osf.io/u74wy. | spa |
dc.relation.references | Martini, R.; Delpe, P.; Chu, T. R.; Arora, K.; Lord, B.; Verma, A.; Bedi, D.; Karanam, B.; Elhussin, I.; Chen, Y.; Gebregzabher, E.; Oppong, J. K.; Adjei, E. K.; Jibril Suleiman, A.; Awuah, B.; Muleta, M. B.; Abebe, E.; Kyei, I.; Aitpillah, F. S.; Adinku, M. O.; Ankomah, K.; Osei-Bonsu, E. B.; Chitale, D. A.; Bensenhaver, J. M.; Nathanson, D. S.; Jackson, L.; Petersen, L. F.; Proctor, E.; Stonaker, B.; Gyan, K. K.; Gibbs, L. D.; Monojlovic, Z.; Kittles, R. A.; White, J.; Yates, C. C.; Manne, U.; Gardner, K.; Mongan, N.; Cheng, E.; Ginter, P.; Hoda, S.; Elemento, O.; Robine, N.; Sboner, A.; Carpten, J. D.; Newman, L. & Davis, M. B.: , 2022; African Ancestry–Associated Gene Expression Profiles in Triple-Negative Breast Cancer Underlie Altered Tumor Biology and Clinical Outcome in Women of African Descent; Cancer Discovery; 12 (11): 2530--2551; doi:10.1158/2159-8290.CD-22-0138; URL https://doi.org/10.1158/2159-8290.CD-22-0138. | spa |
dc.relation.references | Masuda, H.; Baggerly, K. A.; Wang, Y.; Zhang, Y.; Gonzalez-Angulo, A. M.; Meric-Bernstam, F.; Valero, V.; Lehmann, B. D.; Pietenpol, J. A.; Hortobagyi, G. N.; Symmans, W. F. & Ueno, N. T.: , 2013; Differential Response to Neoadjuvant Chemotherapy Among 7 Triple-Negative Breast Cancer Molecular Subtypes; Clinical Cancer Research; 19 (19): 5533--5540; doi:10.1158/1078-0432.CCR-13-0799; URL https://doi.org/10.1158/1078-0432.CCR-13-0799. | spa |
dc.relation.references | Mohamed, A. H.; Obeid, R. A.; Fadhil, A. A.; Amir, A. A.; Adhab, Z. H.; Jabouri, E. A.; Ahmad, I. & Alshahrani, M. Y.: , 2023; Btla and hvem: Emerging players in the tumor microenvironment and cancer progression; Cytokine; 172: 156412; doi:10.1016/j.cyto.2023.156412; URL http://dx.doi.org/10.1016/j.cyto.2023.156412. | spa |
dc.relation.references | Montenegro, J. D.: , 2022; Gene co-expression network analysis; en Methods in Molecular Biology; Springer US; ISBN 9781071620663; págs. 387--404; doi:10.1007/978-1-0716-2067-0_19; URL http://dx.doi.org/10.1007/978-1-0716-2067-0_ 19. | spa |
dc.relation.references | Mukhopadhyay, P.; Chakraborty, S.; Ponnusamy, M. P.; Lakshmanan, I.; Jain, M. & Batra, S. K.: , 2011; Mucins in the pathogenesis of breast cancer: Implications in diagnosis, prognosis and therapy; Biochimica et Biophysica Acta (BBA) - Reviews on Cancer; 1815 (2): 224--240; doi:10.1016/j.bbcan.2011.01.001; URL http://dx.doi.org/10.1016/j.bbcan.2011. 01.001. | spa |
dc.relation.references | Munshi, A. & Sharma, V.: , 2018; Omics and edible vaccines; en Omics Technologies and Bio-Engineering; Elsevier; ISBN 9780128158708; págs. 129--141; doi:10.1016/b978-0-12-815870-8.00008-5; URL http://dx.doi.org/10.1016/ B978-0-12-815870-8.00008-5. | spa |
dc.relation.references | Murphy, K. M.; Nelson, C. A. & Šedý, J. R.: , 2006; Balancing co-stimulation and inhibition with btla and hvem; Nature Reviews Immunology; 6 (9): 671--681; doi:10.1038/nri1917; URL http://dx.doi.org/10.1038/nri1917. | spa |
dc.relation.references | Newman, A. M.; Steen, C. B.; Liu, C. L.; Gentles, A. J.; Chaudhuri, A. A.; Scherer, F.; Khodadoust, M. S.; Esfahani, M. S.; Luca, B. A.; Steiner, D.; Diehn, M. & Alizadeh, A. A.: , 2019; Determining cell type abundance and expression from bulk tissues with digital cytometry; Nature Biotechnology; 37 (7): 773--782; doi:10.1038/s41587-019-0114-2; URL http://dx.doi.org/10.1038/s41587-019-0114-2. | spa |
dc.relation.references | Nicora, G.; Vitali, F.; Dagliati, A.; Geifman, N. & Bellazzi, R.: , 2020; Integrated multi-omics analyses in oncology: A review of machine learning methods and tools; Frontiers in Oncology; 10; doi:10.3389/fonc.2020.01030; URL http: //dx.doi.org/10.3389/fonc.2020.01030. | spa |
dc.relation.references | Ning, Z.; Liu, K. & Xiong, H.: , 2021; Roles of btla in immunity and immune disorders; Frontiers in Immunology; 12; doi:10.3389/fimmu.2021.654960; URL http://dx.doi.org/10.3389/fimmu.2021.654960. | spa |
dc.relation.references | Nirgude, S.; Desai, S. & Choudhary, B.: , 2022; Genome-wide differential dna methylation analysis of mda-mb-231 breast cancer cells treated with curcumin derivatives, st08 and st09; BMC Genomics; 23 (1); doi:10.1186/s12864-022-09041-2; URL http://dx.doi.org/10.1186/s12864-022-09041-2. | spa |
dc.relation.references | Nueda, M.; Naranjo, A.; Baladrón, V. & Laborda, J.: , 2017; Different expression levels of dlk1 inversely modulate the oncogenic potential of human mda-mb-231 breast cancer cells through inhibition of notch1 signaling; The FASEB Journal; 31 (8): 3484--3496; doi:10.1096/fj.201601341rrr; URL http://dx.doi.org/10.1096/fj.201601341RRR | spa |
dc.relation.references | Ogden, A.; Bhattarai, S.; Sahoo, B.; Mongan, N. P.; Alsaleem, M.; Green, A. R.; Aleskandarany, M.; Ellis, I. O.; Pattni, S.; Li, X. B.; Moreno, C. S.; Krishnamurti, U.; Janssen, E. A.; Jonsdottir, K.; Rakha, E.; Rida, P. & Aneja, R.: , 2020; Combined her3-egfr score in triple-negative breast cancer provides prognostic and predictive significance superior to individual biomarkers; Scientific Reports; 10 (1): 3009; doi:10.1038/s41598-020-59514-1; URL https://doi.org/10.1038/s41598-020-59514-1. | spa |
dc.relation.references | Ozato, K.; Shin, D.-M.; Chang, T.-H. & Morse, III, H. C.: , 2008; Trim family proteins and their emerging roles in innate immunity; Nature Reviews Immunology; 8 (11): 849--860; doi:10.1038/nri2413; URL http://dx.doi.org/10.1038/nri2413. | spa |
dc.relation.references | Park, J. H.; Pyun, W. Y. & Park, H. W.: , 2020; Cancer metabolism: Phenotype, signaling and therapeutic targets; Cells; 9 (10): 2308; doi:10.3390/cells9102308; URL http://dx.doi.org/10.3390/cells9102308. | spa |
dc.relation.references | Park, J. H.; Han, H. S.; Lim, S. D.; Kim, W. Y.; Park, K. S.; Yoo, Y. B.; Lee, S. E. & Kim, W.-S.: , 2022; Fatty acid synthetase expression in triple-negative breast cancer; Journal of Pathology and Translational Medicine; 56 (2): 73--80; doi:10.4132/jptm.2021.10.27; URL http://dx.doi.org/10.4132/jptm.2021.10.27. | spa |
dc.relation.references | Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M. & Édouard Duchesnay: , 2011; Scikit-learn: Machine learning in python; Journal of Machine Learning Research; 12 (85): 2825--2830; URL http://jmlr.org/papers/v12/pedregosa11a.html. | spa |
dc.relation.references | Pozo, K. & Bibb, J. A.: , 2016; The emerging role of cdk5 in cancer; Trends in Cancer; 2 (10): 606--618; doi:10.1016/j. trecan.2016.09.001; URL http://dx.doi.org/10.1016/j.trecan.2016.09.001. | spa |
dc.relation.references | Pramesh, C. S.; Badwe, R. A.; Bhoo-Pathy, N.; Booth, C. M.; Chinnaswamy, G.; Dare, A. J.; de Andrade, V. P.; Hunter, D. J.; Gopal, S.; Gospodarowicz, M.; Gunasekera, S.; Ilbawi, A.; Kapambwe, S.; Kingham, P.; Kutluk, T.; Lamichhane, N.; Mutebi, M.; Orem, J.; Parham, G.; Ranganathan, P.; Sengar, M.; Sullivan, R.; Swaminathan, S.; Tannock, I. F.; Tomar, V.; Vanderpuye, V.; Varghese, C. & Weiderpass, E.: , 2022; Priorities for cancer research in low- and middle-income countries: a global perspective; Nature Medicine; 28 (4): 649--657; doi:10.1038/s41591-022-01738-x; URL http://dx.doi.org/10.1038/s41591-022-01738-x. | spa |
dc.relation.references | Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A. & Muñoz, M.: , 2015; Clinical implications of the intrinsic molecular subtypes of breast cancer; The Breast; 24: S26--S35; doi:10.1016/j.breast.2015.07.008; URL http://dx.doi.org/10.1016/j.breast.2015.07.008 | spa |
dc.relation.references | Pratella, D.; Ait-El-Mkadem Saadi, S.; Bannwarth, S.; Paquis-Fluckinger, V. & Bottini, S.: , 2021; A survey of autoencoder algorithms to pave the diagnosis of rare diseases; International Journal of Molecular Sciences; 22 (19): 10891; doi:10.3390/ijms221910891; URL http://dx.doi.org/10.3390/ijms221910891. | spa |
dc.relation.references | Qin, Y.; Yalamanchili, H. K.; Qin, J.; Yan, B. & Wang, J.: , 2015; The current status and challenges in computational analysis of genomic big data; Big Data Research; 2 (1): 12--18; doi:10.1016/j.bdr.2015.02.005; URL http://dx.doi.org/10. 1016/j.bdr.2015.02.005. | spa |
dc.relation.references | Qiu, Z.; Wang, L. & Liu, H.: , 2021; Hsa circ 0001982 promotes the progression of breast cancer through mir-1287- 5p/muc19 axis under hypoxia; World Journal of Surgical Oncology; 19 (1); doi:10.1186/s12957-021-02273-8; URL http: //dx.doi.org/10.1186/s12957-021-02273-8. | spa |
dc.relation.references | RAAFAT ELSAYED, A. A.; AL-MARSOUMMI, S.; VOMHOF-DEKREY, E. E. & BASSON, M. D.: , 2022; Slfn12 over-expression sensitizes triple negative breast cancer cells to chemotherapy drugs and radiotherapy; Cancer Genomics - Proteomics; 19 (3): 328--338; doi:10.21873/cgp.20323; URL http://dx.doi.org/10.21873/cgp.20323. | spa |
dc.relation.references | Rajaram, R.; Castellani, B. & Wilson, A. N.: , 2017; Advancing shannon entropy for measuring diversity in systems; Complexity; 2017: 1--10; doi:10.1155/2017/8715605; URL http://dx.doi.org/10.1155/2017/8715605. | spa |
dc.relation.references | Rao, M. S.; Van Vleet, T. R.; Ciurlionis, R.; Buck, W. R.; Mittelstadt, S. W.; Blomme, E. A. G. & Liguori, M. J.: , 2019; Comparison of rna-seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies; Frontiers in Genetics; 9; doi:10.3389/fgene.2018.00636; URL http://dx.doi.org/10. 3389/fgene.2018.00636. | spa |
dc.relation.references | Reel, P. S.; Reel, S.; Pearson, E.; Trucco, E. & Jefferson, E.: , 2021; Using machine learning approaches for multiomics data analysis: A review; Biotechnology Advances; 49: 107739; doi:10.1016/j.biotechadv.2021.107739; URL http: //dx.doi.org/10.1016/j.biotechadv.2021.107739. | spa |
dc.relation.references | Robinson, M. D. & Oshlack, A.: , 2010; A scaling normalization method for differential expression analysis of rna-seq data; Genome Biology; 11 (3); doi:10.1186/gb-2010-11-3-r25; URL http://dx.doi.org/10.1186/gb-2010-11-3-r25. | spa |
dc.relation.references | Robinson, M. D.; McCarthy, D. J. & Smyth, G. K.: , 2009; edger: a bioconductor package for differential expression analysis of digital gene expression data; Bioinformatics; 26 (1): 139--140; doi:10.1093/bioinformatics/btp616; URL http: //dx.doi.org/10.1093/bioinformatics/btp616. | spa |
dc.relation.references | Romanens, L.; Chaskar, P.; Marcone, R.; Ryser, S.; Tille, J.-C.; Genolet, R.; Heimgartner-Hu, K.; Heimgartner, K.; Moore, J. S.; Liaudet, N.; Kaya, G.; Pittet, M. J.; Dietrich, P.-Y.; Delorenzi, M.; Speiser, D. E.; Harari, A.; Tsantoulis, P. & Labidi-Galy, S. I.: , 2023; Clonal expansion of intra-epithelial t cells in breast cancer revealed by spatial transcriptomics; International Journal of Cancer; 153 (9): 1568--1578; doi:https://doi.org/10.1002/ijc.34620; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.34620. | spa |
dc.relation.references | Rukhsar, L.; Bangyal, W. H.; Ali Khan, M. S.; Ag Ibrahim, A. A.; Nisar, K. & Rawat, D. B.: , 2022; Analyzing rna-seq gene expression data using deep learning approaches for cancer classification; Applied Sciences; 12 (4): 1850; doi:10.3390/app12041850; URL http://dx.doi.org/10.3390/app12041850. | spa |
dc.relation.references | Rushing, B. R.; Molina, S. & Sumner, S.: , 2023; Metabolomics analysis reveals altered metabolic pathways and response to doxorubicin in drug-resistant triple-negative breast cancer cells; Metabolites; 13 (7): 865; doi:10.3390/metabo13070865; URL http://dx.doi.org/10.3390/metabo13070865 | spa |
dc.relation.references | Saleh, M.; Chandrashekar, D. S.; Shahin, S.; Agarwal, S.; Kim, H.-G.; Behring, M.; Shaikh, A. J.; Moloo, Z.; Eltoum, I.-E. A.; Yates, C.; Varambally, S. & Manne, U.: , 2021; Comparative analysis of triple-negative breast cancer transcriptomics of kenyan, african american and caucasian women; Translational Oncology; 14 (7): 101086; doi:https: //doi.org/10.1016/j.tranon.2021.101086; URL https://www.sciencedirect.com/science/article/pii/S1936523321000784 | spa |
dc.relation.references | Salzberg, S. L.: , 2018; Open questions: How many genes do we have?; BMC Biology; 16 (1); doi:10.1186/s12915-018-0564-x; URL http://dx.doi.org/10.1186/s12915-018-0564-x. | spa |
dc.relation.references | Schäfer, D.; Tomiuk, S.; Küster, L. N.; Rawashdeh, W. A.; Henze, J.; Tischler-Höhle, G.; Agorku, D. J.; Brauner, J.; Linnartz, C.; Lock, D.; Kaiser, A.; Herbel, C.; Eckardt, D.; Lamorte, M.; Lenhard, D.; Schüler, J.; Ströbel, P.; Missbach-Guentner, J.; Pinkert-Leetsch, D.; Alves, F.; Bosio, A. & Hardt, O.: , 2021; Identification of cd318, tspan8 and cd66c as target candidates for car t cell based immunotherapy of pancreatic adenocarcinoma; Nature Communications; 12 (1); doi:10.1038/s41467-021-21774-4; URL http://dx.doi.org/10.1038/s41467-021-21774-4. | spa |
dc.relation.references | Schäfer, S. A.; Hülsewig, C.; Barth, P.; von Wahlde, M.-K.; Tio, J.; Kolberg, H.-C.; Bernemann, C.; Blohmer, J.-U.; Kiesel, L. & Kolberg-Liedtke, C.: , 2019; Correlation between sfrp1 expression and clinicopathological parameters in patients with triple-negative breast cancer; Future Oncology; 15 (16): 1921--1938; doi:10.2217/fon-2018-0564; URL http://dx.doi.org/10.2217/fon-2018-0564. | spa |
dc.relation.references | Sharma, J. K.; Alluri, P. & Udden, N.: , 2020; Cdc20 is a novel therapeutic target in triple-negative breast cancer; Cancer Research; 80 (16_Supplement): 6378--6378; doi:10.1158/1538-7445.am2020-6378; URL http://dx.doi.org/10.1158/ 1538-7445.AM2020-6378. | spa |
dc.relation.references | Siegel, S. D.; Brooks, M. M.; Lynch, S. M.; Sims-Mourtada, J.; Schug, Z. T. & Curriero, F. C.: , 2022; Racial disparities in triple negative breast cancer: toward a causal architecture approach; Breast Cancer Research; 24 (1); doi:10.1186/s13058-022-01533-z; URL http://dx.doi.org/10.1186/s13058-022-01533-z. | spa |
dc.relation.references | Soldado-Gordillo, A. & Álvarez Mercado, A. I.: , 2024; Epigenetics, microbiota, and breast cancer: A systematic review; Life; 14 (6): 705; doi:10.3390/life14060705; URL http://dx.doi.org/10.3390/life14060705. | spa |
dc.relation.references | Song, C.; Lowe, V. J. & Lee, S.: , 2021; Inhibition of cdc20 suppresses the metastasis in triple negative breast cancer (tnbc); Breast Cancer; 28 (5): 1073--1086; doi:10.1007/s12282-021-01242-z; URL http://dx.doi.org/10.1007/ s12282-021-01242-z. | spa |
dc.relation.references | Song, L. & Xiao, Y.: , 2018; Downregulation of hsa circ 0007534 suppresses breast cancer cell proliferation and invasion by targeting mir-593/muc19 signal pathway; Biochemical and Biophysical Research Communications; 503 (4): 2603--2610; doi:10.1016/j.bbrc.2018.08.007; URL http://dx.doi.org/10.1016/j.bbrc.2018.08.007. | spa |
dc.relation.references | Song, T.; Yang, Y.; Wang, Y.; Ni, Y.; Yang, Y. & Zhang, L.: , 2024; Bulk and single-cell rna sequencing reveal the contribution of laminin y2 -cd44 to the immune resistance in lymphocyte-infiltrated squamous lung cancer subtype; Heliyon; 10 (10): e31299; doi:10.1016/j.heliyon.2024.e31299; URL http://dx.doi.org/10.1016/j.heliyon.2024.e31299. | spa |
dc.relation.references | Sordo-Bahamonde, C.; Lorenzo-Herrero, S.; Granda-Díaz, R.; Martínez-Pérez, A.; Aguilar-García, C.; Rodrigo, J. P.; García-Pedrero, J. M. & Gonzalez, S.: , 2023; Beyond the anti-pd-1/pd-l1 era: promising role of the btla/hvem axis as a future target for cancer immunotherapy; Molecular Cancer; 22 (1); doi:10.1186/s12943-023-01845-4; URL http://dx.doi.org/10.1186/s12943-023-01845-4. | spa |
dc.relation.references | Stark, R.; Grzelak, M. & Hadfield, J.: , 2019; Rna sequencing: the teenage years; Nature Reviews Genetics; 20 (11): 631--656; doi:10.1038/s41576-019-0150-2; URL http://dx.doi.org/10.1038/s41576-019-0150-2. | spa |
dc.relation.references | Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.; Ebert, B. L.; Gillette, M. A.; Paulovich, A.; Pomeroy, S. L.; Golub, T. R.; Lander, E. S. & Mesirov, J. P.: , 2005; Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles; Proceedings of the National Academy of Sciences; 102 (43): 15545--15550; doi:10.1073/pnas.0506580102; URL http://dx.doi.org/10.1073/pnas.0506580102. | spa |
dc.relation.references | Sun, X.; Wang, M.; Wang, M.; Yu, X.; Guo, J.; Sun, T.; Li, X.; Yao, L.; Dong, H. & Xu, Y.: , 2020; Metabolic reprogramming in triple-negative breast cancer; Frontiers in Oncology; 10; doi:10.3389/fonc.2020.00428; URL http: //dx.doi.org/10.3389/fonc.2020.00428. | spa |
dc.relation.references | Sun, Y.; Khan, M. A. A. K.; Mangiola, S. & Barrow, A. D.: , 2023; Il17rb and il17rel expression are associated with improved prognosis in hpv-infected head and neck squamous cell carcinomas; Pathogens; 12 (4): 572; doi:10.3390/ pathogens12040572; URL http://dx.doi.org/10.3390/pathogens12040572. | spa |
dc.relation.references | Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A. & Bray, F.: , 2021; Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries; CA: A Cancer Journal for Clinicians; 71 (3): 209--249; doi:10.3322/caac.21660; URL http://dx.doi.org/10.3322/caac.21660. | spa |
dc.relation.references | Tang, Y.; Tian, W.; Xie, J.; Zou, Y.; Wang, Z.; Li, N.; Zeng, Y.; Wu, L.; Zhang, Y.; Wu, S.; Xie, X. & Yang, L.: , 2022; Prognosis and dissection of immunosuppressive microenvironment in breast cancer based on fatty acid metabolismrelated signature; Frontiers in Immunology; 13; doi:10.3389/fimmu.2022.843515; URL http://dx.doi.org/10.3389/fimmu. 2022.843515 | spa |
dc.relation.references | Tenda, Y.; Hanada, Y.; Tanaka, H.; Shimazaki, M. & Shirasuna, K.: , 2023; Abstract a173: Asp2074, a novel tetraspanin 8 x cd3 bispecific antibody, demonstrates selectivity and antitumor activity in preclinical cancer models; Molecular Cancer Therapeutics; 22 (12 Supplement): A173--A173; doi:10.1158/1535-7163.targ-23-a173; URL http://dx.doi.org/10.1158/ 1535-7163.TARG-23-A173. | spa |
dc.relation.references | Terry M. Therneau & Patricia M. Grambsch: , 2000; Modeling Survival Data: Extending the Cox Model; Springer, New York; ISBN 0-387-98784-3. | spa |
dc.relation.references | Tran, L.; Xiao, J.-F.; Agarwal, N.; Duex, J. E. & Theodorescu, D.: , 2020; Advances in bladder cancer biology and therapy; Nature Reviews Cancer; 21 (2): 104--121; doi:10.1038/s41568-020-00313-1; URL http://dx.doi.org/10.1038/ s41568-020-00313-1. | spa |
dc.relation.references | Tsang, J. Y. & Tse, G. M.: , 2019; Molecular classification of breast cancer; Advances in Anatomic Pathology; 27 (1): 27--35; doi:10.1097/pap.0000000000000232; URL http://dx.doi.org/10.1097/PAP.0000000000000232. | spa |
dc.relation.references | Van Emon, J. M.: , 2016; The omics revolution in agricultural research; Journal of Agricultural and Food Chemistry; 64 (1): 36--44; doi:10.1021/acs.jafc.5b04515; URL https://doi.org/10.1021/acs.jafc.5b04515. | spa |
dc.relation.references | Varley, K. E.; Gertz, J.; Roberts, B. S.; Davis, N. S.; Bowling, K. M.; Kirby, M. K.; Nesmith, A. S.; Oliver, P. G.; Grizzle, W. E.; Forero, A.; Buchsbaum, D. J.; LoBuglio, A. F. & Myers, R. M.: , 2014; Recurrent read-through fusion transcripts in breast cancer; Breast Cancer Research and Treatment; 146 (2): 287--297; doi:10.1007/s10549-014-3019-2; URL https://doi.org/10.1007/s10549-014-3019-2 | spa |
dc.relation.references | Veeneman, B. A.; Shukla, S.; Dhanasekaran, S. M.; Chinnaiyan, A. M. & Nesvizhskii, A. I.: , 2015; Two-pass alignment improves novel splice junction quantification; Bioinformatics; 32 (1): 43--49; doi:10.1093/bioinformatics/btv642; URL http://dx.doi.org/10.1093/bioinformatics/btv642. | spa |
dc.relation.references | Venkitaraman, R.: , 2010; Triple-negative/basal-like breast cancer: clinical, pathologic and molecular features; Expert Review of Anticancer Therapy; 10 (2): 199--207; doi:10.1586/era.09.189; URL https://doi.org/10.1586/era.09.189. | spa |
dc.relation.references | Waks, A. G. & Winer, E. P.: , 2019; Breast cancer treatment; JAMA; 321 (3): 288; doi:10.1001/jama.2018.19323; URL http://dx.doi.org/10.1001/jama.2018.19323. | spa |
dc.relation.references | Wang, Q.; Armenia, J.; Zhang, C.; Penson, A. V.; Reznik, E.; Zhang, L.; Minet, T.; Ochoa, A.; Gross, B. E.; Iacobuzio-Donahue, C. A.; Betel, D.; Taylor, B. S.; Gao, J. & Schultz, N.: , 2018; Unifying cancer and normal rna sequencing data from different sources; Scientific Data; 5 (1); doi:10.1038/sdata.2018.61; URL http://dx.doi.org/10. 1038/sdata.2018.61. | spa |
dc.relation.references | Wang, Y.; Li, H.; Ma, J.; Fang, T.; Li, X.; Liu, J.; Afewerky, H. K.; Li, X. & Gao, Q.: , 2019; Integrated bioinformatics data analysis reveals prognostic significance of sidt1 in triple-negative breast cancer; OncoTargets and Therapy; Volume 12: 8401--8410; doi:10.2147/ott.s215898; URL http://dx.doi.org/10.2147/OTT.S215898. | spa |
dc.relation.references | Wang, Z.; Gerstein, M. & Snyder, M.: , 2009; Rna-seq: a revolutionary tool for transcriptomics; Nature Reviews Genetics; 10 (1): 57--63; doi:10.1038/nrg2484; URL http://dx.doi.org/10.1038/nrg2484. | spa |
dc.relation.references | Wang, Z.; Li, H.; Wang, H.; Li, X.; Zhang, Q.; Wang, H.; Li, K. & Qiu, Y.: , 2022; Trim72 exerts antitumor effects in breast cancer and modulates lactate production and mct4 promoter activity by interacting with ppp3ca; Anti-Cancer Drugs; 33 (5): 489--501; doi:10.1097/cad.0000000000001304; URL http://dx.doi.org/10.1097/CAD.0000000000001304. | spa |
dc.relation.references | Weinstein, J. N.; Collisson, E. A.; Mills, G. B.; Shaw, K. R. M.; Ozenberger, B. A.; Ellrott, K.; Shmulevich, I.; Sander, C. & Stuart, J. M.: , 2013; The cancer genome atlas pan-cancer analysis project; Nature Genetics; 45 (10): 1113--1120; doi:10.1038/ng.2764; URL http://dx.doi.org/10.1038/ng.2764. | spa |
dc.relation.references | Wiggs, A.; Molina, S.; Sumner, S. J. & Rushing, B. R.: , 2022; A review of metabolic targets of anticancer nutrients and nutraceuticals in pre-clinical models of triple-negative breast cancer; Nutrients; 14 (10): 1990; doi:10.3390/nu14101990; [Online; accessed 2024-10-22]. | spa |
dc.relation.references | Wu, G.; Fan, Z. & Li, X.: , 2024; Cenpa knockdown restrains cell progression and tumor growth in breast cancer by reducing pla2r1 promoter methylation and modulating pla2r1/hhex axis; Cellular and Molecular Life Sciences; 81 (1); doi:10.1007/s00018-023-05063-5; URL http://dx.doi.org/10.1007/s00018-023-05063-5. | spa |
dc.relation.references | Wu, J. & Hicks, C.: , 2021; Breast cancer type classification using machine learning; Journal of Personalized Medicine; 11 (2): 61; doi:10.3390/jpm11020061; URL http://dx.doi.org/10.3390/jpm11020061. | spa |
dc.relation.references | Xian, F.; Zhao, C.; Huang, C.; Bie, J. & Xu, G.: , 2023; The potential role of cdc20 in tumorigenesis, cancer progression and therapy: A narrative review; Medicine; 102 (36): e35038; doi:10.1097/md.0000000000035038; URL http://dx.doi.org/ 10.1097/MD.0000000000035038. | spa |
dc.relation.references | Xiao, B.; Xiang, Q.; Deng, Z.; Chen, D.; Wu, S.; Zhang, Y.; Liang, Y.; Wei, S.; Luo, G. & Li, L.: , 2023; Kcnn1 promotes proliferation and metastasis of breast cancer via erlin2-mediated stabilization and k63-dependent ubiquitination of cyclin b1; Carcinogenesis; 44 (12): 809--823; doi:10.1093/carcin/bgad070; URL http://dx.doi.org/10.1093/carcin/bgad070 | spa |
dc.relation.references | Yang, B.; Li, J.; Li, F.; Zhou, H.; Shi, W.; Shi, H.; Sun, S.; Sun, W.; Wang, J.; Ma, J.; Yan, X.; Hu, Y. & Jiao, S.: , 2019; Comprehensive analysis of age-related somatic mutation profiles in chinese young lung adenocarcinoma patients; Cancer Medicine; 8 (4): 1350--1358; doi:10.1002/cam4.1839; URL http://dx.doi.org/10.1002/cam4.1839. | spa |
dc.relation.references | Yang, R.; Ma, M.; Yu, S.; Li, X.; Zhang, J. & Wu, S.: , 2021; High expression of pamr1 predicts favorable prognosis and inhibits proliferation, invasion, and migration in cervical cancer; Frontiers in Oncology; 11; doi:10.3389/fonc.2021.742017; URL http://dx.doi.org/10.3389/fonc.2021.742017 | spa |
dc.relation.references | Yang, X.; Tang, W.; He, Y.; An, H. & Wang, J.: , 2023; A novel fatty-acid metabolism-based classification for triple negative breast cancer; Aging; 15 (4): 1177--1198; doi:10.18632/aging.204552; [Online; accessed 2024-10-22]. | spa |
dc.relation.references | Yang, Y.; Li, Z.; Zhong, Q.; Zhao, L.; Wang, Y. & Chi, H.: , 2022; Identification and validation of a novel prognostic signature based on transcription factors in breast cancer by bioinformatics analysis; Gland Surgery; 11 (5): 892--912; doi:10.21037/gs-22-267; URL http://dx.doi.org/10.21037/gs-22-267 | spa |
dc.relation.references | Yin, L.; Duan, J.-J.; Bian, X.-W. & Yu, S.-c.: , 2020; Triple-negative breast cancer molecular subtyping and treatment progress; Breast Cancer Research; 22 (1); doi:10.1186/s13058-020-01296-5; URL http://dx.doi.org/10.1186/ s13058-020-01296-5. | spa |
dc.relation.references | Zhang, Y.; Parmigiani, G. & Johnson, W. E.: , 2020; Combat-seq: batch effect adjustment for rna-seq count data; NAR Genomics and Bioinformatics; 2 (3); doi:10.1093/nargab/lqaa078; URL http://dx.doi.org/10.1093/nargab/lqaa078. | spa |
dc.relation.references | Zhang, Y.; Wang, Q.; Yang, W.-K.; Wang, Y.-S.; Zhou, Q.; Lin, J.; Wei, X.-X.; Liang, T.; Liu, T.; Fan, W.-T.; Liang, L. & Xu, Y.-N.: , 2022; Development of an immune-related prognostic biomarker for triple-negative breast cancer; Annals of Medicine; 54 (1): 1212--1220; doi:10.1080/07853890.2022.2067894; URL https://doi.org/10.1080/07853890. 2022.2067894; pMID: 35481432. | spa |
dc.relation.references | Zhao, S.; Fung-Leung, W.-P.; Bittner, A.; Ngo, K. & Liu, X.: , 2014; Comparison of rna-seq and microarray in transcriptome profiling of activated t cells; PLoS ONE; 9 (1): e78644; doi:10.1371/journal.pone.0078644; URL http: //dx.doi.org/10.1371/journal.pone.0078644. | spa |
dc.relation.references | Zhou, Y.; Che, Y.; Fu, Z.; Zhang, H. & Wu, H.: , 2022; Triple-negative breast cancer analysis based on metabolic gene classification and immunotherapy; Frontiers in Public Health; 10; doi:10.3389/fpubh.2022.902378; URL http://dx.doi. org/10.3389/fpubh.2022.902378. | spa |
dc.relation.references | Zhou, Z.; Yang, Z.; Zhou, L.; Yang, M. & He, S.: , 2023; The versatile roles of testrapanins in cancer from intracellular signaling to cell–cell communication: cell membrane proteins without ligands; Cell & Bioscience; 13 (1); doi:10.1186/ s13578-023-00995-8; URL http://dx.doi.org/10.1186/s13578-023-00995-8. | spa |
dc.relation.references | Zhu, R.; Gires, O.; Zhu, L.; Liu, J.; Li, J.; Yang, H.; Ju, G.; Huang, J.; Ge, W.; Chen, Y.; Lu, Z. & Wang, H.: , 2019; Tspan8 promotes cancer cell stemness via activation of sonic hedgehog signaling; Nature Communications; 10 (1); doi:10.1038/s41467-019-10739-3; URL http://dx.doi.org/10.1038/s41467-019-10739-3. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.subject.lemb | Cáncer | spa |
dc.subject.lemb | Cancer | eng |
dc.subject.lemb | Inmunología | spa |
dc.subject.lemb | Immunology | eng |
dc.subject.other | Neoplasias de la Mama | spa |
dc.subject.proposal | Cáncer | spa |
dc.subject.proposal | Inmunología | spa |
dc.subject.proposal | Subtipos | spa |
dc.subject.proposal | Agrupamiento | spa |
dc.subject.proposal | Cáncer de mama | spa |
dc.subject.proposal | Cáncer de mama triple negativo | spa |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Cancer | eng |
dc.subject.proposal | Aprendizaje de máquinas | spa |
dc.subject.proposal | Immunology | eng |
dc.subject.proposal | Subtypes | eng |
dc.subject.proposal | Breast cancer | eng |
dc.subject.proposal | Clustering | eng |
dc.subject.proposal | Triple negative breast cancer | eng |
dc.title | Método de Aprendizaje de Máquina para la subclasificación del Cáncer de Mama Triple Negativo | spa |
dc.title.translated | Machine Learning Method for the subclassification of Triple Negative Breast Cancer. | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Ministerio de Ciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1014279951.2024.pdf
- Tamaño:
- 6.67 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Bioinformática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: