Método de Aprendizaje de Máquina para la subclasificación del Cáncer de Mama Triple Negativo

dc.contributor.advisorNiño Vasquez, Luis Fernando
dc.contributor.advisorParra Lopez, Carlos Alberto
dc.contributor.authorPadilla Fino, David Santiago
dc.contributor.cvlac0002020596spa
dc.contributor.researchgroupInmunología y Medicina Traslacional (IM&T)spa
dc.contributor.researchgroupLaboratorio de Investigación en Sistemas Inteligentes (LISI)spa
dc.date.accessioned2025-04-09T14:55:49Z
dc.date.available2025-04-09T14:55:49Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl cáncer de mama triple negativo es el subtipo de cáncer mama con peor pronóstico clínico. Esta característica se ha asociado a la dificultad de desarrollar tratamientos específicos, debido a su elevada diversidad molecular. Aunque se han realizado múltiples esfuerzos de clasificación, estos no han logrado proporcionar una solución efectiva para diseñar terapias más dirigidas. No obstante, en los últimos años, los avances en el uso de herramientas como la transcriptómica y el aprendizaje de máquinas han abierto nuevas posibilidades para abordar este desafío. En este trabajo, se emplearon datos de secuenciación del transcriptoma junto con técnicas de aprendizaje de máquinas para optimizar y generar una nueva clasificación del cáncer de mama triple negativo, resaltando su relevancia tanto desde el punto de vista clínico como biológico (Texto tomado de la fuente)spa
dc.description.abstractTriple-negative breast cancer is the breast cancer subtype with the worst clinical prognosis. This characteristic has been associated with the difficulty of developing specific treatments due to its high molecular diversity. Although multiple classification efforts have been made, they have not been able to provide an effective solution for designing more targeted therapies. However, in recent years, advances in the use of tools such as transcriptomics and machine learning have opened new possibilities for addressing this challenge. In this work, transcriptome sequencing data were used along with machine learning techniques to optimize and generate a new classification of triple-negative breast cancer, highlighting its relevance from both clinical and biological perspectives.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaTecnologías computacionales en Bioinformáticaspa
dc.format.extentxii, 79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87911spa
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.referencesAarhus, M.; Lund-Johansen, M. & Knappskog, P. M.: , 2011; Gene expression profiling of meningiomas: current status after a decade of microarray-based transcriptomic studies; Acta Neurochirurgica; 153 (3): 447--456; doi:10.1007/s00701-010-0906-0; URL http://dx.doi.org/10.1007/s00701-010-0906-0.spa
dc.relation.referencesAbdolrasol, M. G. M.; Hussain, S. M. S.; Ustun, T. S.; Sarker, M. R.; Hannan, M. A.; Mohamed, R.; Ali, J. A.; Mekhilef, S. & Milad, A.: , 2021; Artificial neural networks based optimization techniques: A review; Electronics; 10 (21): 2689; doi:10.3390/electronics10212689; URL http://dx.doi.org/10.3390/electronics10212689.spa
dc.relation.referencesAbrams, Z. B.; Johnson, T. S.; Huang, K.; Payne, P. R. O. & Coombes, K.: , 2019; A protocol to evaluate rna sequencing normalization methods; BMC Bioinformatics; 20 (S24); doi:10.1186/s12859-019-3247-x; URL http://dx.doi. org/10.1186/s12859-019-3247-x.spa
dc.relation.referencesAkin, M.; Cinkaya, A. & Sengul, A.: , 2016; Evaluation of treatment outcomes of triple-negative breast cancer; Journal of Cancer Research and Therapeutics; 12 (1): 150; doi:10.4103/0973-1482.154000; URL http://dx.doi.org/10.4103/ 0973-1482.154000.spa
dc.relation.referencesAlberts, B.; Heald, R.; Johnson, A.; Morgan, D.; Raff, M.; Roberts, K. & Walter, P.: , 2022; Molecular Biology of the Cell; W. W. Norton & Company.spa
dc.relation.referencesAlinejad, V.; Dolati, S.; Motallebnezhad, M. & Yousefi, M.: , 2017; The role of il17b-il17rb signaling pathway in breast cancer; Biomedicine & Pharmacotherapy; 88: 795--803; doi:10.1016/j.biopha.2017.01.120; URL http://dx.doi.org/ 10.1016/j.biopha.2017.01.120.spa
dc.relation.referencesAlloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A. & Aljaaf, A. J.: , 2019; A systematic review on supervised and unsupervised machine learning algorithms for data science; en Unsupervised and Semi-Supervised Learning; Springer International Publishing; ISBN 9783030224745; págs. 3--21; doi:10.1007/978-3-030-22475-2_1; URL http://dx.doi.org/10. 1007/978-3-030-22475-2_1.spa
dc.relation.referencesAlyass, A.; Turcotte, M. & Meyre, D.: , 2015; From big data analysis to personalized medicine for all: challenges and opportunities; BMC Medical Genomics; 8 (1); doi:10.1186/s12920-015-0108-y; URL http://dx.doi.org/10.1186/ s12920-015-0108-yspa
dc.relation.referencesAnders, S.; Pyl, P. T. & Huber, W.: , 2014; Htseq – a python framework to work with high-throughput sequencing data; doi:10.1101/002824; URL http://dx.doi.org/10.1101/002824.spa
dc.relation.referencesAndrzejczak, A. & Karabon, L.: , 2024; Btla biology in cancer: from bench discoveries to clinical potentials; Biomarker Research; 12 (1); doi:10.1186/s40364-024-00556-2; URL http://dx.doi.org/10.1186/s40364-024-00556-2.spa
dc.relation.referencesAngerer, P.; Simon, L.; Tritschler, S.; Wolf, F. A.; Fischer, D. & Theis, F. J.: , 2017; Single cells make big data: New challenges and opportunities in transcriptomics; Current Opinion in Systems Biology; 4: 85--91; doi:10.1016/j.coisb.2017.07. 004; URL http://dx.doi.org/10.1016/j.coisb.2017.07.004.spa
dc.relation.referencesAnimesh, S.; Ren, X.; An, O.; Chen, K.; Lee, S. C.; Yang, H. & Fullwood, M. J.: , 2022; Exploring the neoantigen burden in breast carcinoma patients; bioRxiv; doi:10.1101/2022.03.03.482669; URL https://www.biorxiv.org/content/ early/2022/03/04/2022.03.03.482669.spa
dc.relation.referencesAniogo, E. C.; Plackal Adimuriyil George, B. & Abrahamse, H.: , 2019; The role of photodynamic therapy on multidrug resistant breast cancer; Cancer Cell International; 19 (1); doi:10.1186/s12935-019-0815-0; URL http://dx.doi.org/10. 1186/s12935-019-0815-0.spa
dc.relation.referencesAparicio, B.; Repáraz, D.; Ruiz, M.; Llopiz, D.; Silva, L.; Vercher, E.; Theunissen, P.; Tamayo, I.; Smerdou, C.; Igea, A.; Santisteban, M.; Gónzalez-Deza, C.; Lasarte, J. J.; Hervás-Stubbs, S. & Sarobe, P.: , 2022; Identification of hla class i-restricted immunogenic neoantigens in triple negative breast cancer; Frontiers in Immunology; 13; doi:10.3389/fimmu.2022.985886; URL https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu. 2022.985886.spa
dc.relation.referencesBae, J. S.; Lee, J. W.; Yoo, J. E.; Joung, J.-G.; Yoo, K. H.; Koo, H. H.; Song, Y.-M. & Sung, K. W.: , 2020; Genomewide association study for the identification of novel genetic variants associated with the risk of neuroblastoma in korean children; Cancer Research and Treatment; doi:10.4143/crt.2020.140; URL http://dx.doi.org/10.4143/crt.2020.140.spa
dc.relation.referencesBarbierato, E. & Gatti, A.: , 2024; The challenges of machine learning: A critical review; Electronics; 13 (2): 416; doi:10.3390/electronics13020416; URL http://dx.doi.org/10.3390/electronics13020416.spa
dc.relation.referencesBareche, Y.; Venet, D.; Ignatiadis, M.; Aftimos, P.; Piccart, M.; Rothe, F. & Sotiriou, C.: , 2018; Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis; Annals of Oncology; 29 (4): 895--902; doi:10.1093/annonc/mdy024; URL http://dx.doi.org/10.1093/annonc/mdy024.spa
dc.relation.referencesBarzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M. H.; Moradi-Kalbolandi, S.; Safari, E. & Farahmand, L.: , 2020; Breast cancer: Biology, biomarkers, and treatments; International Immunopharmacology; 84: 106535; doi:10.1016/j.intimp.2020.106535; URL http://dx.doi.org/10.1016/j.intimp.2020.106535.spa
dc.relation.referencesBastian, M.; Heymann, S. & Jacomy, M.: , 2009; Gephi: An open source software for exploring and manipulating networks; Proceedings of the International AAAI Conference on Web and Social Media; 3 (1): 361--362; doi:10.1609/icwsm.v3i1.13937; URL http://dx.doi.org/10.1609/icwsm.v3i1.13937.spa
dc.relation.referencesBastid, J.; Dejou, C.; Docquier, A. & Bonnefoy, N.: , 2020; The emerging role of the il-17b/il-17rb pathway in cancer; Frontiers in Immunology; 11; doi:10.3389/fimmu.2020.00718; URL http://dx.doi.org/10.3389/fimmu.2020.00718.spa
dc.relation.referencesBayrak, E. A.; Kirci, P. & Ensari, T.: , 2019; Comparison of machine learning methods for breast cancer diagnosis; 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science (EBBT); IEEE; doi:10.1109/ebbt.2019.8741990; URL http://dx.doi.org/10.1109/EBBT.2019.8741990.spa
dc.relation.referencesBei, Y.; Cheng, N.; Chen, T.; Shu, Y.; Yang, Y.; Yang, N.; Zhou, X.; Liu, B.; Wei, J.; Liu, Q.; Zheng, W.; Zhang, W.; Su, H.; Zhu, W.; Ji, J. & Shen, P.: , 2020; Cdk5 inhibition abrogates tnbc stem-cell property and enhances anti-pd-1 therapy; Advanced Science; 7 (22); doi:10.1002/advs.202001417; URL http://dx.doi.org/10.1002/advs.202001417.spa
dc.relation.referencesBen Azzouz, F.; Michel, B.; Lasla, H.; Gouraud, W.; François, A.-F.; Girka, F.; Lecointre, T.; Guérin-Charbonnel, C.; Juin, P. P.; Campone, M. & Jézéquel, P.: , 2021; Development of an absolute assignment predictor for triplenegative breast cancer subtyping using machine learning approaches; Computers in Biology and Medicine; 129: 104171; doi:10.1016/j.compbiomed.2020.104171; URL http://dx.doi.org/10.1016/j.compbiomed.2020.104171.spa
dc.relation.referencesBera, T. K.; Iavarone, C.; Kumar, V.; Lee, S.; Lee, B. & Pastan, I.: , 2002; Mrp9, an unusual truncated member of the abc transporter superfamily, is highly expressed in breast cancer; Proceedings of the National Academy of Sciences; 99 (10): 6997--7002; doi:10.1073/pnas.102187299; URL http://dx.doi.org/10.1073/pnas.102187299.spa
dc.relation.referencesBerahmand, K.; Daneshfar, F.; Salehi, E. S.; Li, Y. & Xu, Y.: , 2024; Autoencoders and their applications in machine learning: a survey; Artificial Intelligence Review; 57 (2); doi:10.1007/s10462-023-10662-6; URL http://dx.doi.org/10. 1007/s10462-023-10662-6.spa
dc.relation.referencesBernemann, C.; Hülsewig, C.; Ruckert, C.; Schäfer, S.; Blümel, L.; Hempel, G.; Götte, M.; Greve, B.; Barth, P. J.; Kiesel, L. & Liedtke, C.: , 2014; Influence of secreted frizzled receptor protein 1 (sfrp1) on neoadjuvant chemotherapy in triple negative breast cancer does not rely on wnt signaling; Molecular Cancer; 13 (1): 174; doi:10.1186/1476-4598-13-174; URL http://dx.doi.org/10.1186/1476-4598-13-174.spa
dc.relation.referencesBianchini, G.; Balko, J. M.; Mayer, I. A.; Sanders, M. E. & Gianni, L.: , 2016; Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease; Nature Reviews Clinical Oncology; 13 (11): 674--690; doi:10.1038/nrclinonc. 2016.66; URL https://doi.org/10.1038/nrclinonc.2016.66.spa
dc.relation.referencesBissanum, R.; Chaichulee, S.; Kamolphiwong, R.; Navakanitworakul, R. & Kanokwiroon, K.: , 2021; Molecular classification models for triple negative breast cancer subtype using machine learning; Journal of Personalized Medicine; 11 (9): 881; doi:10.3390/jpm11090881; URL http://dx.doi.org/10.3390/jpm11090881spa
dc.relation.referencesBorin, T.; Angara, K.; Rashid, M.; Achyut, B. & Arbab, A.: , 2017; Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis; International Journal of Molecular Sciences; 18 (12): 2661; doi:10.3390/ijms18122661; URL http://dx.doi.org/10.3390/ijms18122661.spa
dc.relation.referencesBradford, J. R.; Cox, A.; Bernard, P. & Camp, N. J.: , 2016; Consensus analysis of whole transcriptome profiles from two breast cancer patient cohorts reveals long non-coding rnas associated with intrinsic subtype and the tumour microenvironment; PLOS ONE; 11 (9): 1--18; doi:10.1371/journal.pone.0163238; URL https://doi.org/10.1371/journal.pone.0163238.spa
dc.relation.referencesBray, F.; Laversanne, M.; Weiderpass, E. & Soerjomataram, I.: , 2021; The ever-increasing importance of cancer as a leading cause of premature death worldwide; Cancer; 127 (16): 3029--3030; doi:10.1002/cncr.33587; URL http: //dx.doi.org/10.1002/cncr.33587.spa
dc.relation.referencesBritt, K. L.; Cuzick, J. & Phillips, K.-A.: , 2020; Key steps for effective breast cancer prevention; Nature Reviews Cancer; 20 (8): 417--436; doi:10.1038/s41568-020-0266-x; URL http://dx.doi.org/10.1038/s41568-020-0266-x.spa
dc.relation.referencesBrown, S. R.; Vomhof-DeKrey, E. E.; Al-Marsoummi, S.; Brown, N. D.; Hermanson, K. & Basson, M. D.: , 2023; Schlafen family intra-regulation by ifn-alpha2 in triple-negative breast cancer; Cancers; 15 (23): 5658; doi:10.3390/ cancers15235658; URL http://dx.doi.org/10.3390/cancers15235658spa
dc.relation.referencesBruno, R. D. & Njar, V. C.: , 2007; Targeting cytochrome p450 enzymes: A new approach in anti-cancer drug development; Bioorganic & Medicinal Chemistry; 15 (15): 5047--5060; doi:10.1016/j.bmc.2007.05.046; URL http://dx.doi.org/10.1016/ j.bmc.2007.05.046.spa
dc.relation.referencesBurstein, M. D.; Tsimelzon, A.; Poage, G. M.; Covington, K. R.; Contreras, A.; Fuqua, S. A.; Savage, M. I.; Osborne, C. K.; Hilsenbeck, S. G.; Chang, J. C.; Mills, G. B.; Lau, C. C. & Brown, P. H.: , 2015; Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer; Clinical Cancer Research; 21 (7): 1688--1698; doi:10.1158/1078-0432.ccr-14-0432; URL http://dx.doi.org/10.1158/1078-0432.CCR-14-0432.spa
dc.relation.referencesCambiaghi, V.; Giuliani, V.; Lombardi, S.; Marinelli, C.; Toffalorio, F. & Pelicci, P. G.: , 2012; Trim proteins in cancer; en Advances in Experimental Medicine and Biology; Springer New York; ISBN 9781461453970; págs. 77--91; doi:10.1007/978-1-4614-5398-7_6; URL http://dx.doi.org/10.1007/978-1-4614-5398-7_6.spa
dc.relation.referencesCao, W.; Jiang, Y.; Ji, X.; Guan, X.; Lin, Q. & Ma, L.: , 2021; Identification of novel prognostic genes of triple-negative breast cancer using meta-analysis and weighted gene co-expressed network analysis; Annals of Translational Medicine; 9 (3): 205--205; doi:10.21037/atm-20-5989; URL http://dx.doi.org/10.21037/atm-20-5989.spa
dc.relation.referencesCelià-Terrassa, T. & Kang, Y.: , 2024; How important is emt for cancer metastasis?; PLOS Biology; 22 (2): e3002487; doi:10.1371/journal.pbio.3002487; URL http://dx.doi.org/10.1371/journal.pbio.3002487.spa
dc.relation.referencesChang, Z.; Zhang, Y.; Fan, J.; Zhang, L.; Liu, S.; Liu, G. & Tu, J.: , 2022; The potential effects and mechanisms of breast inflammatory lesions on the occurrence and development of breast cancer; Frontiers in Oncology; 12; doi: 10.3389/fonc.2022.932743; URL https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.932743.spa
dc.relation.referencesCHEN, C.; LIANG, Z.; HUANG, W.; LI, X.; ZHOU, F.; HU, X.; HAN, M.; DING, X. & XIANG, S.: , 2014; Eps8 regulates cellular proliferation and migration of breast cancer; International Journal of Oncology; 46 (1): 205--214; doi:10.3892/ijo.2014.2710; URL http://dx.doi.org/10.3892/ijo.2014.2710.spa
dc.relation.referencesChen, F.; Li, Y.; Qin, N.; Wang, F.; Du, J.; Wang, C.; Du, F.; Jiang, T.; Jiang, Y.; Dai, J.; Hu, Z.; Lu, C. & Shen, H.: , 2020a; Rna-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer; The Journal of Biomedical Research; 34 (2): 129; doi:10.7555/jbr.34.20190111; URL http://dx.doi.org/10.7555/ JBR.34.20190111.spa
dc.relation.referencesChen, L.; Han, S.; Li, Y.; Zheng, Y. & Zhang, Q.: , 2022; Sez6l2, regulated by usf1, accelerates the growth and metastasis of breast cancer; Experimental Cell Research; 417 (1): 113194; doi:10.1016/j.yexcr.2022.113194; URL http: //dx.doi.org/10.1016/j.yexcr.2022.113194.spa
dc.relation.referencesChen, Y.; Jiang, T.; Zhang, H.; Gou, X.; Han, C.; Wang, J.; Chen, A. T.; Ma, J.; Liu, J.; Chen, Z.; Jing, X.; Lei, H.; Wang, Z.; Bao, Y.; Baqri, M.; Zhu, Y.; Bindra, R. S.; Hansen, J. E.; Dou, J.; Huang, C. & Zhou, J.: , 2020b; Lrrc31 inhibits dna repair and sensitizes breast cancer brain metastasis to radiation therapy; Nature Cell Biology; 22 (10): 1276--1285; doi:10.1038/s41556-020-00586-6; URL http://dx.doi.org/10.1038/s41556-020-00586-6.spa
dc.relation.referencesChen, Z.; Wang, M.; De Wilde, R. L.; Feng, R.; Su, M.; Torres-de la Roche, L. A. & Shi, W.: , 2021; A machine learning model to predict the triple negative breast cancer immune subtype; Frontiers in Immunology; 12; doi:10.3389/fimmu.2021.749459; URL http://dx.doi.org/10.3389/fimmu.2021.749459.spa
dc.relation.referencesClusan, L.; Ferrière, F.; Flouriot, G. & Pakdel, F.: , 2023; A basic review on estrogen receptor signaling pathways in breast cancer; International Journal of Molecular Sciences; 24 (7); doi:10.3390/ijms24076834; URL https://www.mdpi.com/ 1422-0067/24/7/6834.spa
dc.relation.referencesCrompton, B. D.; Stewart, C.; Taylor-Weiner, A.; Alexe, G.; Kurek, K. C.; Calicchio, M. L.; Kiezun, A.; Carter, S. L.; Shukla, S. A.; Mehta, S. S.; Thorner, A. R.; de Torres, C.; Lavarino, C.; Suñol, M.; McKenna, A.; Sivachenko, A.; Cibulskis, K.; Lawrence, M. S.; Stojanov, P.; Rosenberg, M.; Ambrogio, L.; Auclair, D.; Seepo, S.; Blumenstiel, B.; DeFelice, M.; Imaz-Rosshandler, I.; Schwarz-Cruz y Celis, A.; Rivera, M. N.; Rodriguez-Galindo, C.; Fleming, M. D.; Golub, T. R.; Getz, G.; Mora, J. & Stegmaier, K.: , 2014; The genomic landscape of pediatric ewing sarcoma; Cancer Discovery; 4 (11): 1326--1341; doi:10.1158/2159-8290.cd-13-1037; URL http://dx.doi.org/10.1158/2159-8290.CD-13-1037.spa
dc.relation.referencesDafni, U.; Tsourti, Z. & Alatsathianos, I.: , 2019; Breast cancer statistics in the european union: Incidence and survival across european countries; Breast Care; 14 (6): 344--353; doi:10.1159/000503219; URL http://dx.doi.org/10.1159/000503219.spa
dc.relation.referencesDe Castro Korgi, R.: , 2010; El Universo LaTeX; Universidad Nacional de Colombia, Bogota DC; 2a edición; ISBN 958701060-4.spa
dc.relation.referencesde Guia, J. M.; Devaraj, M. & Leung, C. K.: , 2019; Deepgx; ASONAM ’19: International Conference on Advances in Social Networks Analysis and Mining; ACM; doi:10.1145/3341161.3343516; URL http://dx.doi.org/10.1145/3341161.3343516spa
dc.relation.referencesDe Palma, F. D. E.; Del Monaco, V.; Pol, J. G.; Kremer, M.; D’Argenio, V.; Stoll, G.; Montanaro, D.; Uszczyńska-Ratajczak, B.; Klein, C. C.; Vlasova, A.; Botti, G.; D’Aiuto, M.; Baldi, A.; Guigó, R.; Kroemer, G.; Maiuri, M. C. & Salvatore, F.: , 2020; The abundance of the long intergenic non-coding rna 01087 differentiates between luminal and triple-negative breast cancers and predicts patient outcome; Pharmacological Research; 161: 105249; doi:10.1016/j.phrs.2020.105249; URL http://dx.doi.org/10.1016/j.phrs.2020.105249.spa
dc.relation.referencesDent, R.; Trudeau, M.; Pritchard, K. I.; Hanna, W. M.; Kahn, H. K.; Sawka, C. A.; Lickley, L. A.; Rawlinson, E.; Sun, P. & Narod, S. A.: , 2007; Triple-negative breast cancer: Clinical features and patterns of recurrence; Clinical Cancer Research; 13 (15): 4429--4434; doi:10.1158/1078-0432.ccr-06-3045; URL http://dx.doi.org/10.1158/1078-0432. CCR-06-3045.spa
dc.relation.referencesDevelopers, T.: , 2024; TensorFlow; Zenodo; doi:10.5281/ZENODO.4724125; URL https://zenodo.org/doi/10.5281/zenodo. 4724125.spa
dc.relation.referencesDing, L.; Zeng, J. & Zhao, J.: , 2023; Overexpression of sez6l2 is associated with unfavourable prognosis and immune infiltrates in breast cancer; doi:10.21203/rs.3.rs-2661875/v1; URL http://dx.doi.org/10.21203/rs.3.rs-2661875/v1.spa
dc.relation.referencesDobin, A.; Davis, C. A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M. & Gingeras, T. R.: , 2012; Star: ultrafast universal rna-seq aligner; Bioinformatics; 29 (1): 15--21; doi:10.1093/bioinformatics/bts635; URL http://dx.doi.org/10.1093/bioinformatics/bts635.spa
dc.relation.referencesEchavarria, I.; López-Tarruella, S.; Picornell, A.; García-Saenz, J. A.; Jerez, Y.; Hoadley, K.; Gómez, H. L.; Moreno, F.; Monte-Millan, M. D.; Márquez-Rodas, I.; Alvarez, E.; Ramos-Medina, R.; Gayarre, J.; Massarrah, T.; Ocaña, I.; Cebollero, M.; Fuentes, H.; Barnadas, A.; Ballesteros, A. I.; Bohn, U.; Perou, C. M. & Martin, M.: , 2018; Pathological Response in a Triple-Negative Breast Cancer Cohort Treated with Neoadjuvant Carboplatin and Docetaxel According to Lehmann’s Refined Classification; Clinical Cancer Research; 24 (8): 1845--1852; doi:10.1158/ 1078-0432.CCR-17-1912; URL https://doi.org/10.1158/1078-0432.CCR-17-1912spa
dc.relation.referencesElango, R.; Vishnubalaji, R.; Shaath, H. & Alajez, N. M.: , 2021; Molecular subtyping and functional validation of ttk, tpx2, ube2c, and lrp8 in sensitivity of tnbc to paclitaxel; Molecular Therapy - Methods & Clinical Development; 20: 601--614; doi:10.1016/j.omtm.2021.01.013; URL http://dx.doi.org/10.1016/j.omtm.2021.01.013.spa
dc.relation.referencesEnsenyat-Mendez, M.; Llinàs-Arias, P.; Orozco, J. I. J.; Íñiguez Muñoz, S.; Salomon, M. P.; Sesé, B.; DiNome, M. L. & Marzese, D. M.: , 2021; Current triple-negative breast cancer subtypes: Dissecting the most aggressive form of breast cancer; Frontiers in Oncology; 11; doi:10.3389/fonc.2021.681476; URL http://dx.doi.org/10.3389/fonc.2021.681476.spa
dc.relation.referencesEsmaeili, M.; Mirzaahmadi, S. & Asaadi Tehrani, G.: , 2019; Evaluation of additional abcc12 gene expression character in breast cancer samples using formal diagnostic profile; Gene, Cell and Tissue; In Press (In Press); doi:10.5812/gct.84392; URL http://dx.doi.org/10.5812/gct.84392.spa
dc.relation.referencesFeldner-Busztin, D.; Firbas Nisantzis, P.; Edmunds, S. J.; Boza, G.; Racimo, F.; Gopalakrishnan, S.; Limborg, M. T.; Lahti, L. & de Polavieja, G. G.: , 2023; Dealing with dimensionality: the application of machine learning to multiomics data; Bioinformatics; 39 (2); doi:10.1093/bioinformatics/btad021; URL http://dx.doi.org/10.1093/bioinformatics/ btad021.spa
dc.relation.referencesFoulkes, W. D.; Smith, I. E. & Reis-Filho, J. S.: , 2010; Triple-negative breast cancer; New England Journal of Medicine; 363 (20): 1938--1948; doi:10.1056/NEJMra1001389; URL https://www.nejm.org/doi/full/10.1056/NEJMra1001389.spa
dc.relation.referencesGu, W.; Qi, G. & Chen, L.: , 2023; Spib knockdown inhibits the immune escape of ovarian cancer cells by reducing pd-l1 cd274) expression and inactivating the jak/stat pathway; Iranian Journal of Immunology; (Online First); doi: 10.22034/iji.2023.98236.2559; URL https://doi.org/10.22034/iji.2023.98236.2559.spa
dc.relation.referencesGuo, Y.; Chen, X.; Zhang, X. & Hu, X.: , 2023; Ube2s and ube2c confer a poor prognosis to breast cancer via downregulation of numb; Frontiers in Oncology; 13; doi:10.3389/fonc.2023.992233; URL http://dx.doi.org/10.3389/fonc.2023.992233.spa
dc.relation.referencesGyamfi, J.; Kim, J. & Choi, J.: , 2022; Cancer as a metabolic disorder; International Journal of Molecular Sciences; 23 (3): 1155; doi:10.3390/ijms23031155; URL http://dx.doi.org/10.3390/ijms23031155.spa
dc.relation.referencesGyőrffy, B.: , 2021; Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer; Computational and Structural Biotechnology Journal; 19: 4101--4109; doi:10.1016/j.csbj.2021.07.014; URL http://dx.doi.org/10.1016/j.csbj.2021.07.014.spa
dc.relation.referencesHagberg, A. A.; Schult, D. A. & Swart, P. J.: , 2008; Exploring network structure, dynamics, and function using networkx; en Proceedings of the 7th Python in Science Conference (Editado por Varoquaux, G.; Vaught, T. & Millman, J.); Pasadena, CA USA; págs. 11 -- 15.spa
dc.relation.referencesHan, J.; Xie, R.; Yang, Y.; Chen, D.; Liu, L.; Wu, J. & Li, S.: , 2021; Cenpa is one of the potential key genes associated with the proliferation and prognosis of ovarian cancer based on integrated bioinformatics analysis and regulated by mybl2; Translational Cancer Research; 10 (9): 4076--4086; doi:10.21037/tcr-21-175; URL http://dx.doi.org/10.21037/ tcr-21-175.spa
dc.relation.referencesHanahan, D. & Weinberg, R.: , 2011; Hallmarks of cancer: The next generation; Cell; 144 (5): 646--674; doi:10.1016/j.cell. 2011.02.013; URL http://dx.doi.org/10.1016/j.cell.2011.02.013.spa
dc.relation.referencesHansen, E. & Read, A. F.: , 2020; Cancer therapy: Attempt cure or manage drug resistance?; Evolutionary Applications; 13 (7): 1660--1672; doi:10.1111/eva.12994; URL http://dx.doi.org/10.1111/eva.12994spa
dc.relation.referencesHe, W. & Meng, J.: , 2023; Cdc20: a novel therapeutic target in cancer; American journal of translational research; 15 (2): 678--693.spa
dc.relation.referencesHe, Y.; Jiang, Z.; Chen, C. & Wang, X.: , 2018; Classification of triple-negative breast cancers based on immunogenomic profiling; Journal of Experimental and Clinical Cancer Research; 37 (1); doi:10.1186/s13046-018-1002-1; URL http: //dx.doi.org/10.1186/s13046-018-1002-1.spa
dc.relation.referencesHellec, C.; Delos, M.; Carpentier, M.; Denys, A. & Allain, F.: , 2018; The heparan sulfate 3-o-sulfotransferases (hs3st) 2, 3b and 4 enhance proliferation and survival in breast cancer mda-mb-231 cells; PLOS ONE; 13 (3): e0194676; doi:10.1371/journal.pone.0194676; URL http://dx.doi.org/10.1371/journal.pone.0194676.spa
dc.relation.referencesHeo, K. & Lee, S.: , 2020; Tspan8 as a novel emerging therapeutic target in cancer for monoclonal antibody therapy; Biomolecules; 10 (3): 388; doi:10.3390/biom10030388; URL http://dx.doi.org/10.3390/biom10030388.spa
dc.relation.referencesHlaváč, V.; Brynychová, V.; Václavíková, R.; Ehrlichová, M.; Vrána, D.; Pecha, V.; Koževnikovová, R.; Trnková, M.; Gatěk, J.; Kopperová, D.; Gut, I. & Souček, P.: , 2013; The expression profile of atp-binding cassette transporter genes in breast carcinoma; Pharmacogenomics; 14 (5): 515--529; doi:10.2217/pgs.13.26; URL http: //dx.doi.org/10.2217/pgs.13.26.spa
dc.relation.referencesHorvath, A.; Pakala, S. B.; Mudvari, P.; Reddy, S. D. N.; Ohshiro, K.; Casimiro, S.; Pires, R.; Fuqua, S. A. W.; Toi, M.; Costa, L.; Nair, S. S.; Sukumar, S. & Kumar, R.: , 2013; Novel insights into breast cancer genetic variance through rna sequencing; Scientific Reports; 3 (1): 2256; doi:10.1038/srep02256; URL https://doi.org/10.1038/srep02256.spa
dc.relation.referencesHou, P.; Luo, Y. & Wu, N.: , 2023; Tcl1a+ b cells predict prognosis in triple-negative breast cancer through integrative analysis of single-cell and bulk transcriptomic data; Open Life Sciences; 18 (1); doi:10.1515/biol-2022-0707; URL http: //dx.doi.org/10.1515/biol-2022-0707.spa
dc.relation.referencesHuang, C.-K.; Yang, C.-Y.; Jeng, Y.-M.; Chen, C.-L.; Wu, H.-H.; Chang, Y.-C.; Ma, C.; Kuo, W.-H.; Chang, K.-J.; Shew, J.-Y. & Lee, W.-H.: , 2013; Autocrine/paracrine mechanism of interleukin-17b receptor promotes breast tumorigenesis through nf-kb-mediated antiapoptotic pathway; Oncogene; 33 (23): 2968--2977; doi:10.1038/onc.2013.268; URL http://dx.doi.org/10.1038/onc.2013.268.spa
dc.relation.referencesHuang, N.; Sun, X.; Li, P.; liu, X.; Zhang, X.; Chen, Q. & Xin, H.: , 2022; Trim family contribute to tumorigenesis, cancer development, and drug resistance; Experimental Hematology & Oncology; 11 (1); doi:10.1186/s40164-022-00322-w; URL http://dx.doi.org/10.1186/s40164-022-00322-w.spa
dc.relation.referencesHubalek, M.; Czech, T. & Müller, H.: , 2017; Biological subtypes of triple-negative breast cancer; Breast care (Basel, Switzerland); 12 (1): 8--14; doi:10.1159/000455820; [Online; accessed 2024-10-22].spa
dc.relation.referencesHuertas-Caro, C. A.; Ramírez, M. A.; Rey-Vargas, L.; Bejarano-Rivera, L. M.; Ballen, D. F.; Nuñez, M.; Mejía, J. C.; Sua-Villegas, L. F.; Cock-Rada, A.; Zabaleta, J.; Fejerman, L.; Sanabria-Salas, M. C. & Serrano-Gomez, S. J.: , 2023; Tumor infiltrating lymphocytes (tils) are a prognosis biomarker in colombian patients with triple negative breast cancer; Scientific Reports; 13 (1); doi:10.1038/s41598-023-48300-4; URL http://dx.doi.org/10.1038/s41598-023-48300-4.spa
dc.relation.referencesJaniesch, C.; Zschech, P. & Heinrich, K.: , 2021; Machine learning and deep learning; Electronic Markets; 31 (3): 685--695; doi:10.1007/s12525-021-00475-2; URL https://doi.org/10.1007/s12525-021-00475-2.spa
dc.relation.referencesJarrar, Y. B. & Lee, S.-J.: , 2019; Molecular functionality of cytochrome p450 4 (cyp4) genetic polymorphisms and their clinical implications; International Journal of Molecular Sciences; 20 (17): 4274; doi:10.3390/ijms20174274; URL http://dx.doi.org/10.3390/ijms20174274.spa
dc.relation.referencesJeong, S. M.; Bui, Q. T.; Kwak, M.; Lee, J. Y. & Lee, P. C.-W.: , 2022; Targeting cdc20 for cancer therapy; Biochimica et Biophysica Acta (BBA) - Reviews on Cancer; 1877 (6): 188824; doi:10.1016/j.bbcan.2022.188824; URL http://dx.doi.org/10.1016/j.bbcan.2022.188824.spa
dc.relation.referencesJia, W.; Chen, S.; Wei, R.; Yang, X.; Zhang, M.; Qian, Y.; Liu, H. & Lei, D.: , 2023; Cyp4f12 is a potential biomarker and inhibits cell migration of head and neck squamous cell carcinoma via emt pathway; Scientific Reports; 13 (1); doi:10.1038/s41598-023-37950-z; URL http://dx.doi.org/10.1038/s41598-023-37950-z.spa
dc.relation.referencesJiang, Y.; Liu, Y.; Tan, X.; Yu, S. & Luo, J.: , 2019; Tpx2 as a novel prognostic indicator and promising therapeutic target in triple-negative breast cancer; Clinical Breast Cancer; 19 (6): 450--455; doi:10.1016/j.clbc.2019.05.012; URL http://dx.doi.org/10.1016/j.clbc.2019.05.012spa
dc.relation.referencesJoshi, C. J.; Ke, W.; Drangowska-Way, A.; O’Rourke, E. J. & Lewis, N. E.: , 2022; What are housekeeping genes?; PLOS Computational Biology; 18 (7): e1010295; doi:10.1371/journal.pcbi.1010295; URL http://dx.doi.org/10.1371/ journal.pcbi.1010295.spa
dc.relation.referencesJézéquel, P.; Kerdraon, O.; Hondermarck, H.; Guérin-Charbonnel, C.; Lasla, H.; Gouraud, W.; Canon, J.-L.; Gombos, A.; Dalenc, F.; Delaloge, S.; Lemonnier, J.; Loussouarn, D.; Verrièle, V. & Campone, M.: , 2019; Identification of three subtypes of triple-negative breast cancer with potential therapeutic implications; Breast Cancer Research; 21 (1); doi:10.1186/s13058-019-1148-6; URL http://dx.doi.org/10.1186/s13058-019-1148-6.spa
dc.relation.referencesKahvejian, A.; Quackenbush, J. & Thompson, J. F.: , 2008; What would you do if you could sequence everything?; Nature Biotechnology; 26 (10): 1125--1133; doi:10.1038/nbt1494; URL http://dx.doi.org/10.1038/nbt1494.spa
dc.relation.referencesKalsotra, A. & Strobel, H. W.: , 2006; Cytochrome p450 4f subfamily: At the crossroads of eicosanoid and drug metabolism; Pharmacology & Therapeutics; 112 (3): 589--611; doi:10.1016/j.pharmthera.2006.03.008; URL http://dx.doi.org/10.1016/ j.pharmthera.2006.03.008.spa
dc.relation.referencesKanehisa, M.: , 2000; Kegg: Kyoto encyclopedia of genes and genomes; Nucleic Acids Research; 28 (1): 27--30; doi: 10.1093/nar/28.1.27; URL http://dx.doi.org/10.1093/nar/28.1.27.spa
dc.relation.referencesKang, S. Y.; Kim, Y. S.; Kim, Z.; Kim, H. Y.; Kim, H. J.; Park, S.; Bae, S. Y.; Yoon, K. H.; Lee, S. B.; Lee, S. K.; Jung, K.-W.; Han, J. & Youn, H. J.: , 2020; Breast cancer statistics in korea in 2017: Data from a breast cancer registry; Journal of Breast Cancer; 23 (2): 115; doi:10.4048/jbc.2020.23.e24; URL http://dx.doi.org/10.4048/jbc.2020.23.e24.spa
dc.relation.referencesKarim, Z.; Zulkifli, N.; Sheikh Abdul Kadir, S.; Abd Khalil, K. & Musa, M.: , 2018; Emt markers gene expression in bpifb2 overexpressed gastric cancer cell lines; Annals of Oncology; 29: ix55; doi:10.1093/annonc/mdy432.026; URL http://dx.doi.org/10.1093/annonc/mdy432.026.spa
dc.relation.referencesKawano, Y. & Kypta, R.: , 2003; Secreted antagonists of the wnt signalling pathway; Journal of Cell Science; 116 (13): 2627--2634; doi:10.1242/jcs.00623; URL http://dx.doi.org/10.1242/jcs.00623.spa
dc.relation.referencesKim, J.-Y.; Park, S.; Cho, E. Y.; Lee, J. E.; Jung, H. H.; Chae, B. J.; Kim, S. W.; Nam, S. J.; Cho, S. Y.; Park, Y. H.; Ahn, J. S.; Lee, S. & Im, Y.-H.: , 2023; Genomic characteristics of triple negative apocrine carcinoma: a comparison to triple negative breast cancer; Experimental & Molecular Medicine; 55 (7): 1451--1461; doi:10.1038/s12276-023-01030-z; URL https://doi.org/10.1038/s12276-023-01030-z.spa
dc.relation.referencesKomili, S. & Silver, P. A.: , 2008; Coupling and coordination in gene expression processes: a systems biology view; Nature Reviews Genetics; 9 (1): 38--48; doi:10.1038/nrg2223; URL http://dx.doi.org/10.1038/nrg2223.spa
dc.relation.referencesKou, T.; Kanai, M.; Matsumoto, S.; Okuno, Y. & Muto, M.: , 2016; The possibility of clinical sequencing in the management of cancer; Japanese Journal of Clinical Oncology; 46 (5): 399--406; doi:10.1093/jjco/hyw018; URL http: //dx.doi.org/10.1093/jjco/hyw018.spa
dc.relation.referenceskumar, D. T. V.: , 2019; Classification of brain cancer type using machine learning; Journal of Artificial Intelligence and Capsule Networks; 2019 (2); doi:10.36548/jaicn.2019.2.006; URL http://dx.doi.org/10.36548/jaicn.2019.2.006.spa
dc.relation.referencesLamartine, J.: , 2006; The benefits of dna microarrays in fundamental and applied bio-medicine; Materials Science and Engineering: C; 26 (2-3): 354--359; doi:10.1016/j.msec.2005.10.068; URL http://dx.doi.org/10.1016/j.msec.2005.10.068.spa
dc.relation.referencesLangfelder, P. & Horvath, S.: , 2008; Wgcna: an r package for weighted correlation network analysis; BMC Bioinformatics; 9 (1); doi:10.1186/1471-2105-9-559; URL http://dx.doi.org/10.1186/1471-2105-9-559.spa
dc.relation.referencesLehmann, B. D.; Bauer, J. A.; Chen, X.; Sanders, M. E.; Chakravarthy, A. B.; Shyr, Y. & Pietenpol, J. A.: , 2011; Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies; Journal of Clinical Investigation; 121 (7): 2750--2767; doi:10.1172/jci45014; URL http://dx.doi.org/10.1172/JCI45014.spa
dc.relation.referencesLehmann, B. D.; Jovanović, B.; Chen, X.; Estrada, M. V.; Johnson, K. N.; Shyr, Y.; Moses, H. L.; Sanders, M. E. & Pietenpol, J. A.: , 2016; Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection; PLOS ONE; 11 (6): e0157368; doi:10.1371/journal.pone.0157368; URL http://dx.doi.org/10. 1371/journal.pone.0157368.spa
dc.relation.referencesLeNail, A.: , 2019; Nn-svg: Publication-ready neural network architecture schematics; Journal of Open Source Software; 4 (33): 747; doi:10.21105/joss.00747; URL http://dx.doi.org/10.21105/joss.00747.spa
dc.relation.referencesLeon-Ferre, R. A.; Jonas, S. F.; Salgado, R.; Loi, S.; de Jong, V.; Carter, J. M.; Nielsen, T. O.; Leung, S.; Riaz, N.; Chia, S.; Jules-Clément, G.; Curigliano, G.; Criscitiello, C.; Cockenpot, V.; Lambertini, M.; Suman, V. J.; Linderholm, B.; Martens, J. W. M.; van Deurzen, C. H. M.; Timmermans, A. M.; Shimoi, T.; Yazaki, S.; Yoshida, M.; Kim, S.-B.; Lee, H. J.; Dieci, M. V.; Bataillon, G.; Vincent-Salomon, A.; André, F.; Kok, M.; Linn, S. C.; Goetz, M. P. & Michiels, S.: , 2024; Tumor-infiltrating lymphocytes in triple-negative breast cancer; JAMA; 331 (13): 1135; doi:10.1001/jama.2024.3056; URL http://dx.doi.org/10.1001/jama.2024.3056.spa
dc.relation.referencesLi, R.; Li, L.; Xu, Y. & Yang, J.: , 2021; Machine learning meets omics: applications and perspectives; Briefings in Bioinformatics; 23 (1); doi:10.1093/bib/bbab460; URL http://dx.doi.org/10.1093/bib/bbab460spa
dc.relation.referencesLi, S.; Zhang, Z.; Li, Z.; Yang, L.; Liu, J.; Liu, Y.; Liu, Y.; Hou, Y.; Mei, M. & Huang, Y.: , 2024; Cenpa promotes glutamine metabolism and tumor progression by up-regulating slc38a1 in endometrial cancer; Cellular Signalling; 117: 111110; doi:10.1016/j.cellsig.2024.111110; URL http://dx.doi.org/10.1016/j.cellsig.2024.111110.spa
dc.relation.referencesLi, W.; Guo, X.; Chen, C. & Li, J.: , 2022; The prognostic value of arachidonic acid metabolism in breast cancer by integrated bioinformatics; Lipids in Health and Disease; 21 (1); doi:10.1186/s12944-022-01713-y; URL http://dx.doi.org/ 10.1186/s12944-022-01713-y.spa
dc.relation.referencesLin, C.-J.; Xiao, W.-X.; Fu, T.; Jin, X.; Shao, Z.-M. & Di, G.-H.: , 2023; Calcifications in triple-negative breast cancer: Molecular features and treatment strategies; npj Breast Cancer; 9 (1): 26; doi:10.1038/s41523-023-00531-4; URL https://doi.org/10.1038/s41523-023-00531-4.spa
dc.relation.referencesLin, Z.; Tan, C.; Qiu, Q.; Kong, S.; Yang, H.; Zhao, F.; Liu, Z.; Li, J.; Kong, Q.; Gao, B.; Barrett, T.; Yang, G.-Y.; Zhang, J. & Fang, D.: , 2015; Ubiquitin-specific protease 22 is a deubiquitinase of ccnb1; Cell Discovery; 1 (1); doi:10.1038/celldisc.2015.28; URL http://dx.doi.org/10.1038/celldisc.2015.28.spa
dc.relation.referencesLiu, H.; Xiang, L. & Mei, Y.: , 2022; mir-877-5p inhibits epithelial mesenchymal transformation of breast cancer cells by targeting fgb; Disease Markers; 2022: 1--7; doi:10.1155/2022/4882375; URL http://dx.doi.org/10.1155/2022/4882375.spa
dc.relation.referencesLiu, W.; Li, J.; Song, Y.-S.; Li, Y.; Jia, Y.-H. & Zhao, H.-D.: , 2017; Cdk5 links with dna damage response and cancer; Molecular Cancer; 16 (1); doi:10.1186/s12943-017-0611-1; URL http://dx.doi.org/10.1186/s12943-017-0611-1.spa
dc.relation.referencesLiu, Y.; Zhang, Q.; Wu, J.; Zhang, H.; Li, X.; Zheng, Z.; Luo, M.; Li, L.; Xiang, Y.; Yang, F. & Wu, L.: , 2020; Long non-coding rna a2m-as1 promotes breast cancer progression by sponging microrna-146b to upregulate muc19; International Journal of General Medicine; Volume 13: 1305--1316; doi:10.2147/ijgm.s278564; URL http://dx.doi.org/10.2147/IJGM. S278564.spa
dc.relation.referencesLiu, Y.-R.; Jiang, Y.-Z.; Xu, X.-E.; Yu, K.-D.; Jin, X.; Hu, X.; Zuo, W.-J.; Hao, S.; Wu, J.; Liu, G.-Y.; Di, G.-H.; Li, D.-Q.; He, X.-H.; Hu, W.-G. & Shao, Z.-M.: , 2016; Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific rnas of triple-negative breast cancer; Breast Cancer Research; 18 (1); doi:10.1186/s13058-016-0690-8; URL http://dx.doi.org/10.1186/s13058-016-0690-8.spa
dc.relation.referencesLO, P. H. Y.; TANIKAWA, C.; KATAGIRI, T.; NAKAMURA, Y. & MATSUDA, K.: , 2014; Identification of novel epigenetically inactivated gene pamr1 in breast carcinoma; Oncology Reports; 33 (1): 267--273; doi:10.3892/or.2014.3581; URL http://dx.doi.org/10.3892/or.2014.3581spa
dc.relation.referencesLoeb, K. R. & Loeb, L. A.: , 2000; Significance of multiple mutations in cancer; Carcinogenesis; 21 (3): 379--385; doi:10.1093/carcin/21.3.379; URL https://doi.org/10.1093/carcin/21.3.379spa
dc.relation.referencesLoza, M.; Vandenbon, A. & Nakai, K.: , 2023; Epigenetic characterization of housekeeping core promoters and their importance in tumor suppression; Nucleic Acids Research; 52 (3): 1107--1119; doi:10.1093/nar/gkad1164; URL http: //dx.doi.org/10.1093/nar/gkad1164.spa
dc.relation.referencesLu, X.; An, L.; Fan, G.; Zang, L.; Huang, W.; Li, J.; Liu, J.; Ge, W.; Huang, Y.; Xu, J.; Du, S.; Cao, Y.; Zhou, T.; Yin, H.; Yu, L.; Jiao, S. & Wang, H.: , 2022; Egfr signaling promotes nuclear translocation of plasma membrane protein tspan8 to enhance tumor progression via stat3-mediated transcription; Cell Research; 32 (4): 359--374; doi:10.1038/s41422-022-00628-8; URL http://dx.doi.org/10.1038/s41422-022-00628-8.spa
dc.relation.referencesLuo, X.; Chen, X.; Chen, S.; Gao, Q.; Yang, H. & Zhao, D.: , 2022; High expression of sez6l2 as an independent prognostic indicator in thyroid carcinoma; Gland Surgery; 11 (2): 412--425; doi:10.21037/gs-22-37; URL http://dx.doi. org/10.21037/gs-22-37.spa
dc.relation.referencesMahin, K. F.; Robiuddin, M.; Islam, M.; Ashraf, S.; Yeasmin, F. & Shatabda, S.: , 2022; Panclassif: Improving pan cancer classification of single cell rna-seq gene expression data using machine learning; Genomics; 114 (2): 110264; doi:10.1016/j.ygeno.2022.01.001; URL http://dx.doi.org/10.1016/j.ygeno.2022.01.001.spa
dc.relation.referencesMakuch-Kocka, A.; Kocki, J.; Brzozowska, A.; Bogucki, J.; Kołodziej, P. & Bogucka-Kocka, A.: , 2023; Analysis of changes in the expression of selected genes from the abc family in patients with triple-negative breast cancer; International Journal of Molecular Sciences; 24 (2): 1257; doi:10.3390/ijms24021257; URL http://dx.doi.org/10.3390/ijms24021257.spa
dc.relation.referencesMamoor, S.: , 2020; Atp-binding cassette transporter sub-family c member 8, abcc8, is a differentially expressed gene in brain metastatic human breast cancer.; doi:10.31219/osf.io/u74wy; URL http://dx.doi.org/10.31219/osf.io/u74wy.spa
dc.relation.referencesMartini, R.; Delpe, P.; Chu, T. R.; Arora, K.; Lord, B.; Verma, A.; Bedi, D.; Karanam, B.; Elhussin, I.; Chen, Y.; Gebregzabher, E.; Oppong, J. K.; Adjei, E. K.; Jibril Suleiman, A.; Awuah, B.; Muleta, M. B.; Abebe, E.; Kyei, I.; Aitpillah, F. S.; Adinku, M. O.; Ankomah, K.; Osei-Bonsu, E. B.; Chitale, D. A.; Bensenhaver, J. M.; Nathanson, D. S.; Jackson, L.; Petersen, L. F.; Proctor, E.; Stonaker, B.; Gyan, K. K.; Gibbs, L. D.; Monojlovic, Z.; Kittles, R. A.; White, J.; Yates, C. C.; Manne, U.; Gardner, K.; Mongan, N.; Cheng, E.; Ginter, P.; Hoda, S.; Elemento, O.; Robine, N.; Sboner, A.; Carpten, J. D.; Newman, L. & Davis, M. B.: , 2022; African Ancestry–Associated Gene Expression Profiles in Triple-Negative Breast Cancer Underlie Altered Tumor Biology and Clinical Outcome in Women of African Descent; Cancer Discovery; 12 (11): 2530--2551; doi:10.1158/2159-8290.CD-22-0138; URL https://doi.org/10.1158/2159-8290.CD-22-0138.spa
dc.relation.referencesMasuda, H.; Baggerly, K. A.; Wang, Y.; Zhang, Y.; Gonzalez-Angulo, A. M.; Meric-Bernstam, F.; Valero, V.; Lehmann, B. D.; Pietenpol, J. A.; Hortobagyi, G. N.; Symmans, W. F. & Ueno, N. T.: , 2013; Differential Response to Neoadjuvant Chemotherapy Among 7 Triple-Negative Breast Cancer Molecular Subtypes; Clinical Cancer Research; 19 (19): 5533--5540; doi:10.1158/1078-0432.CCR-13-0799; URL https://doi.org/10.1158/1078-0432.CCR-13-0799.spa
dc.relation.referencesMohamed, A. H.; Obeid, R. A.; Fadhil, A. A.; Amir, A. A.; Adhab, Z. H.; Jabouri, E. A.; Ahmad, I. & Alshahrani, M. Y.: , 2023; Btla and hvem: Emerging players in the tumor microenvironment and cancer progression; Cytokine; 172: 156412; doi:10.1016/j.cyto.2023.156412; URL http://dx.doi.org/10.1016/j.cyto.2023.156412.spa
dc.relation.referencesMontenegro, J. D.: , 2022; Gene co-expression network analysis; en Methods in Molecular Biology; Springer US; ISBN 9781071620663; págs. 387--404; doi:10.1007/978-1-0716-2067-0_19; URL http://dx.doi.org/10.1007/978-1-0716-2067-0_ 19.spa
dc.relation.referencesMukhopadhyay, P.; Chakraborty, S.; Ponnusamy, M. P.; Lakshmanan, I.; Jain, M. & Batra, S. K.: , 2011; Mucins in the pathogenesis of breast cancer: Implications in diagnosis, prognosis and therapy; Biochimica et Biophysica Acta (BBA) - Reviews on Cancer; 1815 (2): 224--240; doi:10.1016/j.bbcan.2011.01.001; URL http://dx.doi.org/10.1016/j.bbcan.2011. 01.001.spa
dc.relation.referencesMunshi, A. & Sharma, V.: , 2018; Omics and edible vaccines; en Omics Technologies and Bio-Engineering; Elsevier; ISBN 9780128158708; págs. 129--141; doi:10.1016/b978-0-12-815870-8.00008-5; URL http://dx.doi.org/10.1016/ B978-0-12-815870-8.00008-5.spa
dc.relation.referencesMurphy, K. M.; Nelson, C. A. & Šedý, J. R.: , 2006; Balancing co-stimulation and inhibition with btla and hvem; Nature Reviews Immunology; 6 (9): 671--681; doi:10.1038/nri1917; URL http://dx.doi.org/10.1038/nri1917.spa
dc.relation.referencesNewman, A. M.; Steen, C. B.; Liu, C. L.; Gentles, A. J.; Chaudhuri, A. A.; Scherer, F.; Khodadoust, M. S.; Esfahani, M. S.; Luca, B. A.; Steiner, D.; Diehn, M. & Alizadeh, A. A.: , 2019; Determining cell type abundance and expression from bulk tissues with digital cytometry; Nature Biotechnology; 37 (7): 773--782; doi:10.1038/s41587-019-0114-2; URL http://dx.doi.org/10.1038/s41587-019-0114-2.spa
dc.relation.referencesNicora, G.; Vitali, F.; Dagliati, A.; Geifman, N. & Bellazzi, R.: , 2020; Integrated multi-omics analyses in oncology: A review of machine learning methods and tools; Frontiers in Oncology; 10; doi:10.3389/fonc.2020.01030; URL http: //dx.doi.org/10.3389/fonc.2020.01030.spa
dc.relation.referencesNing, Z.; Liu, K. & Xiong, H.: , 2021; Roles of btla in immunity and immune disorders; Frontiers in Immunology; 12; doi:10.3389/fimmu.2021.654960; URL http://dx.doi.org/10.3389/fimmu.2021.654960.spa
dc.relation.referencesNirgude, S.; Desai, S. & Choudhary, B.: , 2022; Genome-wide differential dna methylation analysis of mda-mb-231 breast cancer cells treated with curcumin derivatives, st08 and st09; BMC Genomics; 23 (1); doi:10.1186/s12864-022-09041-2; URL http://dx.doi.org/10.1186/s12864-022-09041-2.spa
dc.relation.referencesNueda, M.; Naranjo, A.; Baladrón, V. & Laborda, J.: , 2017; Different expression levels of dlk1 inversely modulate the oncogenic potential of human mda-mb-231 breast cancer cells through inhibition of notch1 signaling; The FASEB Journal; 31 (8): 3484--3496; doi:10.1096/fj.201601341rrr; URL http://dx.doi.org/10.1096/fj.201601341RRRspa
dc.relation.referencesOgden, A.; Bhattarai, S.; Sahoo, B.; Mongan, N. P.; Alsaleem, M.; Green, A. R.; Aleskandarany, M.; Ellis, I. O.; Pattni, S.; Li, X. B.; Moreno, C. S.; Krishnamurti, U.; Janssen, E. A.; Jonsdottir, K.; Rakha, E.; Rida, P. & Aneja, R.: , 2020; Combined her3-egfr score in triple-negative breast cancer provides prognostic and predictive significance superior to individual biomarkers; Scientific Reports; 10 (1): 3009; doi:10.1038/s41598-020-59514-1; URL https://doi.org/10.1038/s41598-020-59514-1.spa
dc.relation.referencesOzato, K.; Shin, D.-M.; Chang, T.-H. & Morse, III, H. C.: , 2008; Trim family proteins and their emerging roles in innate immunity; Nature Reviews Immunology; 8 (11): 849--860; doi:10.1038/nri2413; URL http://dx.doi.org/10.1038/nri2413.spa
dc.relation.referencesPark, J. H.; Pyun, W. Y. & Park, H. W.: , 2020; Cancer metabolism: Phenotype, signaling and therapeutic targets; Cells; 9 (10): 2308; doi:10.3390/cells9102308; URL http://dx.doi.org/10.3390/cells9102308.spa
dc.relation.referencesPark, J. H.; Han, H. S.; Lim, S. D.; Kim, W. Y.; Park, K. S.; Yoo, Y. B.; Lee, S. E. & Kim, W.-S.: , 2022; Fatty acid synthetase expression in triple-negative breast cancer; Journal of Pathology and Translational Medicine; 56 (2): 73--80; doi:10.4132/jptm.2021.10.27; URL http://dx.doi.org/10.4132/jptm.2021.10.27.spa
dc.relation.referencesPedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M. & Édouard Duchesnay: , 2011; Scikit-learn: Machine learning in python; Journal of Machine Learning Research; 12 (85): 2825--2830; URL http://jmlr.org/papers/v12/pedregosa11a.html.spa
dc.relation.referencesPozo, K. & Bibb, J. A.: , 2016; The emerging role of cdk5 in cancer; Trends in Cancer; 2 (10): 606--618; doi:10.1016/j. trecan.2016.09.001; URL http://dx.doi.org/10.1016/j.trecan.2016.09.001.spa
dc.relation.referencesPramesh, C. S.; Badwe, R. A.; Bhoo-Pathy, N.; Booth, C. M.; Chinnaswamy, G.; Dare, A. J.; de Andrade, V. P.; Hunter, D. J.; Gopal, S.; Gospodarowicz, M.; Gunasekera, S.; Ilbawi, A.; Kapambwe, S.; Kingham, P.; Kutluk, T.; Lamichhane, N.; Mutebi, M.; Orem, J.; Parham, G.; Ranganathan, P.; Sengar, M.; Sullivan, R.; Swaminathan, S.; Tannock, I. F.; Tomar, V.; Vanderpuye, V.; Varghese, C. & Weiderpass, E.: , 2022; Priorities for cancer research in low- and middle-income countries: a global perspective; Nature Medicine; 28 (4): 649--657; doi:10.1038/s41591-022-01738-x; URL http://dx.doi.org/10.1038/s41591-022-01738-x.spa
dc.relation.referencesPrat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A. & Muñoz, M.: , 2015; Clinical implications of the intrinsic molecular subtypes of breast cancer; The Breast; 24: S26--S35; doi:10.1016/j.breast.2015.07.008; URL http://dx.doi.org/10.1016/j.breast.2015.07.008spa
dc.relation.referencesPratella, D.; Ait-El-Mkadem Saadi, S.; Bannwarth, S.; Paquis-Fluckinger, V. & Bottini, S.: , 2021; A survey of autoencoder algorithms to pave the diagnosis of rare diseases; International Journal of Molecular Sciences; 22 (19): 10891; doi:10.3390/ijms221910891; URL http://dx.doi.org/10.3390/ijms221910891.spa
dc.relation.referencesQin, Y.; Yalamanchili, H. K.; Qin, J.; Yan, B. & Wang, J.: , 2015; The current status and challenges in computational analysis of genomic big data; Big Data Research; 2 (1): 12--18; doi:10.1016/j.bdr.2015.02.005; URL http://dx.doi.org/10. 1016/j.bdr.2015.02.005.spa
dc.relation.referencesQiu, Z.; Wang, L. & Liu, H.: , 2021; Hsa circ 0001982 promotes the progression of breast cancer through mir-1287- 5p/muc19 axis under hypoxia; World Journal of Surgical Oncology; 19 (1); doi:10.1186/s12957-021-02273-8; URL http: //dx.doi.org/10.1186/s12957-021-02273-8.spa
dc.relation.referencesRAAFAT ELSAYED, A. A.; AL-MARSOUMMI, S.; VOMHOF-DEKREY, E. E. & BASSON, M. D.: , 2022; Slfn12 over-expression sensitizes triple negative breast cancer cells to chemotherapy drugs and radiotherapy; Cancer Genomics - Proteomics; 19 (3): 328--338; doi:10.21873/cgp.20323; URL http://dx.doi.org/10.21873/cgp.20323.spa
dc.relation.referencesRajaram, R.; Castellani, B. & Wilson, A. N.: , 2017; Advancing shannon entropy for measuring diversity in systems; Complexity; 2017: 1--10; doi:10.1155/2017/8715605; URL http://dx.doi.org/10.1155/2017/8715605.spa
dc.relation.referencesRao, M. S.; Van Vleet, T. R.; Ciurlionis, R.; Buck, W. R.; Mittelstadt, S. W.; Blomme, E. A. G. & Liguori, M. J.: , 2019; Comparison of rna-seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies; Frontiers in Genetics; 9; doi:10.3389/fgene.2018.00636; URL http://dx.doi.org/10. 3389/fgene.2018.00636.spa
dc.relation.referencesReel, P. S.; Reel, S.; Pearson, E.; Trucco, E. & Jefferson, E.: , 2021; Using machine learning approaches for multiomics data analysis: A review; Biotechnology Advances; 49: 107739; doi:10.1016/j.biotechadv.2021.107739; URL http: //dx.doi.org/10.1016/j.biotechadv.2021.107739.spa
dc.relation.referencesRobinson, M. D. & Oshlack, A.: , 2010; A scaling normalization method for differential expression analysis of rna-seq data; Genome Biology; 11 (3); doi:10.1186/gb-2010-11-3-r25; URL http://dx.doi.org/10.1186/gb-2010-11-3-r25.spa
dc.relation.referencesRobinson, M. D.; McCarthy, D. J. & Smyth, G. K.: , 2009; edger: a bioconductor package for differential expression analysis of digital gene expression data; Bioinformatics; 26 (1): 139--140; doi:10.1093/bioinformatics/btp616; URL http: //dx.doi.org/10.1093/bioinformatics/btp616.spa
dc.relation.referencesRomanens, L.; Chaskar, P.; Marcone, R.; Ryser, S.; Tille, J.-C.; Genolet, R.; Heimgartner-Hu, K.; Heimgartner, K.; Moore, J. S.; Liaudet, N.; Kaya, G.; Pittet, M. J.; Dietrich, P.-Y.; Delorenzi, M.; Speiser, D. E.; Harari, A.; Tsantoulis, P. & Labidi-Galy, S. I.: , 2023; Clonal expansion of intra-epithelial t cells in breast cancer revealed by spatial transcriptomics; International Journal of Cancer; 153 (9): 1568--1578; doi:https://doi.org/10.1002/ijc.34620; URL https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.34620.spa
dc.relation.referencesRukhsar, L.; Bangyal, W. H.; Ali Khan, M. S.; Ag Ibrahim, A. A.; Nisar, K. & Rawat, D. B.: , 2022; Analyzing rna-seq gene expression data using deep learning approaches for cancer classification; Applied Sciences; 12 (4): 1850; doi:10.3390/app12041850; URL http://dx.doi.org/10.3390/app12041850.spa
dc.relation.referencesRushing, B. R.; Molina, S. & Sumner, S.: , 2023; Metabolomics analysis reveals altered metabolic pathways and response to doxorubicin in drug-resistant triple-negative breast cancer cells; Metabolites; 13 (7): 865; doi:10.3390/metabo13070865; URL http://dx.doi.org/10.3390/metabo13070865spa
dc.relation.referencesSaleh, M.; Chandrashekar, D. S.; Shahin, S.; Agarwal, S.; Kim, H.-G.; Behring, M.; Shaikh, A. J.; Moloo, Z.; Eltoum, I.-E. A.; Yates, C.; Varambally, S. & Manne, U.: , 2021; Comparative analysis of triple-negative breast cancer transcriptomics of kenyan, african american and caucasian women; Translational Oncology; 14 (7): 101086; doi:https: //doi.org/10.1016/j.tranon.2021.101086; URL https://www.sciencedirect.com/science/article/pii/S1936523321000784spa
dc.relation.referencesSalzberg, S. L.: , 2018; Open questions: How many genes do we have?; BMC Biology; 16 (1); doi:10.1186/s12915-018-0564-x; URL http://dx.doi.org/10.1186/s12915-018-0564-x.spa
dc.relation.referencesSchäfer, D.; Tomiuk, S.; Küster, L. N.; Rawashdeh, W. A.; Henze, J.; Tischler-Höhle, G.; Agorku, D. J.; Brauner, J.; Linnartz, C.; Lock, D.; Kaiser, A.; Herbel, C.; Eckardt, D.; Lamorte, M.; Lenhard, D.; Schüler, J.; Ströbel, P.; Missbach-Guentner, J.; Pinkert-Leetsch, D.; Alves, F.; Bosio, A. & Hardt, O.: , 2021; Identification of cd318, tspan8 and cd66c as target candidates for car t cell based immunotherapy of pancreatic adenocarcinoma; Nature Communications; 12 (1); doi:10.1038/s41467-021-21774-4; URL http://dx.doi.org/10.1038/s41467-021-21774-4.spa
dc.relation.referencesSchäfer, S. A.; Hülsewig, C.; Barth, P.; von Wahlde, M.-K.; Tio, J.; Kolberg, H.-C.; Bernemann, C.; Blohmer, J.-U.; Kiesel, L. & Kolberg-Liedtke, C.: , 2019; Correlation between sfrp1 expression and clinicopathological parameters in patients with triple-negative breast cancer; Future Oncology; 15 (16): 1921--1938; doi:10.2217/fon-2018-0564; URL http://dx.doi.org/10.2217/fon-2018-0564.spa
dc.relation.referencesSharma, J. K.; Alluri, P. & Udden, N.: , 2020; Cdc20 is a novel therapeutic target in triple-negative breast cancer; Cancer Research; 80 (16_Supplement): 6378--6378; doi:10.1158/1538-7445.am2020-6378; URL http://dx.doi.org/10.1158/ 1538-7445.AM2020-6378.spa
dc.relation.referencesSiegel, S. D.; Brooks, M. M.; Lynch, S. M.; Sims-Mourtada, J.; Schug, Z. T. & Curriero, F. C.: , 2022; Racial disparities in triple negative breast cancer: toward a causal architecture approach; Breast Cancer Research; 24 (1); doi:10.1186/s13058-022-01533-z; URL http://dx.doi.org/10.1186/s13058-022-01533-z.spa
dc.relation.referencesSoldado-Gordillo, A. & Álvarez Mercado, A. I.: , 2024; Epigenetics, microbiota, and breast cancer: A systematic review; Life; 14 (6): 705; doi:10.3390/life14060705; URL http://dx.doi.org/10.3390/life14060705.spa
dc.relation.referencesSong, C.; Lowe, V. J. & Lee, S.: , 2021; Inhibition of cdc20 suppresses the metastasis in triple negative breast cancer (tnbc); Breast Cancer; 28 (5): 1073--1086; doi:10.1007/s12282-021-01242-z; URL http://dx.doi.org/10.1007/ s12282-021-01242-z.spa
dc.relation.referencesSong, L. & Xiao, Y.: , 2018; Downregulation of hsa circ 0007534 suppresses breast cancer cell proliferation and invasion by targeting mir-593/muc19 signal pathway; Biochemical and Biophysical Research Communications; 503 (4): 2603--2610; doi:10.1016/j.bbrc.2018.08.007; URL http://dx.doi.org/10.1016/j.bbrc.2018.08.007.spa
dc.relation.referencesSong, T.; Yang, Y.; Wang, Y.; Ni, Y.; Yang, Y. & Zhang, L.: , 2024; Bulk and single-cell rna sequencing reveal the contribution of laminin y2 -cd44 to the immune resistance in lymphocyte-infiltrated squamous lung cancer subtype; Heliyon; 10 (10): e31299; doi:10.1016/j.heliyon.2024.e31299; URL http://dx.doi.org/10.1016/j.heliyon.2024.e31299.spa
dc.relation.referencesSordo-Bahamonde, C.; Lorenzo-Herrero, S.; Granda-Díaz, R.; Martínez-Pérez, A.; Aguilar-García, C.; Rodrigo, J. P.; García-Pedrero, J. M. & Gonzalez, S.: , 2023; Beyond the anti-pd-1/pd-l1 era: promising role of the btla/hvem axis as a future target for cancer immunotherapy; Molecular Cancer; 22 (1); doi:10.1186/s12943-023-01845-4; URL http://dx.doi.org/10.1186/s12943-023-01845-4.spa
dc.relation.referencesStark, R.; Grzelak, M. & Hadfield, J.: , 2019; Rna sequencing: the teenage years; Nature Reviews Genetics; 20 (11): 631--656; doi:10.1038/s41576-019-0150-2; URL http://dx.doi.org/10.1038/s41576-019-0150-2.spa
dc.relation.referencesSubramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.; Ebert, B. L.; Gillette, M. A.; Paulovich, A.; Pomeroy, S. L.; Golub, T. R.; Lander, E. S. & Mesirov, J. P.: , 2005; Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles; Proceedings of the National Academy of Sciences; 102 (43): 15545--15550; doi:10.1073/pnas.0506580102; URL http://dx.doi.org/10.1073/pnas.0506580102.spa
dc.relation.referencesSun, X.; Wang, M.; Wang, M.; Yu, X.; Guo, J.; Sun, T.; Li, X.; Yao, L.; Dong, H. & Xu, Y.: , 2020; Metabolic reprogramming in triple-negative breast cancer; Frontiers in Oncology; 10; doi:10.3389/fonc.2020.00428; URL http: //dx.doi.org/10.3389/fonc.2020.00428.spa
dc.relation.referencesSun, Y.; Khan, M. A. A. K.; Mangiola, S. & Barrow, A. D.: , 2023; Il17rb and il17rel expression are associated with improved prognosis in hpv-infected head and neck squamous cell carcinomas; Pathogens; 12 (4): 572; doi:10.3390/ pathogens12040572; URL http://dx.doi.org/10.3390/pathogens12040572.spa
dc.relation.referencesSung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A. & Bray, F.: , 2021; Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries; CA: A Cancer Journal for Clinicians; 71 (3): 209--249; doi:10.3322/caac.21660; URL http://dx.doi.org/10.3322/caac.21660.spa
dc.relation.referencesTang, Y.; Tian, W.; Xie, J.; Zou, Y.; Wang, Z.; Li, N.; Zeng, Y.; Wu, L.; Zhang, Y.; Wu, S.; Xie, X. & Yang, L.: , 2022; Prognosis and dissection of immunosuppressive microenvironment in breast cancer based on fatty acid metabolismrelated signature; Frontiers in Immunology; 13; doi:10.3389/fimmu.2022.843515; URL http://dx.doi.org/10.3389/fimmu. 2022.843515spa
dc.relation.referencesTenda, Y.; Hanada, Y.; Tanaka, H.; Shimazaki, M. & Shirasuna, K.: , 2023; Abstract a173: Asp2074, a novel tetraspanin 8 x cd3 bispecific antibody, demonstrates selectivity and antitumor activity in preclinical cancer models; Molecular Cancer Therapeutics; 22 (12 Supplement): A173--A173; doi:10.1158/1535-7163.targ-23-a173; URL http://dx.doi.org/10.1158/ 1535-7163.TARG-23-A173.spa
dc.relation.referencesTerry M. Therneau & Patricia M. Grambsch: , 2000; Modeling Survival Data: Extending the Cox Model; Springer, New York; ISBN 0-387-98784-3.spa
dc.relation.referencesTran, L.; Xiao, J.-F.; Agarwal, N.; Duex, J. E. & Theodorescu, D.: , 2020; Advances in bladder cancer biology and therapy; Nature Reviews Cancer; 21 (2): 104--121; doi:10.1038/s41568-020-00313-1; URL http://dx.doi.org/10.1038/ s41568-020-00313-1.spa
dc.relation.referencesTsang, J. Y. & Tse, G. M.: , 2019; Molecular classification of breast cancer; Advances in Anatomic Pathology; 27 (1): 27--35; doi:10.1097/pap.0000000000000232; URL http://dx.doi.org/10.1097/PAP.0000000000000232.spa
dc.relation.referencesVan Emon, J. M.: , 2016; The omics revolution in agricultural research; Journal of Agricultural and Food Chemistry; 64 (1): 36--44; doi:10.1021/acs.jafc.5b04515; URL https://doi.org/10.1021/acs.jafc.5b04515.spa
dc.relation.referencesVarley, K. E.; Gertz, J.; Roberts, B. S.; Davis, N. S.; Bowling, K. M.; Kirby, M. K.; Nesmith, A. S.; Oliver, P. G.; Grizzle, W. E.; Forero, A.; Buchsbaum, D. J.; LoBuglio, A. F. & Myers, R. M.: , 2014; Recurrent read-through fusion transcripts in breast cancer; Breast Cancer Research and Treatment; 146 (2): 287--297; doi:10.1007/s10549-014-3019-2; URL https://doi.org/10.1007/s10549-014-3019-2spa
dc.relation.referencesVeeneman, B. A.; Shukla, S.; Dhanasekaran, S. M.; Chinnaiyan, A. M. & Nesvizhskii, A. I.: , 2015; Two-pass alignment improves novel splice junction quantification; Bioinformatics; 32 (1): 43--49; doi:10.1093/bioinformatics/btv642; URL http://dx.doi.org/10.1093/bioinformatics/btv642.spa
dc.relation.referencesVenkitaraman, R.: , 2010; Triple-negative/basal-like breast cancer: clinical, pathologic and molecular features; Expert Review of Anticancer Therapy; 10 (2): 199--207; doi:10.1586/era.09.189; URL https://doi.org/10.1586/era.09.189.spa
dc.relation.referencesWaks, A. G. & Winer, E. P.: , 2019; Breast cancer treatment; JAMA; 321 (3): 288; doi:10.1001/jama.2018.19323; URL http://dx.doi.org/10.1001/jama.2018.19323.spa
dc.relation.referencesWang, Q.; Armenia, J.; Zhang, C.; Penson, A. V.; Reznik, E.; Zhang, L.; Minet, T.; Ochoa, A.; Gross, B. E.; Iacobuzio-Donahue, C. A.; Betel, D.; Taylor, B. S.; Gao, J. & Schultz, N.: , 2018; Unifying cancer and normal rna sequencing data from different sources; Scientific Data; 5 (1); doi:10.1038/sdata.2018.61; URL http://dx.doi.org/10. 1038/sdata.2018.61.spa
dc.relation.referencesWang, Y.; Li, H.; Ma, J.; Fang, T.; Li, X.; Liu, J.; Afewerky, H. K.; Li, X. & Gao, Q.: , 2019; Integrated bioinformatics data analysis reveals prognostic significance of sidt1 in triple-negative breast cancer; OncoTargets and Therapy; Volume 12: 8401--8410; doi:10.2147/ott.s215898; URL http://dx.doi.org/10.2147/OTT.S215898.spa
dc.relation.referencesWang, Z.; Gerstein, M. & Snyder, M.: , 2009; Rna-seq: a revolutionary tool for transcriptomics; Nature Reviews Genetics; 10 (1): 57--63; doi:10.1038/nrg2484; URL http://dx.doi.org/10.1038/nrg2484.spa
dc.relation.referencesWang, Z.; Li, H.; Wang, H.; Li, X.; Zhang, Q.; Wang, H.; Li, K. & Qiu, Y.: , 2022; Trim72 exerts antitumor effects in breast cancer and modulates lactate production and mct4 promoter activity by interacting with ppp3ca; Anti-Cancer Drugs; 33 (5): 489--501; doi:10.1097/cad.0000000000001304; URL http://dx.doi.org/10.1097/CAD.0000000000001304.spa
dc.relation.referencesWeinstein, J. N.; Collisson, E. A.; Mills, G. B.; Shaw, K. R. M.; Ozenberger, B. A.; Ellrott, K.; Shmulevich, I.; Sander, C. & Stuart, J. M.: , 2013; The cancer genome atlas pan-cancer analysis project; Nature Genetics; 45 (10): 1113--1120; doi:10.1038/ng.2764; URL http://dx.doi.org/10.1038/ng.2764.spa
dc.relation.referencesWiggs, A.; Molina, S.; Sumner, S. J. & Rushing, B. R.: , 2022; A review of metabolic targets of anticancer nutrients and nutraceuticals in pre-clinical models of triple-negative breast cancer; Nutrients; 14 (10): 1990; doi:10.3390/nu14101990; [Online; accessed 2024-10-22].spa
dc.relation.referencesWu, G.; Fan, Z. & Li, X.: , 2024; Cenpa knockdown restrains cell progression and tumor growth in breast cancer by reducing pla2r1 promoter methylation and modulating pla2r1/hhex axis; Cellular and Molecular Life Sciences; 81 (1); doi:10.1007/s00018-023-05063-5; URL http://dx.doi.org/10.1007/s00018-023-05063-5.spa
dc.relation.referencesWu, J. & Hicks, C.: , 2021; Breast cancer type classification using machine learning; Journal of Personalized Medicine; 11 (2): 61; doi:10.3390/jpm11020061; URL http://dx.doi.org/10.3390/jpm11020061.spa
dc.relation.referencesXian, F.; Zhao, C.; Huang, C.; Bie, J. & Xu, G.: , 2023; The potential role of cdc20 in tumorigenesis, cancer progression and therapy: A narrative review; Medicine; 102 (36): e35038; doi:10.1097/md.0000000000035038; URL http://dx.doi.org/ 10.1097/MD.0000000000035038.spa
dc.relation.referencesXiao, B.; Xiang, Q.; Deng, Z.; Chen, D.; Wu, S.; Zhang, Y.; Liang, Y.; Wei, S.; Luo, G. & Li, L.: , 2023; Kcnn1 promotes proliferation and metastasis of breast cancer via erlin2-mediated stabilization and k63-dependent ubiquitination of cyclin b1; Carcinogenesis; 44 (12): 809--823; doi:10.1093/carcin/bgad070; URL http://dx.doi.org/10.1093/carcin/bgad070spa
dc.relation.referencesYang, B.; Li, J.; Li, F.; Zhou, H.; Shi, W.; Shi, H.; Sun, S.; Sun, W.; Wang, J.; Ma, J.; Yan, X.; Hu, Y. & Jiao, S.: , 2019; Comprehensive analysis of age-related somatic mutation profiles in chinese young lung adenocarcinoma patients; Cancer Medicine; 8 (4): 1350--1358; doi:10.1002/cam4.1839; URL http://dx.doi.org/10.1002/cam4.1839.spa
dc.relation.referencesYang, R.; Ma, M.; Yu, S.; Li, X.; Zhang, J. & Wu, S.: , 2021; High expression of pamr1 predicts favorable prognosis and inhibits proliferation, invasion, and migration in cervical cancer; Frontiers in Oncology; 11; doi:10.3389/fonc.2021.742017; URL http://dx.doi.org/10.3389/fonc.2021.742017spa
dc.relation.referencesYang, X.; Tang, W.; He, Y.; An, H. & Wang, J.: , 2023; A novel fatty-acid metabolism-based classification for triple negative breast cancer; Aging; 15 (4): 1177--1198; doi:10.18632/aging.204552; [Online; accessed 2024-10-22].spa
dc.relation.referencesYang, Y.; Li, Z.; Zhong, Q.; Zhao, L.; Wang, Y. & Chi, H.: , 2022; Identification and validation of a novel prognostic signature based on transcription factors in breast cancer by bioinformatics analysis; Gland Surgery; 11 (5): 892--912; doi:10.21037/gs-22-267; URL http://dx.doi.org/10.21037/gs-22-267spa
dc.relation.referencesYin, L.; Duan, J.-J.; Bian, X.-W. & Yu, S.-c.: , 2020; Triple-negative breast cancer molecular subtyping and treatment progress; Breast Cancer Research; 22 (1); doi:10.1186/s13058-020-01296-5; URL http://dx.doi.org/10.1186/ s13058-020-01296-5.spa
dc.relation.referencesZhang, Y.; Parmigiani, G. & Johnson, W. E.: , 2020; Combat-seq: batch effect adjustment for rna-seq count data; NAR Genomics and Bioinformatics; 2 (3); doi:10.1093/nargab/lqaa078; URL http://dx.doi.org/10.1093/nargab/lqaa078.spa
dc.relation.referencesZhang, Y.; Wang, Q.; Yang, W.-K.; Wang, Y.-S.; Zhou, Q.; Lin, J.; Wei, X.-X.; Liang, T.; Liu, T.; Fan, W.-T.; Liang, L. & Xu, Y.-N.: , 2022; Development of an immune-related prognostic biomarker for triple-negative breast cancer; Annals of Medicine; 54 (1): 1212--1220; doi:10.1080/07853890.2022.2067894; URL https://doi.org/10.1080/07853890. 2022.2067894; pMID: 35481432.spa
dc.relation.referencesZhao, S.; Fung-Leung, W.-P.; Bittner, A.; Ngo, K. & Liu, X.: , 2014; Comparison of rna-seq and microarray in transcriptome profiling of activated t cells; PLoS ONE; 9 (1): e78644; doi:10.1371/journal.pone.0078644; URL http: //dx.doi.org/10.1371/journal.pone.0078644.spa
dc.relation.referencesZhou, Y.; Che, Y.; Fu, Z.; Zhang, H. & Wu, H.: , 2022; Triple-negative breast cancer analysis based on metabolic gene classification and immunotherapy; Frontiers in Public Health; 10; doi:10.3389/fpubh.2022.902378; URL http://dx.doi. org/10.3389/fpubh.2022.902378.spa
dc.relation.referencesZhou, Z.; Yang, Z.; Zhou, L.; Yang, M. & He, S.: , 2023; The versatile roles of testrapanins in cancer from intracellular signaling to cell–cell communication: cell membrane proteins without ligands; Cell & Bioscience; 13 (1); doi:10.1186/ s13578-023-00995-8; URL http://dx.doi.org/10.1186/s13578-023-00995-8.spa
dc.relation.referencesZhu, R.; Gires, O.; Zhu, L.; Liu, J.; Li, J.; Yang, H.; Ju, G.; Huang, J.; Ge, W.; Chen, Y.; Lu, Z. & Wang, H.: , 2019; Tspan8 promotes cancer cell stemness via activation of sonic hedgehog signaling; Nature Communications; 10 (1); doi:10.1038/s41467-019-10739-3; URL http://dx.doi.org/10.1038/s41467-019-10739-3.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.subject.lembCáncerspa
dc.subject.lembCancereng
dc.subject.lembInmunologíaspa
dc.subject.lembImmunologyeng
dc.subject.otherNeoplasias de la Mamaspa
dc.subject.proposalCáncerspa
dc.subject.proposalInmunologíaspa
dc.subject.proposalSubtiposspa
dc.subject.proposalAgrupamientospa
dc.subject.proposalCáncer de mamaspa
dc.subject.proposalCáncer de mama triple negativospa
dc.subject.proposalMachine learningeng
dc.subject.proposalCancereng
dc.subject.proposalAprendizaje de máquinasspa
dc.subject.proposalImmunologyeng
dc.subject.proposalSubtypeseng
dc.subject.proposalBreast cancereng
dc.subject.proposalClusteringeng
dc.subject.proposalTriple negative breast cancereng
dc.titleMétodo de Aprendizaje de Máquina para la subclasificación del Cáncer de Mama Triple Negativospa
dc.title.translatedMachine Learning Method for the subclassification of Triple Negative Breast Cancer.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Cienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014279951.2024.pdf
Tamaño:
6.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: