Determinación de los requerimientos nutricionales de las plantas de gulupa (Passiflora edulis Sims) cultivadas bajo condiciones de cubierta en la Sabana de Bogotá

dc.contributor.advisorMiranda Lasprilla, Diego
dc.contributor.advisorGómez Sanchez, Manuel Iván
dc.contributor.authorCáceres Rodríguez, Jorge Leonardo
dc.contributor.cvlacCáceres Rodríguez, Jorge Leonardo [0001976590]
dc.contributor.educationalvalidatorMelo Martínez, Sandra Esperanza
dc.contributor.orcidCáceres Rodróguez, Jorge Leonardo [0000-0003-2504-6331]
dc.contributor.orcidMiranda Lasprilla, Diego [0000-0001-9861-6935]
dc.contributor.orcidGómez Sánchez, Manuel Iván [0000-0002-1469-7676]
dc.coverage.countryColombia
dc.coverage.regionCundinamarca
dc.coverage.regionBogotá
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000838
dc.date.accessioned2026-02-16T23:19:30Z
dc.date.available2026-02-16T23:19:30Z
dc.date.issued2026
dc.descriptionilustraciones a color, diagramas, fotografías, tablasspa
dc.description.abstractLa gulupa (Passiflora edulis f. edulis Sims) constituye un cultivo de gran importancia económica para Colombia, al ser el quinto fruto más exportado del país y con un mercado en expansión. Sin embargo, existe escasa información sobre los requerimientos nutricionales de esta especie y el efecto de las deficiencias minerales sobre su crecimiento, desarrollo y productividad. En este contexto, el presente trabajo se planteó con el objetivo de caracterizar el impacto de la omisión de N, P, K, Ca, Mg, Mn, B y Zn sobre el crecimiento vegetativo y reproductivo, la concentración de clorofilas, la acumulación de materia fresca y seca, así como la dinámica de absorción de nutrientes, empleando la metodología del elemento faltante. Los resultados evidenciaron que la deficiencia de N fue la más limitante, ocasionando aborto floral, reducciones de 20–50% en contenido relativo de clorofilas y disminuciones de hasta 91% en la biomasa seca de hojas, tallos y estructuras reproductivas, siendo la etapa vegetativa la más sensible. Asimismo, las restricciones de Mg y K redujeron significativamente los valores SPAD, especialmente en el tercio medio de las plantas, donde ocurre el crecimiento activo. Las curvas de acumulación de nutrientes mostraron un patrón sigmoidal, con máximas tasas de absorción entre la floración y el llenado de frutos, destacando el N como el elemento de mayor demanda. Además, se identificaron interacciones entre nutrientes (Ca–B, Zn–Fe–Mn, N–P), y se determinó que las hojas constituyen el mejor tejido indicador de las deficiencias. Los valores de referencia obtenidos en hojas y savia proporcionan herramientas útiles para el diagnóstico nutricional y el manejo de la fertilización en gulupa. (Texto tomado de la fuente)spa
dc.description.abstractPurple passion fruit (Passiflora edulis f. edulis Sims) is an economically important crop in Colombia, currently ranking as the fifth most exported fruit with a growing market. Nevertheless, little information is available on its nutritional requirements and on how mineral deficiencies affect plant growth, development, and productivity. In this context, the present study aimed to characterize the effects of omitting N, P, K, Ca, Mg, Mn, B, and Zn on vegetative and reproductive growth, chlorophyll concentration, fresh and dry biomass accumulation, and nutrient uptake dynamics, using the missing element technique. Results showed that nitrogen deficiency was the most limiting factor, causing floral bud abortion, 20–50% reductions in SPAD values, and up to 91% decreases in dry biomass of leaves, stems, and reproductive structures, with the vegetative stage being the most sensitive. Likewise, Mg and K deficiencies significantly reduced the relative chlorophyll content, particularly in the middle third of the plants, where active organ growth occurred. Nutrient accumulation curves followed a sigmoidal pattern, with maximum uptake rates between flowering and fruit filling, highlighting N as the most demanded element. Moreover, nutrient interactions were identified (Ca–B, Zn–Fe–Mn, N–P), and leaves proved to be the most reliable tissue to diagnose deficiencies. Reference values for leaf and sap nutrient concentrations were also established, with nitrate, potassium, and calcium showing distinct variations depending on the phenological stage. Overall, the findings provide valuable information for nutritional diagnosis and fertilization management in purple passion fruit crops, supporting improved growth, development, and fruit production.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaFisiología de cultivos
dc.format.extentxviii, 227 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89572
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.departmentDepartamento de Agronomíaspa
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.relation.indexedAgrosavia
dc.relation.indexedAgrovoc
dc.relation.referencesAdobe Inc. (2020). Adobe Photoshop (Versión 21.2.1) [Software]. Abobe. https://www.adobe.com/products/photoshop.html
dc.relation.referencesAgehara, S., & Hochmuth, G. (2023). Fertilization of Strawberries in Florida. EDIS, 2023(4). https://doi.org/10.32473/edis-CV003-2023
dc.relation.referencesAgronet. (2025). Estadísticas. Agrícola. Área, producción y rendimiento nacional por cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
dc.relation.referencesAguirre, A. C. P. D. (1977). Nutrição mineral do maracujá amarelo (>i/i< Sims >i/i< Deg.) [Mestrado em Solos e Nutrição de Plantas, Universidade de São Paulo]. https://doi.org/10.11606/D.11.1977.tde-20240301-154224
dc.relation.referencesAhmed, M., Aslam, M. A., Hassan, F., Hayat, R., Nasim, N., Akmal, M., Mubeen, M., Hussain, S., & Ahmad, S. (2022). Nutrient Dynamics and the Role of Modeling. En Building Climate Resilience in Agriculture (1st ed., pp. 297–316).
dc.relation.referencesAhmed, N., Zhang, B., Bozdar, B., Chachar, S., Rai, M., Li, J., Li, Y., Hayat, F., Chachar, Z., & Tu, P. (2023). The power of magnesium: Unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Frontiers in Plant Science, 14, 1285512. https://doi.org/10.3389/fpls.2023.1285512
dc.relation.referencesAjeesh Krishna, T. P., Maharajan, T., Victor Roch, G., Ignacimuthu, S., & Antony Ceasar, S. (2020). Structure, Function, Regulation and Phylogenetic Relationship of ZIP Family Transporters of Plants. Frontiers in Plant Science, 11, 662. https://doi.org/10.3389/fpls.2020.00662
dc.relation.referencesAkaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
dc.relation.referencesAkamine, E. K., Aragaki, M., Beaumont, J. H., Bowers, F. A. I., Hamilton, R. A., Nishida, T., Sherman, G. D., Shoji, K., Storey, W. B., Martinez, A. P., Yee, W. Y. J., Onsdorff, T., & Shaw, T. N. (1974). Passion Fruit Culture in Hawaii. University of Hawai.
dc.relation.referencesAl-Dulaimy, A. F. Z., Alalaf, A. H., Al-Hayali, R. E. Y., & Al-Taey, D. K. A. (2023). Flowers and Fruits Abortion in Fruit Trees ... Causes and Solutions: A review. IOP Conference Series: Earth and Environmental Science, 1158(4), 042010. https://doi.org/10.1088/1755-1315/1158/4/042010
dc.relation.referencesAlejandro, S., Höller, S., Meier, B., & Peiter, E. (2020). Manganese in Plants: From Acquisition to Subcellular Allocation. Frontiers in Plant Science, 11, 300. https://doi.org/10.3389/fpls.2020.00300
dc.relation.referencesAlila, P., & Azungla Pongener, K. (2012). Integrated nutrient management of passionfruit on Alfisol. Acta Horticulturae, 928, Article 928. https://doi.org/10.17660/ActaHortic.2012.928.18
dc.relation.referencesAlom, K., Akbar, D., Xu, C.-Y., & Hong Dong, T. (2025). Assessing environment impacts of chemical fertilizers consumption in Australia: State-level evidence. Environmental and Sustainability Indicators, 28, 101053. https://doi.org/10.1016/j.indic.2025.101053
dc.relation.referencesAlscher, R. G. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331–1341. https://doi.org/10.1093/jexbot/53.372.1331
dc.relation.referencesAmata, R. L., Otipa, M. J., Waiganjo, M., Wasilwa, L. A., Kinoti, J., Kyamanywa, S., & Erbaugh, M. (2011). Management strategies for fungal diseases in passion fruit production systems in Kenya. Acta Horticulturae, 911, Article 911. https://doi.org/10.17660/ActaHortic.2011.911.20
dc.relation.referencesAnaldex, A. N. de C. E. (2023). Informe de exportaciones frutas Colombianas 2022. Analdex. https://analdex.org/2023/04/20/informe-de-las-exportaciones- colombianas-de-frutas-2022/
dc.relation.referencesAnaldex, A. N. de comercio E. (2025). Informe de exportaciones colombianas de frutas 2024 (pp. 1–12). Analdex. https://analdex.org/2025/06/06/informe-de-exportaciones-colombianas-de-frutas-2024/
dc.relation.referencesArevalo Peñaranda, E., Díaz Jiménez, A. L., Galindo Alvarez, J. R., & Rivero Cruz, M. R. (2011). Manejo de problemas fitosanitarios del cultivo de gulupa. ICA
dc.relation.referencesAssunção, A. G. L. (2022). The F-bZIP-regulated Zn deficiency response in land plants. Planta, 256(6), 108. https://doi.org/10.1007/s00425-022-04019-6
dc.relation.referencesAssunção, A. G. L., Cakmak, I., Clemens, S., González-Guerrero, M., Nawrocki, A., & Thomine, S. (2022). Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. Journal of Experimental Botany, 73(6), 1789–1799. https://doi.org/10.1093/jxb/erac014
dc.relation.referencesBailey, M., Sarkhosh, A., Rezazadeh, A., Anderson, J., Chambers, A., & Crane, J. H. (2021). The Passion Fruit in Florida. EDIS, 2021(1), Article 1. https://doi.org/10.32473/edis-hs1406-2021
dc.relation.referencesBartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 160(901), 268–282. https://doi.org/10.1098/rspa.1937.0109
dc.relation.referencesBechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Frontiers in Plant Science, 12, 679916. https://doi.org/10.3389/fpls.2021.679916
dc.relation.referencesBell, R. (2023). Diagnosis and prediction of deficiency and toxicity of nutrients. En Marschner’s Mineral Nutrition of Higher Plants (fourth edition, pp. 477–495). Elsevier Ltd.
dc.relation.referencesBem, C. M. D., Cargnelutti Filho, A., Chaves, G. G., Kleinpaul, J. A., Pezzini, R. V., & Lavezo, A. (2017). Gompertz and Logistic Models to the Productive Traits of Sunn Hemp. Journal of Agricultural Science, 10(1), 225. https://doi.org/10.5539/jas.v10n1p225
dc.relation.referencesBender, R. R., Haegele, J. W., & Below, F. E. (2015). Nutrient Uptake, Partitioning, and Remobilization in Modern Soybean Varieties. Agronomy Journal, 107(2), 563–573. https://doi.org/10.2134/agronj14.0435
dc.relation.referencesBenjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300.
dc.relation.referencesBlare, T., Contreras, V., Ballen, F. H., Anderson, J. D., Crane, J. H., & Haley, N. (2023). Cost Estimates of Producing Purple Passion Fruit in South Florida. Food and Resource Economics Department, UF/IFAS Extension, (#FE1129). https://doi.org/10.32473/edis-FE1129-2023
dc.relation.referencesBlondeau, J. P., & Bertin, Y. (1978). Carences minérales chez la grenadille (Passiflora edulis Sims var. Flavicarpa).I. Carences totales en N, N, K, Ca, Mg. Croissance et symptÔmes. Fruits, 33(6), Article 6.
dc.relation.referencesBorges, A. L., & Lima, A. de L. (2007). Passion-fruit. En Fertilizing for high yield and quality tropical fruits of Brazil (pp. 163–178). Horgen: International Potash Institute. https://www.alice.cnptia.embrapa.br/alice/handle/doc/654289
dc.relation.referencesBox, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, 26(2), 211–252.
dc.relation.referencesBrien, C., Jewell, N., Watts-Williams, S. J., Garnett, T., & Berger, B. (2020). Smoothing and extraction of traits in the growth analysis of noninvasive phenotypic data. Plant Methods, 16(1), 36. https://doi.org/10.1186/s13007-020-00577-6
dc.relation.referencesCabezas, M., & Sánchez, C. A. (2008). Efecto de las deficiencias nutricionales en la distribución de la materia seca en plantas de vivero de curuba (Passiflora mollissima Bailey). Agronomía Colombiana, 26(2), 197–204.
dc.relation.referencesCailliatte, R., Schikora, A., Briat, J.-F., Mari, S., & Curie, C. (2010). High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions. The Plant Cell, 22(3), 904–917. https://doi.org/10.1105/tpc.109.073023
dc.relation.referencesCakmak, I., Brown, P., Colmenero-Flores, J. M., Husted, S., Kutman, B. Y., Nikolic, M., Rengel, Z., Schmidt, S. B., & Zhao, F.-J. (2023). Micronutrients. En Marschner’s Mineral Nutrition of Higher Plants (Fourth Edition, pp. 283–386). Elsevier Ltd.
dc.relation.referencesCakmak, I., & Kirkby, E. A. (2008). Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum, 133(4), 692–704. https://doi.org/10.1111/j.1399-3054.2007.01042.x
dc.relation.referencesCakmak, I., & Yacizi, A. M. (2010). Magnesium: A Forgotten Element in Crop Production. Beter Crops, 94(2), 23–25.
dc.relation.referencesCampos-Rodríguez, J., Acosta-Coral, K., Moreno-Rojo, C., & Paucar-Menacho, L. M. (2023). Passion fruit (Passiflora edulis): Nutritional composition, bioactive compounds, utilization of by-products, biocontrol, and organic fertilization in cultivation. Scientia Agropecuaria, 14(4), Article 4. https://doi.org/10.17268/sci.agropecu.2023.040
dc.relation.referencesCárdenas Pira, W. T., Torres Moya, E., Hurtado Clopatosky, S., Magnitskiy, S., & Melgarejo, L. M. (2019). Sintomatología de deficiencias de nutrientes minerales en plantas de gulupa (Passiflora edulis Sims f. Edulis) en estado vegetativo. En L. M. Melgarejo (Ed.), Gulupa (Passiflora edulis), curuba (Passiflora tripartita), aguacate (Persea americana) y tomate de árbol (Solanum betaceum) Innovaciones (pp. 334–358). Centro editorial Facultad de Ciencias. https://doi.org/10.36385/FCBOG-1-5
dc.relation.referencesCárdenas-Pira, W. T., Torres-Moya, E., Magnitskiy, S., & Melgarejo, L. M. (2021). Physiological Responses of Purple Passion Fruit (Passiflora Edulis Sims F. Edulis) Plants to Deficiencies of the Macronutrients, Fe, Mn, and Zn during Vegetative Growth. International Journal of Fruit Science, 21(1), Article 1. https://doi.org/10.1080/15538362.2021.1890673
dc.relation.referencesCarvajal, L. M., Turbay, S., Álvarez, L. M., Rodríguez, A., Alvarez, M., Bonilla, K., Restrepo, S., & Parra, M. (2014). Propiedades funcionales y nutricionales de seis especies de Passiflora (Passifloraceae) del departamento del Huila, Colombia. Botánica Económica, 1(36), Article 36.
dc.relation.referencesCarvalho Pereira, Z., dos AnjosCruz, J. M., Frota Corrêa, R., Aparecido Sanches, E., Campelo, P. H., & de Araújo Bezerra, J. (2023). Passion fruit (Passiflora spp.) pulp: A review on bioactive properties, health benefits and technological potential. Food Research International, 166, 112626. https://doi.org/10.1016/j.foodres.2023.112626
dc.relation.referencesCaskun, D., & White, P. J. (2023). Ion-uptake mechanisms of individual cells and roots: Short-distance transport. En Marschner’s Mineral Nutrition of Higher Plants (fourth edition, pp. 11–71). Elsevier Ltd.
dc.relation.referencesCastaings, L., Caquot, A., Loubet, S., & Curie, C. (2016). The high-affinity metal Transporters NRAMP1 and IRT1 Team up to Take up Iron under Sufficient Metal Provision. Scientific Reports, 6(1), 37222. https://doi.org/10.1038/srep37222
dc.relation.referencesCastellanos Ruiz, K., Gómez Sánchez, M. I., & Rodríguez Molano, L. E. (2022). Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema. Agronomía Colombiana, 40(2). https://doi.org/10.15446/agron.colomb.v40n2.98896
dc.relation.referencesCastillo, A. (2025). SearchMaster [Herramienta de normalización de términos y generación de ecuaciones de búsqueda] [Desarrollado con ChatGPT de OpenAI y tesauros de UNESCO e IEEE.].
dc.relation.referencesCatalán, P., Delgado, J. A., Jiménez, M. D., & Balaguer, L. (2016). Sink strength manipulation in branches of a Mediterranean woody plant suggests sink-driven allocation of biomass in fruits but not of nutrients in seeds. Acta Physiologiae Plantarum, 38(8). https://doi.org/10.1007/s11738-016-2220-9
dc.relation.referencesCelesnik, H., Ali, G. S., Robison, F. M., & Reddy, A. S. N. (2013). Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biology Open, 2(4), 424–431. https://doi.org/10.1242/bio.20133764
dc.relation.referencesChapman, T. (1963). Passion fruit growing in Kenya. Economic Botany, 17(3), Article 3. https://doi.org/10.1007/BF02859432
dc.relation.referencesChaudhry, A. H., Nayab, S., Hussain, S. B., Ali, M., & Pan, Z. (2021). Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture. International Journal of Molecular Sciences, 22(4), 1819. https://doi.org/10.3390/ijms22041819
dc.relation.referencesChellai, F. (2024). Quadratic Regression Model. https://doi.org/10.13140/RG.2.2.35861.95207
dc.relation.referencesChen, A., Husted, S., Salt, D. E., Schjoerring, J. K., & Persson, D. P. (2019). The Intensity of Manganese Deficiency Strongly Affects Root Endodermal Suberization and Ion Homeostasis. Plant Physiology, 181(2), 729–742. https://doi.org/10.1104/pp.19.00507
dc.relation.referencesChen, R., Zhu, Y., Cao, W., & Tang, L. (2021). A bibliometric analysis of research on plant critical dilution curve conducted between 1985 and 2019. European Journal of Agronomy, 123, 126199. https://doi.org/10.1016/j.eja.2020.126199
dc.relation.referencesChristensen, L. P., Peacock, W. L., Hirschfelt, D. J., Bianchi, M. L., & Jensen, F. L. (2020). Use of tissue analysis in viticulture (UC ANR Publication 21627) ((UC ANR Publication 21627)). University of California, Agriculture and Natural Resources. https://ucanr.edu/sites/default/files/2020-08/332003.pdf
dc.relation.referencesClaus, J., Bohmann, A., & Chavarría-Krauser, A. (2013). Zinc uptake and radial transport in roots of Arabidopsis thaliana: A modelling approach to understand accumulation. Annals of Botany, 112(2), 369–380. https://doi.org/10.1093/aob/mcs263
dc.relation.referencesCorrêa, R. C. G., Peralta, R. M., Haminiuk, C. W. I., Maciel, G. M., Bracht, A., & Ferreira, I. C. F. R. (2016). The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp. (Passion fruit). Trends in Food Science & Technology, 58, 79–95. https://doi.org/10.1016/j.tifs.2016.10.006
dc.relation.referencesDa Silva, A. K. (2010). Doses de NPK no desenvolvimento, produtividade e qualidade de frutos do maracujazeiro ‘Roxinho do Kênia’ [Dissertação para obtenção do título de Mestre em Agronomia (Horticultura)]. UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO”.
dc.relation.referencesData Bridge Market Research. (2025). Informe de análisis del tamaño, la participación y las terndencias el mercado mundial de maracuyá: Panorama general del sector y pronóstico hasta 2032. https://www.databridgemarketresearch.com/es/reports/global-passion-fruit-market
dc.relation.referencesDas, B. K., & Sen, S. P. (1981). Effect of nitrogen, phosphorus and potassium deficiency on the uptake and mobilization of ions in Bengal gram (Cicer arietinum). Journal of Biosciences, 3(3), 249–257. https://doi.org/10.1007/bf02702935
dc.relation.referencesDe Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P., & Schjoerring, J. K. (2021). The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229(5), 2446–2469. https://doi.org/10.1111/nph.17074
dc.relation.referencesDe Paz, J. M., Ramos, C., & Visconti, F. (2022). Critical nitrogen dilution curve and dry matter production parameters for several Mediterranean vegetables. Scientia Horticulturae, 303, 111194. https://doi.org/10.1016/j.scienta.2022.111194
dc.relation.referencesDel Rossi, G., Hoque, M. M., Ji, Y., & Kling, C. L. (2023). The Economics of Nutrient Pollution from Agriculture. Annual Review of Resource Economics, 15(1), 105–130. https://doi.org/10.1146/annurev-resource-111820-021317
dc.relation.referencesDiaz, C., Lemaître, T., Christ, A., Azzopardi, M., Kato, Y., Sato, F., Morot-Gaudry, J.-F., Le Dily, F., & Masclaux-Daubresse, C. (2008). Nitrogen Recycling and Remobilization Are Differentially Controlled by Leaf Senescence and Development Stage in Arabidopsis under Low Nitrogen Nutrition. Plant Physiology, 147(3), 1437–1449. https://doi.org/10.1104/pp.108.119040
dc.relation.referencesDiaz, R. O., Moreno, L., Pinilla, R., Carrillo, W., Melgarejo, L. M., Martínez, O., Fernández-Trujillo, J. P., & Hernández, M. S. (2012). Postharvest behavior of purple passion fruit in Xtend® bags during low temperature storage. Acta Horticulturae, (934), 727–731. https://doi.org/10.17660/ActaHortic.2012.934.95
dc.relation.referencesDing, L., Wang, K. J., Jiang, G. M., Biswas, D. K., Xu, H., Li, L. F., & Li, Y. H. (2005). Effects of Nitrogen Deficiency on Photosynthetic Traits of Maize Hybrids Released in Different Years. Annals of Botany, 96(5), 925–930. https://doi.org/10.1093/aob/mci244
dc.relation.referencesdos Santos, M. M., Silva, C. A. D., Oza, E. F., Gontijo, I., Amaral, J. F. T. D., & Partelli, F. L. (2021). Concentration of Nutrients in Leaves, Flowers, and Fruits of Genotypes of Coffea canephora. Plants, 10(12), 2661. https://doi.org/10.3390/plants10122661
dc.relation.referencesDrechsler, N., Zheng, Y., Bohner, A., Nobmann, B., Von Wirén, N., Kunze, R., & Rausch, C. (2015). Nitrate-dependent control of shoot K homeostasis by NPF7.3/NRT1.5 and SKOR in Arabidopsis. Plant Physiology, pp.01152.2015. https://doi.org/10.1104/pp.15.01152
dc.relation.referencesDu, Q., Zhao, X., Jiang, C., Wang, X., Han, Y., Wang, J., & Yu, H. (2017). Effect of Potassium Deficiency on Root Growth and Nutrient Uptake in Maize (Zea mays L.). Agricultural Sciences, 08(11), 1263–1277. https://doi.org/10.4236/as.2017.811091
dc.relation.referencesDuan, S., Zhang, C., Song, S., Ma, C., Zhang, C., Xu, W., Bondada, B., Wang, L., & Wang, S. (2022). Understanding calcium functionality by examining growth characteristics and structural aspects in calcium-deficient grapevine. Scientific Reports, 12(1), 3233. https://doi.org/10.1038/s41598-022-06867-4
dc.relation.referencesErmacora, P., Contin, M., Musetti, R., Loschi, A., Borselli, S., Tarquini, G., Grizzo, L., & Osler, R. (2018). Induction and regression of early boron deficiency in grapevine in hydroponics: Macro- versus micro-scale symptomatology. Acta Horticulturae, (1217), 129–136. https://doi.org/10.17660/ActaHortic.2018.1217.16
dc.relation.referencesEsteves, E., Locatelli, G., Bou, N. A., & Ferrarezi, R. S. (2021). Sap Analysis: A Powerful Tool for Monitoring Plant Nutrition. Horticulturae, 7(11), 426. https://doi.org/10.3390/horticulturae7110426
dc.relation.referencesFAO. (2024). Minor Tropical Fruits Global Trade Overview (pp. 1–13).
dc.relation.referencesFang, S.-L., Kuo, Y.-H., Kang, L., Chen, C.-C., Hsieh, C.-Y., Yao, M.-H., & Kuo, B.-J. (2022). Using Sigmoid Growth Models to Simulate Greenhouse Tomato Growth and Development. Horticulturae, 8(11), 1021. https://doi.org/10.3390/horticulturae8111021
dc.relation.referencesFernandez-Escobar, R., Ortiz-Urquiza, A., Prado, M., & Rapoport, H. F. (2008). Nitrogen status influence on olive tree flower quality and ovule longevity. Environmental and Experimental Botany, 64(2), 113–119. https://doi.org/10.1016/j.envexpbot.2008.04.007
dc.relation.referencesFlechas, N. C., Melgarejo, L. M., Hernández, M. S., & Fernández-Trujillo, J. P. (2020). Postharvest response of purple passion fruits ( Passiflora edulis f. edulis Sims) grown under controlled fertilization. Acta Horticulturae, 1275, Article 1275. https://doi.org/10.17660/ActaHortic.2020.1275.14
dc.relation.referencesFonseca, A. M. A., Geraldi, M. V., Junior, M. R. M., Silvestre, A. J. D., & Rocha, S. M. (2022). Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Research International, 160, 111665. https://doi.org/10.1016/j.foodres.2022.111665
dc.relation.referencesFörster, J. C., & Dieter Jeschke, W. (1993). Effects of Potassium Withdrawal on Nitrate Transport and on the Contribution of the Root to Nitrate Reduction in the Whole Plant. Journal of Plant Physiology, 141(3), 322–328. https://doi.org/10.1016/S0176-1617(11)81742-6
dc.relation.referencesFranco, G., Cartagena, J. R., & Correa, G. (2014). Analysis of purple passion fruit (Passiflora edulis Sims) growth under ecological conditions of the Colombian lower montane rain forest. Revista UDCA : Actualidad & divulgación Científica, 17(2), 391–400.
dc.relation.referencesFreitas, M. S. M., Monnerat, P. H., Carvalho, A. J. C. D., & Vasconcellos, M. A. D. S. (2011). Sintomas visuais de deficiência de macronutrientes e boro em maracujazeiro-doce. Revista Brasileira de Fruticultura, 33(4), 1329–1341. https://doi.org/10.1590/S0100-29452011000400034
dc.relation.referencesFu, D., Zhang, Z., Wallrad, L., Wang, Z., Höller, S., Ju, C., Schmitz-Thom, I., Huang, P., Wang, L., Peiter, E., Kudla, J., & Wang, C. (2022). Ca2+ -dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, 119(40), e2204574119. https://doi.org/10.1073/pnas.2204574119
dc.relation.referencesFu, Y., Mason, A. S., Song, M., Ni, X., Liu, L., Shi, J., Wang, T., Xiao, M., Zhang, Y., Fu, D., & Yu, H. (2023). Multi-omics strategies uncover the molecular mechanisms of nitrogen, phosphorus and potassium deficiency responses in Brassica napus. Cellular & Molecular Biology Letters, 28(1). https://doi.org/10.1186/s11658-023-00479-0
dc.relation.referencesGallardo, M., Cuartero, J., Andújar De La Torre, L., Padilla, F. M., Segura, M. L., & Thompson, R. B. (2021). Modelling nitrogen, phosphorus, potassium, calcium and magnesium uptake, and uptake concentration, of greenhouse tomato with the VegSyst model. Scientia Horticulturae, 279, 109862. https://doi.org/10.1016/j.scienta.2020.109862
dc.relation.referencesGalindo Pacheco, J. R., & Gómez Sánchez, S. (2010). Gulupa (Passiflora edulis Sims.) producción y manejo poscosecha. Produmedios.
dc.relation.referencesGamarra-Castillo, O., Hernández-Carrión, M., & Sánchez-Camargo, A. D. P. (2025). Revalorization of purple passion fruit peel: Compositional analysis, anthocyanin microwave-assisted extraction, and beverage application. Future Foods, 11, 100536. https://doi.org/10.1016/j.fufo.2024.100536
dc.relation.referencesGarcia‐Gomez, P., Olmos‐Ruiz, R., Nicolas‐Espinosa, J., & Carvajal, M. (2023). Effects of low nitrogen supply on biochemical and physiological parameters related to nitrate and water, involving nitrate transporters and aquaporins in Citrus macrophylla. Plant Biology, 25(6), 944–955. https://doi.org/10.1111/plb.13553
dc.relation.referencesGate, T., Hill, L., Miller, A. J., & Sanders, D. (2024). AtIAR1 is a Zn transporter that regulates auxin metabolism in Arabidopsis thaliana. Journal of Experimental Botany, 75(5), 1437–1450. https://doi.org/10.1093/jxb/erad468
dc.relation.referencesGénard, M., Fishman, S., Vercambre, G., Huguet, J.-G., Bussi, C., Besset, J., & Habib, R. (2001). A Biophysical Analysis of Stem and Root Diameter Variations in Woody Plants. Plant Physiology, 126(1), 188–202. https://doi.org/10.1104/pp.126.1.188
dc.relation.referencesGil C., A. I., Marroquín M., M., & Martínez C., L. (2013). Efecto del zinc sobre la inducción de ramas productivas en gulupa (Passiflora edulis Sims). Revista Colombiana de Ciencias Hortícolas, 6(2), Article 2. https://doi.org/10.17584/rcch.2012v6i2.1973
dc.relation.referencesGil, J. G. R., Agudelo, M. M., Bedoya, L. O., Osorio, N. W., & Osorio, J. G. M. (2015). Germination and growth of purple passion fruit seedlings under pre-germination treatments and mycorrhizal inoculation1. Pesquisa Agropecuária Tropical, 45(3), Article 3. https://doi.org/10.1590/1983-40632015v4533273
dc.relation.referencesGlobal Biodiversity Information Facility, G. (2023). Passiflora edulis f. edulis (GBIF Backbone Taxonomy). https://www.gbif.org/species/6712575
dc.relation.referencesGonzález, L., Álvarez, A., Murillo, E., Guerra, C., & Méndez, J. (2019). Potential uses of the peel and seed of Passiflora edulis f. Edulis Sims (gulupa) from its chemical characterization, antioxidant, and antihypertensive functionalities. Asian Journal of Pharmaceutical and Clinical Research, 104–112. https://doi.org/10.22159/ajpcr.2019.v12i10.33828
dc.relation.referencesGuerrero, E., Potosí, C., Melgarejo, L. M., & Hoyos, L. (2012). Manejo agronómico de gulupa (Passiflora edulis Sims) en el marco de las buenas práctias agrícolas (BPA). En Ecofisiología del cultivo de la gulupa (Passiflora edulis Sims) (1ra ed., pp. 123– 144). Produmedios.
dc.relation.referencesGuo, S.-W., Zhou, Y., Gao, Y.-X., Li, Y., & Shen, Q.-R. (2007). New Insights into the Nitrogen Form Effect on Photosynthesis and Photorespiration. Pedosphere, 17(5), 601–610. https://doi.org/10.1016/S1002-0160(07)60071-X
dc.relation.referencesGusqui Vilema, L., Recalde Quiroz, M., López, X., & Jumbo, J. (2009). Determinación de curvas de absorción de macroelementos, durante el primer año de desarrollo del cultivo de Maracuyá (Passiflora Edulis) en Santo Domingo de los Tsáchilas. Revista de investigación científica UTE, 12–36.
dc.relation.referencesHao, X., & Papadopoulos, A. P. (2004). Effects of Calcium and Magnesium on Plant Growth, Biomass Partitioning, and Fruit Yield of Winter Greenhouse Tomato. HortScience, 39(3), 512–515. https://doi.org/10.21273/HORTSCI.39.3.512
dc.relation.referencesHawkesford, M. J., Horst, W., Cakmak, I., Coskun, D., De Kok, L. J., Lambers, H., Schjoerring, J. K., & White, P. J. (2023). Functions of Macronutrients. En Marschner’s Mineral Nutrition of Higher Plants (Fourth edition, pp. 135–190). Elsevier Ltd.
dc.relation.referencesHe, J., Rössner, N., Hoang, M. T. T., Alejandro, S., & Peiter, E. (2021). Transport, functions, and interaction of calcium and manganese in plant organellar compartments. Plant Physiology, 187(4), 1940–1972. https://doi.org/10.1093/plphys/kiab122
dc.relation.referencesHermans, C., Hammond, J. P., White, P. J., & Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 11(12), 610–617. https://doi.org/10.1016/j.tplants.2006.10.007
dc.relation.referencesHo, L.-H., Rode, R., Siegel, M., Reinhardt, F., Neuhaus, H. E., Yvin, J.-C., Pluchon, S., Hosseini, S. A., & Pommerrenig, B. (2020). Potassium Application Boosts Photosynthesis and Sorbitol Biosynthesis and Accelerates Cold Acclimation of Common Plantain (Plantago major L.). Plants, 9(10), 1259. https://doi.org/10.3390/plants9101259
dc.relation.referencesHocking, B., Tyerman, S. D., Burton, R. A., & Gilliham, M. (2016). Fruit Calcium: Transport and Physiology. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00569
dc.relation.referencesHueso, J. J. (2023, julio 14). Pasifloras: La fruta de la pasión. Tierra. https://www.plataformatierra.es/innovacion/pasifloras-la-fruta-de-la-pasion
dc.relation.referencesHuang, C. (2024). Connecting calcium signaling with boron transport: The crucial role of CPK10 protein kinase. New Phytologist, 243(5), 1633–1635. https://doi.org/10.1111/nph.19795
dc.relation.referencesIshfaq, M., Wang, Y., Yan, M., Wang, Z., Wu, L., Li, C., & Li, X. (2022). Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Frontiers in Plant Science, 13, 802274. https://doi.org/10.3389/fpls.2022.802274
dc.relation.referencesIvanov, Y. V., Pashkovskiy, P. P., Ivanova, A. I., Kartashov, A. V., & Kuznetsov, V. V. (2022). Manganese Deficiency Suppresses Growth and Photosynthetic Processes but Causes an Increase in the Expression of Photosynthetic Genes in Scots Pine Seedlings. Cells, 11(23), 3814. https://doi.org/10.3390/cells11233814
dc.relation.referencesJaime-Guerrero, M., Álvarez-Herrera, J. G., & Fischer, G. (2024). Effect of calcium on fruit quality: A review. Agronomía Colombiana, 42(1), e112026. https://doi.org/10.15446/agron.colomb.v42n1.112026
dc.relation.referencesJiménez, Y., Carranza, C., & Rodríguez, M. (2009). Manejo integrado del cultivo de gulupa (Passiflora edulis Sims). En Cultivo, Poscosecha y Comercialización de las pasifloráceas en Colombia: Maracuyá, Granadilla, Gulupa y Curuba (1ra ed., pp. 159–190).
dc.relation.referencesJun, S. E., Shim, J. S., & Park, H. J. (2023). Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. Plants, 12(18), 3299. https://doi.org/10.3390/plants12183299
dc.relation.referencesKhan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants, 12(15), 2861. https://doi.org/10.3390/plants12152861
dc.relation.referencesKirkby, E. A. (2023). Introduction, definition, and classification of nutrients. En Marschner’s Mineral Nutrition of Higher Plants (Fourth Edition, pp. 1–9).
dc.relation.referencesKirkby, E., & Römhld, V. (2008). Micronutrientes en la fisiología de las plantas: Funciones, absorción y movilidad (segunda parte). International Plant Nutrition Institute: Informaciones Agronómicas, 68, 1–13.
dc.relation.referencesKishore, K., Pathak, K. A., Yadav, D. S., Bujarburuah, K. M., Bharali, R., & Shukla, R. (2006). Passion fruit. ICAR research Complex for NEH region.
dc.relation.referencesKleczkowski, L. A., & Igamberdiev, A. U. (2021). Magnesium Signaling in Plants. International Journal of Molecular Sciences, 22(3), 1159. https://doi.org/10.3390/ijms22031159
dc.relation.referencesKoch, M., Winkelmann, M. K., Hasler, M., Pawelzik, E., & Naumann, M. (2020). Root growth in light of changing magnesium distribution and transport between source and sink tissues in potato (Solanum tuberosum L.). Scientific Reports, 10(1), 8796. https://doi.org/10.1038/s41598-020-65896-z
dc.relation.referencesKonsaeng, S., Dell, B., & Rerkasem, B. (2005). A Survey of Woody Tropical Species for Boron Retranslocation. Plant Production Science, 8(3), 338–341. https://doi.org/10.1626/pps.8.338
dc.relation.referencesKruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583–621. https://doi.org/10.1080/01621459.1952.10483441
dc.relation.referencesKumar, S., Kumar, S., & Mohapatra, T. (2021). Interaction Between Macro‐ and Micro-Nutrients in Plants. Frontiers in Plant Science, 12, 665583. https://doi.org/10.3389/fpls.2021.665583
dc.relation.referencesLi, H., Chen, Z., Zhou, T., Liu, Y., & Zhou, J. (2018). High potassium to magnesium ratio affected the growth and magnesium uptake of three tomato (Solanum lycopersicum L.) cultivars. Journal of Integrative Agriculture, 17(12), 2813–2821. https://doi.org/10.1016/S2095-3119(18)61949-5
dc.relation.referencesLi, J., Fan, H., Song, Q., Jing, L., Yu, H., Li, R., Zhang, P., Liu, F., Li, W., Sun, L., & Xu, J. (2023). Physiological and molecular bases of the boron deficiency response in tomatoes. Horticulture Research, 10(12), uhad229. https://doi.org/10.1093/hr/uhad229
dc.relation.referencesLi, X., Yang, S., Zhao, S., Zhang, P., Awais, M., Liu, Y., Sun, Z., Fu, H., & Li, T. (2025). The allocation patterns of plant phosphorus and soil phosphorus availability enhance tomato plant growth under long-term balanced nitrogen and phosphorus fertilization. Scientia Horticulturae, 344, 114121. https://doi.org/10.1016/j.scienta.2025.114121
dc.relation.referencesLi, Y., Huangfu, X., Hua, W., Bian, Y., Ni, Y., & Xie, Z. (2025). Shoot elongation patterns and regulatory genes controlling grapevine (Vitis vinifera L.) internode elongation. Plant Molecular Biology, 115(3), 62. https://doi.org/10.1007/s11103-025-01590-w
dc.relation.referencesLilay, G. H., Thiébaut, N., Du Mee, D., Assunção, A. G. L., Schjoerring, J. K., Husted, S., & Persson, D. P. (2024). Linking the key physiological functions of essential micronutrients to their deficiency symptoms in plants. New Phytologist, 242(3), 881–902. https://doi.org/10.1111/nph.19645
dc.relation.referencesLim, T. K. (2012). Passiflora edulis. En T. K. Lim, Edible Medicinal And Non-Medicinal Plants (pp. 147–165). Springer Netherlands. https://doi.org/10.1007/978-94-007- 4053-2_21
dc.relation.referencesLima, A. S. D., Alves, J. D. M., Mesquita, F. D. O., Mesquita, E. F. D., Sousa, C. D. S., Silva, F. L. D., Alves, A. D. S., & Soares, L. D. S. (2019). Organic Fertilization and Hydric Reposition in the Initial Production of Passiflora edullis. F. Flavicarca Deg. Journal of Experimental Agriculture International, 30(3), 1–14. https://doi.org/10.9734/JEAI/2019/46338
dc.relation.referencesLiu, W., Sun, Q., Wang, K., Du, Q., & Li, W. (2017). Nitrogen Limitation Adaptation (NLA) is involved in source‐to‐sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis. New Phytologist, 214(2), 734–744. https://doi.org/10.1111/nph.14396
dc.relation.referencesLizarazo, M. A., Hernández, C. A., Fischer, G., & Gómez, M. I. (2013b). Biomasa, parámetros foliares y sintomatología en respuesta a diferentes niveles de manganeso, zinc y boro en curuba (Passiflora tripartita var. Mollissima). Revista Colombiana de Ciencias Hortícolas, 7(1), 31–45.
dc.relation.referencesLizarazo, M. Á., Hernández, C. A., Fischer, G., & Gómez, M. I. (2013a). Response of the banana passion fruit (Passiflora tripartita var. Mollissima) to different levels of nitrogen, potassium and magnesium. Crop Physiology, 31(2).
dc.relation.referencesLong, Y., & Peng, J. (2023). Interaction between Boron and Other Elements in Plants. Genes, 14(1), 130. https://doi.org/10.3390/genes14010130
dc.relation.referencesLosso, A., Gauthey, A., Choat, B., & Mayr, S. (2023). Seasonal variation in the xylem sap composition of six Australian trees and shrubs. AoB PLANTS, 15(5), plad064. https://doi.org/10.1093/aobpla/plad064
dc.relation.referencesLuo, J., Liu, Y., Zhang, H., Wang, J., Chen, Z., Luo, L., Liu, G., & Liu, P. (2020). Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. BMC Plant Biology, 20(1). https://doi.org/10.1186/s12870-020-2283-z
dc.relation.referencesMaathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258. https://doi.org/10.1016/j.pbi.2009.04.003
dc.relation.referencesMadjar, R. M., Vasile Scăețeanu, G., & Sandu, M. A. (2024). Nutrient Water Pollution from Unsustainable Patterns of Agricultural Systems, Effects and Measures of Integrated Farming. Water, 16(21), 3146. https://doi.org/10.3390/w16213146
dc.relation.referencesMaggou, A., & Koutouzidou, G. (2026). Consumer Trends and Opinions on High-Nutritional-Value Superfoods. ETAGRO 2025, 30. https://doi.org/10.3390/proceedings2026134030
dc.relation.referencesMallikarjuna, M. G., Thirunavukkarasu, N., Sharma, R., Shiriga, K., Hossain, F., Bhat, J. S., Mithra, A. C., Marla, S. S., Manjaiah, K. M., Rao, A., & Gupta, H. S. (2020). Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.). Plants, 9(12), 1812. https://doi.org/10.3390/plants9121812
dc.relation.referencesMarín, J. J., & Rengifo, P. A. (2018). Determinación de curvas de extracción en la gulupa (Passiflora edulis f. Edulis Sims) en el municipio de Sonsón, Antioquia. Encuentro SENNOVA del Oriente Antioqueño, 4(1).
dc.relation.referencesMarte, R. J. (1992). Application of fertilizers on passion fruit. 74–76.
dc.relation.referencesMattar, G. S., Moraes, C. C. D., Meletti, L. M. M., & Purquerio, L. F. V. (2018). Accumulation and exportation of nutrients by yellow Passion fruit cv. IAC 275. Revista Brasileira de Fruticultura, 40(3). https://doi.org/10.1590/0100-29452018178
dc.relation.referencesMaxwell, M. (2024, mayo 27). Colombia leads the way in purple passion fruit. Eurofruit. https://www.fruitnet.com/eurofruit/colombia-leads-the-way-in-purple-passion-fruit/259462.article
dc.relation.referencesMeng, X., Chen, W.-W., Wang, Y.-Y., Huang, Z.-R., Ye, X., Chen, L.-S., & Yang, L.-T. (2021). Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLOS ONE, 16(2), e0246944. https://doi.org/10.1371/journal.pone.0246944
dc.relation.referencesMengel, K., Kirkby, E. A., Kosegarten, H., & Appel, T. (Eds.). (2001). Principles of Plant Nutrition. Springer Netherlands. https://doi.org/10.1007/978-94-010-1009-2
dc.relation.referencesMenzel, C. M., Haydon, G. F., & Simpson, D. R. (1991). Effect of nitrogen on growth and flowering of passionfruit (Passiflora edulis f. edulis X P. edulis f. flavicarpa) in sand culture. Journal of Horticultural Science, 66(6), 689–702. https://doi.org/10.1080/00221589.1991.11516200
dc.relation.referencesMicrosoft Corporation. (2019). Microsoft Excel [Software].
dc.relation.referencesMiranda Lasprilla, D., Moreno Buitrago, N., & Carranza Gutiérrez, C. (2015). Un modelo para el manejo de la nutrición en el cultivo de granadilla (Passiflora ligularis Juss). En Granadilla (Passiflora ligularis Juss): Caracterización ecofisológica del cultivo (1er ed., pp. 119–152).
dc.relation.referencesMontealegre Mora, O. M. (2021). Establecimiento de una Hectárea de Gulupa (Passiflora edulis Sims) en el Municipio de Isnos Huila [Trabajo de grado pregrado]. Universidad Nacional Abierta y a Distancia UNAD.
dc.relation.referencesMoreno, E. (2014). Análisis nutricional y estudio de la actividad antioxidante de algunas frutas tropicales cultivadas en Colombia [Tesis de maestría]. Nacional de Colombia.
dc.relation.referencesMorgado, M. A. D., Bruckner, C. H., Rosado, L. D. S., & Santos, C. E. M. D. (2017). Growth dynamics and allometric relationships of Passiflora species rootstocks. Comunicata Scientiae, 8(1), 1. https://doi.org/10.14295/cs.v8i1.1336
dc.relation.referencesMorton, J. F. (1987). Passionfruit. En Fruits of Warm Climates (pp. 692–709). Echo, Inc.
dc.relation.referencesMu, X., & Chen, Y. (2021). The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry, 158, 76–82. https://doi.org/10.1016/j.plaphy.2020.11.019
dc.relation.referencesMuñoz, K., Londoño, J., Sepulveda, S., Gómez, M., Tabares, A. I., & Carvalho, C. P. P. (2014). Purple Passion Fruit. En Iberian-American Fruits Rich in Bioactive Phytochemicals for Nutrotion and Health (1ra ed., pp. 135–142). Limencop S.L.
dc.relation.referencesMuñoz-Ordoñez, F. J., Gutiérrez-Guzmán, N., Hernández-Gómez, M. S., & Fernández- Trujillo, J. P. (2023). The climactic conditions limit fruit production and quality in gulupa (Passiflora edulis Sims f. edulis) under integrated fertilization. South African Journal of Botany, 153, 147–156. https://doi.org/10.1016/j.sajb.2022.11.043
dc.relation.referencesNadeem, M., Wu, J., Ghaffari, H., Kedir, A. J., Saleem, S., Mollier, A., Singh, J., & Cheema, M. (2022). Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.804058
dc.relation.referencesNdang, M., Pongener, K. A., & Alila, P. (2017). Management of nutrient constraints in passionfruit (Passiflora edulis Sims.). Acta Horticulturae, 1178, Article 1178. https://doi.org/10.17660/ActaHortic.2017.1178.4
dc.relation.referencesNi, Y.-W., Lin, K.-H., Chen, K.-H., Wu, C.-W., & Chang, Y.-S. (2020). Flavonoid Compounds and Photosynthesis in Passiflora Plant Leaves under Varying Light Intensities. Plants, 9(5), 633. https://doi.org/10.3390/plants9050633
dc.relation.referencesNuruzzaman, M., Lambers, H., Bolland, M. D. A., & Veneklaas, E. J. (2006). Distribution of Carboxylates and Acid Phosphatase and Depletion of Different Phosphorus Fractions in the Rhizosphere of a Cereal and Three Grain Legumes. Plant and Soil, 281(1–2), 109–120. https://doi.org/10.1007/s11104-005-3936-2
dc.relation.referencesOcampo, J., Marín, C., López, C., & Casas, A. (2012a). Manejo del cultivo de la Gulupa (Passiflora edulis f. Edulis Sims). En Tecnología para el cultivo de la Gulupa en Colombia (Passiflora edulis f. Edulis Sims) (1er ed., pp. 38–43). Universidad Jorge Tadeo Lozano UJTL.
dc.relation.referencesOcampo, J., & Morales, G. (2012). Aspectos generales de la Gulupa (Passiflora edulis f. edulis Sims). En Tecnología para el cultivo de la Gulupa en Colombia (Passiflora edulis f. edulis Sims) (1er ed., pp. 7–12). Universidad Jorge Tadeo Lozano UJTL.
dc.relation.referencesOcampo Pérez, J., Parra Morera, M., & Casas, A. (2012b). Costos de producción y comercialización de la gulupa. En Tecnología para el cultivo de la Gulupa en Colombia (Passiflora edulis f. Edulis Sims) (1er ed., pp. 66–68). Universidad Jorge Tadeo Lozano UJTL.
dc.relation.referencesOcampo Peréz, J., Rodríguez, A., & Parra Morena, M. (2020). Gulupa: Passiflora edulis f. edulis Sims. En Pasifloras Especies Cultivadas en el Mundo (1ra ed., pp. 139–158). ProImpress
dc.relation.referencesOddi, F. J., Miguez, F. E., Ghermandi, L., Bianchi, L. O., & Garibaldi, L. A. (2019). A nonlinear mixed‐effects modeling approach for ecological data: Using temporal dynamics of vegetation moisture as an example. Ecology and Evolution, 9(18), 10225–10240. https://doi.org/10.1002/ece3.5543
dc.relation.referencesOgura, T., Kobayashi, N. I., Hermans, C., Ichihashi, Y., Shibata, A., Shirasu, K., Aoki, N., Sugita, R., Ogawa, T., Suzuki, H., Iwata, R., Nakanishi, T. M., & Tanoi, K. (2020). Short-Term Magnesium Deficiency Triggers Nutrient Retranslocation in Arabidopsis thaliana. Frontiers in Plant Science, 11, 563. https://doi.org/10.3389/fpls.2020.00563
dc.relation.referencesOrganización de las Naciones Unidas para la Educación, la Ciencia y la Cultura. (2021). UNESCO Thesaurus [Software].
dc.relation.referencesOrjuela-Baquero, N. M., Campos Alba, S., Sánchez Nieves, J., Melgarejo, L. M., & Soledad Hernández, M. (2011). Manual de manejo poscosecha de la gulupa (Passiflora edulis Sims). En Poscosecha de la Gulupa (Passiflora edulis Sims) (pp. 7–22). 1ra.
dc.relation.referencesOuzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—A web and mobile app for systematic reviews. Systematic Reviews, 5(1), Article 1. https://doi.org/10.1186/s13643-016-0384-4
dc.relation.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71
dc.relation.referencesPandey, N., Pathak, G. C., & Sharma, C. P. (2006). Zinc is critically required for pollen function and fertilisation in lentil. Journal of Trace Elements in Medicine and Biology, 20(2), 89–96. https://doi.org/10.1016/j.jtemb.2005.09.006
dc.relation.referencesPinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2024). nlme: Linear and Nonlinear Mixed Effects Models (Versión R package version 3.1-164) [Software]. https://CRAN.R-project.org/package=nlme
dc.relation.referencesPosit. (2025). Rstudio (Versión 2025.05.0+496) [Windows]. Posit Software.
dc.relation.referencesProcolombia. (2023, septiembre 25). Gulupa: La fruta exótica con la que Colombia se destaca en. https://procolombia.co/colombiatrade/exportador/articulos/gulupa-la- fruta-exotica-con-la-que-colombia-se-destaca-en-el-mercado-global
dc.relation.referencesPruthi, J. S. (1963). Physiology, Chemistry, and Technology of Passion Fruit. En Advances in Food Research (Vol. 12, pp. 203–282). Elsevier. https://doi.org/10.1016/S0065- 2628(08)60009-9
dc.relation.referencesPurohit, S., Barik, C. R., Kalita, D., Sahoo, L., & Goud, V. V. (2021). Exploration of nutritional, antioxidant and antibacterial properties of unutilized rind and seed of passion fruit from Northeast India. Journal of Food Measurement and Characterization, 15(4), 3153–3167. https://doi.org/10.1007/s11694-021-00899-6
dc.relation.referencesQuiroga-Ramos, I. A., Fischer, G., & Melgarejo, L. M. (2018). Efecto de la aplicación foliar de boro en el desarrollo fenológico y cuajado de fruto de gulupa (Passiflora edulis f. edulis Sims). Revista Colombiana de Ciencias Hortícolas, 12(1), Article 1. https://doi.org/10.17584/rcch.2018v12i1.7457
dc.relation.referencesR Core Team. (2024). R: A language and environment for statistical computing (Versión 4.5.1) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/
dc.relation.referencesRai, S., Singh, P. K., Mankotia, S., Swain, J., & Satbhai, S. B. (2021). Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress, 1, 100008. https://doi.org/10.1016/j.stress.2021.100008
dc.relation.referencesRamaiya, S. D., Bujang, J. B., Zakaria, M. H., & Saupi, N. (2018). Nutritional, mineral and organic acid composition of passion fruit (Passiflora species). Food Research, 3(3), 231–240. https://doi.org/10.26656/fr.2017.3(3).233
dc.relation.referencesRamos dos Reis, L. C., Pesamosca Facco, E. M., Salvador, M., Flôres, S. H., & De Oliveira Rios, A. (2018). Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. Journal of Food Science and Technology, 55(7), 2679–2691. https://doi.org/10.1007/s13197-018-3190-2
dc.relation.referencesRigden, P. (2011). Fertilising. En The passionfruit growing guide (second edition, pp. 104– 189).
dc.relation.referencesRodríguez, L. F., & Bermúdez, L. T. (2009). Economía y gestión del sistema de producción de pasifloráceas en Colombia. En Cultivo, Poscosecha y Comercialización de las pasifloráceas en Colombia: Maracuyá, Granadilla, Gulupa y Curuba (1ra ed., pp. 303–326). Sociedad Colombiana de Ciencias Hortícolas.
dc.relation.referencesRodríguez T., D. K. (2024, noviembre 27). La gulupa colombiana, líder de las pasifloras en exportaciones. Portafolio. https://www.portafolio.co/negocios/comercio/exportaciones-de-gulupa-colombiana-crecen-un-20-en-2024-618349
dc.relation.referencesRodriguez-Amaya, D. B. (2012). Passion fruit. En Tropical and Subtropical Fruits. Postharvest Physiology, Processing and Packaging (fitst edition, pp. 321–332). Wiley-Blackwell
dc.relation.referencesRodríguez-León, A. K., Rodríguez Carlosama, A., Melgarejo, L. M., Miranda Lasprilla, D., Fischer, G., & Martínez Wilches, O. (2015). Caracterización fenológica de granadilla (Passiflora ligularis Juss) crecida en diferentes altitudes en el departamento del Huila. En Granadilla (Passiflora ligularis Juss): Caracterización ecofisológica del cultivo (1er ed., pp. 53–90).
dc.relation.referencesRomero-Rodríguez, M. A., Vazquez-Oderiz, M. L., Lopez-Hernandez, J., & Simal-Lozano, J. (1994). Composition of babaco, feijoa, passion-fruit and tamariHo produced in Galicia (NW Spain). Food Chemistry, 49, 251–255.
dc.relation.referencesSallato, B. (2021). Análisis foliar en frutales. Washington State University Tree Fruit Extension. https://treefruit.wsu.edu/orchard-management/soils-nutrition/analisis-foliar-en-frutales/
dc.relation.referencesSantos, G. P. D., Cavalcante, L. F., Nascimento, J. A. M. D., Lima Neto, A. J. D., Medeiros, S. A. D. S., & Cavalcante, Í. H. L. (2018). Nutritional status of yellow passion fruit fertilized with phosphorus sources and doses. Journal of Soil Science and Plant Nutrition, (ahead), 0–0. https://doi.org/10.4067/S0718-95162018005001204
dc.relation.referencesSantos Nobre, J., & Da Motta Singer, J. (2007). Residual Analysis for Linear Mixed Models. Biometrical Journal, 49(6), 863–875. https://doi.org/10.1002/bimj.200610341
dc.relation.referencesSchotsmans, W. C., & Fischer, G. (2011). Passion fruit (Passiflora edulis Sim.). En Postharvest Biology and Technology of Tropical and Subtropical Fruits (pp. 125–143e). Elsevier. https://doi.org/10.1533/9780857092618.125
dc.relation.referencesSchwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464.
dc.relation.referencesShah, I. H., Jinhui, W., Li, X., Hameed, M. K., Manzoor, M. A., Li, P., Zhang, Y., Niu, Q., & Chang, L. (2024). Exploring the role of nitrogen and potassium in photosynthesis implications for sugar: Accumulation and translocation in horticultural crops. Scientia Horticulturae, 327, 112832. https://doi.org/10.1016/j.scienta.2023.112832
dc.relation.referencesShapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591. https://doi.org/10.2307/2333709
dc.relation.referencesSierra y Selva Exportadora. (2021). Análisis de Mercado Gulupa 2021. https://recursos.exportemos.pe/analisis-del-mercado-de-la-gulupa.pdf
dc.relation.referencesSocha, A. L., & Guerinot, M. L. (2014). Mn-euvering manganese: The role of transporter gene family members in manganese uptake and mobilization in plants. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00106
dc.relation.referencesSpyroglou, I., Skalák, J., Balakhonova, V., Benedikty, Z., Rigas, A. G., & Hejátko, J. (2021). Mixed Models as a Tool for Comparing Groups of Time Series in Plant Sciences. Plants, 10(2), 362. https://doi.org/10.3390/plants10020362
dc.relation.referencesSrinivas, K., Sulladmath, V. V., Palaniappan, R., & Venugopalan, R. (2010). Plant water relations, yield and nutrient content of passion fruit in relation to evaporation
dc.relation.referencesSteele, M., Gitelson, A. A., & Rundquist, D. (2008). Nondestructive Estimation of Leaf Chlorophyll Content in Grapes. American Journal of Enology and Viticulture, 59(3), 299–305. https://doi.org/10.5344/ajev.2008.59.3.299
dc.relation.referencesSutherland, C., Hare, D., Johnson, P. J., Linden, D. W., Montgomery, R. A., & Droge, E. (2023). Practical advice on variable selection and reporting using Akaike information criterion. Proceedings of the Royal Society B: Biological Sciences, 290(2007), 20231261. https://doi.org/10.1098/rspb.2023.1261
dc.relation.referencesTaiz, L., Møller, I. M., Murphy, A., & Zeiger, E. (2022). Mineral Nutrition. En Plant physiology and development (seventh edition, pp. 189–216). Oxford University Press.
dc.relation.referencesThor, K. (2019). Calcium—Nutrient and Messenger. Frontiers in Plant Science, 10, 440. https://doi.org/10.3389/fpls.2019.00440
dc.relation.referencesTian, Q., Zhou, J., Wu, Y., Liu, J., Huang, W., Zhang, Y., Xie, W., Wei, G., & Mou, H. (2024). Observation of Flower Bud Differentiation Process and Fitting of Flower Growth Model of Passion Fruit. Scientia Agricultura Sinica, 4(5), 765–778. https://doi.org/10.3864/j.issn.0578-1752.2024.04.011
dc.relation.referencesTorres G., A. M. (2018). Seed dormancy and germination of two cultivated species of Passifloraceae. Boletín Científico Centro de Museos Museo de Historia Natural, 22(1), 15–27. https://doi.org/10.17151/bccm.2018.22.1.1
dc.relation.referencesTripathi, P., & Sankar, V. (2014). Passion fruit cultivation in India—Bulletin. Central Horticultural Experiment Station.
dc.relation.referencesTukey, J. W. (1949). Comparing Individual Means in the Analysis of Variance. Biometrics, 5(2), 99. https://doi.org/10.2307/3001913
dc.relation.referencesUniversidad Nacional de Colombia - Oficina de Gestión Ambiental. (2020a). Protocolo para el manejo integral de residuos biodegradables (B.PC.SGA.005). Universidad Nacional de Colombia sede Bogotá.
dc.relation.referencesUniversidad Nacional de Colombia - Oficina de Gestión Ambiental. (2020b). Protocolo para el manejo integral de residuos reciclables (B.PC.SGA.006). Universidad Nacional de Colombia sede Bogotá.
dc.relation.referencesVan Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), Article 2. https://doi.org/10.1007/s11192-009-0146-3
dc.relation.referencesVera-Maldonado, P., Aquea, F., Reyes-Díaz, M., Cárcamo-Fincheira, P., Soto-Cerda, B., Nunes-Nesi, A., & Inostroza-Blancheteau, C. (2024). Role of boron and its interaction with other elements in plants. Frontiers in Plant Science, 15, 1332459. https://doi.org/10.3389/fpls.2024.1332459
dc.relation.referencesWan, X., Zou, L.-H., Pan, X., Ge, Y., Jin, L., Cao, Q., Shi, J., & Tian, D. (2024). Auxin and carbohydrate control flower bud development in Anthurium andraeanum during early stage of sexual reproduction. BMC Plant Biology, 24(1), 159. https://doi.org/10.1186/s12870-024-04869-0
dc.relation.referencesWang, T., Chen, X., Ju, C., & Wang, C. (2023). Calcium signaling in plant mineral nutrition: From uptake to transport. Plant Communications, 4(6), 100678. https://doi.org/10.1016/j.xplc.2023.100678
dc.relation.referencesWang, Y., & Wu, W.-H. (2013). Potassium Transport and Signaling in Higher Plants. Annual Review of Plant Biology, 64(1), 451–476. https://doi.org/10.1146/annurev-arplant-050312-120153
dc.relation.referencesWatado, S., Higuchi, K., Saito, A., & Ohyama, T. (2025). Effects of Varying N, P, K, Mg, and Ca Concentrations on Nitrogen Transport in Xylem Sap of Rice Plants. Plants, 14(8), 1154. https://doi.org/10.3390/plants14081154
dc.relation.referencesWhite, P. J., & Broadley, M. R. (2003). Calcium in Plants. Annals of Botany, 92(4), 487–511. https://doi.org/10.1093/aob/mcg164
dc.relation.referencesWhite, P. J., & Ding, G. (2023). Long-distance transport in the xylem and phloem. En Marschner’s Mineral Nutrition of Higher Plants (Fourth edition, pp. 73–104). Elsevier Ltd.
dc.relation.referencesWimmer, M. A., & Goldbach, H. E. (2007). Boron in the Apoplast of Higher Plants. En B. Sattelmacher & W. J. Horst (Eds.), The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions (pp. 19–32). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5843-1_2
dc.relation.referencesWu, K., Hu, C., Liao, P., Hu, Y., Sun, X., Tan, Q., Pan, Z., Xu, S., Dong, Z., & Wu, S. (2024). Potassium stimulates fruit sugar accumulation by increasing carbon flow in Citrus sinensis. Horticulture Research, 11(11), uhae240. https://doi.org/10.1093/hr/uhae240
dc.relation.referencesXu, M., Li, A., Teng, Y., Sun, Z., & Xu, M. (2019). Exploring the adaptive mechanism of Passiflora edulis in karst areas via an integrative analysis of nutrient elements and transcriptional profiles. BMC Plant Biology, 19(1), 185. https://doi.org/10.1186/s12870-019-1797-8
dc.relation.referencesXu, X., Du, X., Wang, F., Sha, J., Chen, Q., Tian, G., Zhu, Z., Ge, S., & Jiang, Y. (2020). Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. Frontiers in Plant Science, 11, 904. https://doi.org/10.3389/fpls.2020.00904
dc.relation.referencesYang, H., Li, Y., Cao, Y., Shi, W., Xie, E., Mu, N., Du, G., Shen, Y., Tang, D., & Cheng, Z. (2022). Nitrogen nutrition contributes to plant fertility by affecting meiosis initiation. Nature Communications, 13(1), 485. https://doi.org/10.1038/s41467-022-28173-3
dc.relation.referencesYang, Y., Ma, C., Xu, Y., Wei, Q., Imtiaz, M., Lan, H., Gao, S., Cheng, L., Wang, M., Fei, Z., Hong, B., & Gao, J. (2014). A Zinc Finger Protein Regulates Flowering Time and Abiotic Stress Tolerance in Chrysanthemum by Modulating Gibberellin Biosynthesis. The Plant Cell, 26(5), 2038–2054. https://doi.org/10.1105/tpc.114.124867
dc.relation.referencesYe, X., Chen, X.-F., Deng, C.-L., Yang, L.-T., Lai, N.-W., Guo, J.-X., & Chen, L.-S. (2019). Magnesium-Deficiency Effects on Pigments, Photosynthesis and Photosynthetic Electron Transport of Leaves, and Nutrients of Leaf Blades and Veins in Citrus sinensis Seedlings. Plants, 8(10), 389. https://doi.org/10.3390/plants8100389
dc.relation.referencesZayed, O., Hewedy, O. A., Abdelmoteleb, A., Ali, M., Youssef, M. S., Roumia, A. F., Seymour, D., & Yuan, Z.-C. (2023). Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules, 13(10), 1443. https://doi.org/10.3390/biom13101443
dc.relation.referencesZenda, T., Liu, S., Dong, A., & Duan, H. (2021). Revisiting Sulphur—The Once Neglected Nutrient: It’s Roles in Plant Growth, Metabolism, Stress Tolerance and Crop Production. Agriculture, 11(7), 626. https://doi.org/10.3390/agriculture11070626
dc.relation.referencesZeraik, M. L., Pererira, C. A., Zurin, V. G., & Yariwake, J. H. (2010). Passion fruit: A functional food? Revista Brasileira de Farmacognosia, 20(3), Article 3.
dc.relation.referencesZhang, J., Li, F., Li, Y., Yang, H., Jia, Y., Liu, Y., & Shi, Y. (2020). Establishment and validation of critical nitrogen dilution curve based on the total plant biomass and nitrogen concentration. Journal of Plant Nutrition and Fertilizers, 26(9), 1697–1701. https://doi.org/10.11674/zwyf.20040
dc.relation.referencesZhang, Y., Liu, B., Kong, F., & Chen, L. (2023). Nutrient-mediated modulation of flowering time. Frontiers in Plant Science, 14, 1101611. https://doi.org/10.3389/fpls.2023.1101611
dc.relation.referencesZheng, H.-J., Wang, X., Ma, W.-F., Gou, H.-M., Liang, G.-P., & Mao, J. (2025). Temporal Variations in Photosynthesis and Leaf Element Contents of ‘Marselan’ Grapevines in Response to Foliar Fertilizer Application. Plants, 14(6), 946. https://doi.org/10.3390/plants14060946
dc.relation.referencesZibadi, S., & Watson, R. R. (2004). Passion Fruit (Passiflora edulis): Composition, Efficacy and Safety. Evidence-Based Integrative Medicine, 1(3), Article 3. https://doi.org/10.2165/01197065-200401030-00005
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc580 - Plantas
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
dc.subject.proposalElemento faltantespa
dc.subject.proposalDinámica nutricionalspa
dc.subject.proposalConcentración de nutrientesspa
dc.subject.proposalDinámica de acumulación de nutrientesspa
dc.subject.proposalMissing elementeng
dc.subject.proposalNutritional dynamicseng
dc.subject.proposalNutrient concentrationeng
dc.subject.proposalNutrient accumulation dynamicseng
dc.subject.wikidatafitotrofologíaspa
dc.subject.wikidataplant nutritioneng
dc.subject.wikidataPassiflora edulisspa
dc.subject.wikidataagricultura de invernaderospa
dc.subject.wikidatagreenhouse agricultureeng
dc.subject.wikidataFisiología vegetalspa
dc.subject.wikidataplant physiologyeng
dc.titleDeterminación de los requerimientos nutricionales de las plantas de gulupa (Passiflora edulis Sims) cultivadas bajo condiciones de cubierta en la Sabana de Bogotáspa
dc.title.translatedDetermination of the nutritional requirements of pulple passion fruit (Passiflora edulis Sims) plants cultivated under plastic cover conditions in the Bogotá savanna
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.contentImage
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentEspecializada
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colombia
oaire.fundernameIngeplant Ingeniería en Nutrición de Cultivos SAS

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis gulupa - Jorge Cáceres.pdf
Tamaño:
11.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: