Intervalos de confianza para la confiabilidad de sistemas coherentes no-reparables con estructura dependiente en la familia Weibull.

dc.contributor.advisorJaramillo Elorza, Mario César
dc.contributor.authorBru Cordero, Osnamir Elias
dc.contributor.researchgroupConfiabilidad Industrialspa
dc.date.accessioned2021-10-12T15:57:58Z
dc.date.available2021-10-12T15:57:58Z
dc.date.issued2021-10-11
dc.descriptiondiagramas, tablasspa
dc.description.abstractEn este trabajo el objetivo central es calcular intervalos de confianza para la confiabilidad de un sistema con sólo dos componentes, cuyos tiempos de vida son dependientes. Para estimar la confiabilidad del sistema teniendo en cuenta la dependencia entre los tiempos de vida del sistema coherente no reparable, se utiliza un modelo cópula Gumbel, para distribuciones de la familia de log-localización y escala; en el mismo contexto se chequean algunos resultados ya existentes bajo el escenario donde los tiempos son independientes, el cual para nuestro trabajo es un caso particular. Estas situaciones abordadas en nuestro estudio, son validadas mediante estimación de probabilidades de cobertura, para tres métodos; verosimilitud, transformación logit y ye en dos modelos de interés, modelo tradicional para riesgos competitivos con marginales Exponencial, Weibull y un modelo bivariado Marshall-Olkin Exponencial y Weibull. Se examina el comportamiento de los intervalos bajo la hipótesis de dependencia entre los tiempos de falla, y se observa que para tamaños muestrales pequeños se presenta un pequeño ruido en los intervalos, el cual fue corregido mediante una propuesta (y_e). Al incluir el concepto de fragilidad en un sistema en serie con marginales Weibull, la cual hace referencia a la variabilidad entre los tiempos de cada una de las unidades y con la propuesta se nota un mejor comportamiento de los intervalos de confianza para dicha estimación en muestras pequeñas y por supuesto para muestras grandes. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, the main objective is to compute con_dence intervals for the reliability of a system with only two components, whose life times are dependent. To estimate the reliability of the system taking into account the dependence between the lifetimes of the coherent non-repairable system, a Gumbel copula model is used, for distributions of the log-location and scale family; In the same context, some existing results are checked under the scenario where the times are independent, which for our work is a particular case. These situations addressed in our study are validated by estimating coverage probabilities for three methods; likelihood, logit transformation and (y_e) in two models of interest, traditional model for competitive risks with marginal Exponential, Weibull and a Marshall-Olkin Exponential and Weibull bivariate model. The behavior of the intervals is examined under the hypothesis of dependence between the failure times, and it is observed that for small sample sizes there is a small noise in the intervals, which was corrected by a proposal (y_e). By including the concept of frailty in a serial system with Weibull marginals, which refers to the variability between the times of each of the units and with the proposal, a better behavior of the con_dence intervals for small and large samples.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Estadísticaspa
dc.description.researchareaConfiabilidadspa
dc.format.extentxviii, 104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80511
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.referencesAalen, O., Borgan, O., y Gjessing, H. (2008). Survival and Event History Analysis: A Process Point of View. Springer Science & Business Mediaspa
dc.relation.referencesAven, T., y Jensen, U. (2013). Stochastic Models in Reliability. Springer.spa
dc.relation.referencesBarlow, R., y Proschan, F. (1975). Statistical Theory of Reliability and Life Testing: Probability Models. John Wiley & Sons.spa
dc.relation.referencesBarlow, R., y Proschan, F. (1981). Statistical Theory of Reliability and Life Testing. To Begin With.spa
dc.relation.referencesBemis, B. M., Bain, L. J., y Higgins, J. J. (1972). Estimation and hypothesis testing for the parameters of a bivariate exponential distribution. Journal of the American Statistical Association, 67 , 927-929.spa
dc.relation.referencesBelaghi, R. A., y Asl, M. N. (2019). Estimation based on progressively type-I hybrid censored data from the Burr XII distribution. Statistical Papers, 60 , 761-803.spa
dc.relation.referencesBru, O. E. C., y Jaramillo, M. C. E. (2019). Uso del método Combinación de Riesgos para estimar la función de supervivencia en presencia de riesgos competitivos dependientes: Un estudio de simulación. Ciencia en Desarrollo, 10 , 67-77.spa
dc.relation.referencesBurr, I. W. (1942). Cumulative frequency functions. The Annals of Mathematical Statistics, 13 , 215-232.spa
dc.relation.referencesCarriere, J. F. (1995). Removing cancer when it is correlated with other causes of death. Biometrical Journal, 37 , 339-350.spa
dc.relation.referencesChan, V., y Meeker, W. Q. (1999). A failure-time model for infant-mortality and wearout failure modes. IEEE Transactions on Reliability, 48 , 377-387.spa
dc.relation.referencesCrowder, M. J. (2001). Classical Competing Risks. New York: Chapman & Hall/CRC.spa
dc.relation.referencesCrowder, M. J. (2011). Multivariate Survival Analysis and Competing Risks. New York: Chapman & Hall/CRC.spa
dc.relation.referencesDavid, H. A., y Moeschberger, M. L. (1978). The Theory of Competing Risks. C. Griffn.spa
dc.relation.referencesDuchateau, L., y Janssen, P. (2007). The Frailty Model. Springer Science & Business Media.spa
dc.relation.referencesEmura, T., Nakatochi, M., Murotani, K., y Rondeau, V. (2017). A joint frailty-copula model between tumour progression and death for meta-analysis. Statistical Methods in Medical Research, 26 , 2649-2666.spa
dc.relation.referencesEpstein, B. (1958). The Exponential Distribution and its Role in Life Testing. Wayne State University Detroit MI.spa
dc.relation.referencesEsary, J. D. (1957). A Stochastic Theory of Accident Survival and Fatality. University of California, Berkeley.spa
dc.relation.referencesEscarela, G., y Carriere, J. (2003). Fitting competing risks with an assumed copula. Statis- tical Methods in Medical Research, 12 , 33-349.spa
dc.relation.referencesEscobar, L. A., Villa, E. R., y Ya~nez, S. (2003). Confi abilidad: Historia, estado del arte y desafíos futuros. Dyna, 70 , 5-21.spa
dc.relation.referencesFeizjavadian, S., y Hashemi, R. (2015). Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall{Olkin bivariate Weibull distribution. Computational Statistics & Data Analysis, 82 , 19-34.spa
dc.relation.referencesFréchet, M. (1960). Sur les tableaux dont les marges et des bornes sont donn ees. Revue de l'Institut International de Statistique, 10-32.spa
dc.relation.referencesGandy, A. (2005). Effects of uncertainties in components on the survival of complex systems with given dependencies. Modern Statistical and Mathematical Methods in Reliability. World Scienti c, New Jersey, 177-189.spa
dc.relation.referencesGaver, D. (1963). Random hazard in reliability problems. Technometrics, 5 , 211-226.spa
dc.relation.referencesGumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55 , 698-707.spa
dc.relation.referencesHong, Y. (2013). On computing the distribution function for the Poisson binomial distribution. Computational Statistics and Data Analysis, 59 , 41-51.spa
dc.relation.referencesHong, Y., y Meeker, W. Q. (2014). Con dence interval procedures for system reliability and applications to competing risks models. Lifetime Data Analysis, 20 , 161-184.spa
dc.relation.referencesHong, Y., Meeker, W. Q., y Escobar, L. A. (2008). Avoiding problems with normal approximation confi dence intervals for probabilities. Technometrics, 50 , 64-68.spa
dc.relation.referencesHougaard, P. (2012). Analysis of Multivariate Survival Data. Springer Science & Business Media.spa
dc.relation.referencesIbrahim, J. G., Chen, M.-H., y Sinha, D. (2014). Bayesian Survival Analysis. John Wiley & Sons: Statistics Reference Online.spa
dc.relation.referencesJoe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. CRC Press.spa
dc.relation.referencesKotz, S., Balakrishnan, N., y Johnson, N. L. (2004). Continuous Multivariate Distributions, Volume 1: Models and Applications. John Wiley & Sons.spa
dc.relation.referencesKundu, D. (2007). On hybrid censored Weibull distribution. Journal of Statistical Planning and Inference, 137 , 2127-2142.spa
dc.relation.referencesKundu, D., y Basu, S. (2000). Analysis of incomplete data in presence of competing risks. Journal of Statistical Planning and Inference, 87 , 221-239.spa
dc.relation.referencesKundu, D., y Dey, A. K. (2009). Estimating the parameters of the Marshall{Olkin bivariate Weibull distribution by EM algorithm. Computational Statistics & Data Analysis, 53 , 956-965.spa
dc.relation.referencesLai, C.-D., Dong Lin, G., Govindaraju, K., y Pirikahu, S. (2017). A simulation study on the correlation structure of Marshall-Olkin bivariate Weibull distribution. Journal of Statistical Computation and Simulation, 87 , 156-170.spa
dc.relation.referencesLawless, J. F. (2003). Statistics in reliability. Journal of the American Statistical Association, 95 , 989-992.spa
dc.relation.referencesLawless, J. F. (2011). Statistical Models and Methods for Lifetime Data. John Wiley & Sons - Interscience.spa
dc.relation.referencesLehmann, E., y Casella, G. (1998). Theory of Point Estimation, Second Edition. Springer.spa
dc.relation.referencesLi, H. (2008). Tail dependence comparison of survival Marshall-Olkin copulas. Methodology and Computing in Applied Probability, 10 , 39-54.spa
dc.relation.referencesLi, X., y Pellerey, F. (2011). Generalized Marshall-Olkin distributions and related bivariate aging properties. Journal of Multivariate Analysis, 102 , 1399-1409.spa
dc.relation.referencesLin, H., y Zelterman, D. (2002). Modeling Survival Data: Extending the Cox Model. Taylor & Francis.spa
dc.relation.referencesLiu, X. (2012). Planning of accelerated life tests with dependent failure modes based on a gamma frailty model. Technometrics, 54 , 398-409.spa
dc.relation.referencesLu, J.-C., y Bhattacharyya, G. K. (1990). Some new constructions of bivariate Weibull models. Annals of the Institute of Statistical Mathematics, 42 , 543-559.spa
dc.relation.referencesMarshall, A. W., y Olkin, I. (1967a). A generalized bivariate exponential distribution. Journal of Applied Probability, 4 , 291-302.spa
dc.relation.referencesMarshall, A. W., y Olkin, I. (1967b). A multivariate exponential distribution. Journal of the American Statistical Association, 62 , 30-44.spa
dc.relation.referencesMcNeil, A. J., Frey, R., y Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools-Revised Edition. Princeton University Press.spa
dc.relation.referencesMeeker, W. Q., y Escobar, L. A. (1998). Statistical Methods for Reliability Data. New York: John Wiley & Sons.spa
dc.relation.referencesMeeker, W. Q., Hahn, G. J., y Escobar, L. A. (2017). Statistical Intervals: A Guide for Practitioners and Researchers. John Wiley & Sons.spa
dc.relation.referencesMirhosseini, S. M., Amini, M., Kundu, D., y Dolati, A. (2015). On a new absolutely continuous bivariate generalized exponential distribution. Statistical Methods & Applications, 24 , 61-83.spa
dc.relation.referencesMiyawaka, M. (1982). Statistical analysis of incomplete data in competing risks model. J. Japanese Society. Quantity Control , 12 , 49-52.spa
dc.relation.referencesMiyawaka, M. (1984). Analysis of incomplete data in competing risks model. IEEE Transactions on Reliability, 33 , 293-296.spa
dc.relation.referencesMokhtari, E. B., Rad, A. H., y Yousefzadeh, F. (2011). Inference for Weibull distribution based on progressively type-II hybrid censored data. Journal of Statistical Planning and Inference, 141 , 2824-2838.spa
dc.relation.referencesMorgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik , 8 , 234-235.spa
dc.relation.referencesMuliere, P., y Scarsini, M. (1987). Characterization of a Marshall-Olkin type class of distributions. Annals of the Institute of Statistical Mathematics, 39 , 429-441.spa
dc.relation.referencesMuller, A., y Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley & Sons.spa
dc.relation.referencesMurthy, D. P., Xie, M., y Jiang, R. (2004). Weibull Models. John Wiley & Sons.spa
dc.relation.referencesNavarro, J., y Durante, F. (2017). Copula-based representations for the reliability of the residual lifetimes of coherent systems with dependent components. Journal of Multivariate Analysis, 158 , 87-102.spa
dc.relation.referencesNelsen, R. B. (2006). An Introduction to Copulas. Springer.spa
dc.relation.referencesOta, S., y Kimura, M. (2017). A statistical dependent failure detection method for n-component parallel systems. Reliability Engineering & System Safety, 167 , 376-382.spa
dc.relation.referencesPareek, B., Kundu, D., y Kumar, S. (2009). On progressively censored competing risks data for Weibull distributions. Computational Statistics & Data Analysis, 53 , 4083-4094.spa
dc.relation.referencesPascual, F. G., y Gast, C. (2010). Probability plotting with independent competing risks. En Advances in Degradation Modeling (pp. 397-414.). Springer.spa
dc.relation.referencesPawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press.spa
dc.relation.referencesPaz-Sabogal, M. C., Yañez-Canal, S., y Lopera-Gómez, C. M. (2014). Comparative study of the dependence effect on competing risks models with three modes of failure via estimators copula based. Ingeniería y Competitividad , 16 , 169-183.spa
dc.relation.referencesPintilie, M. (2006). Competing Risks: A Practical Perspective. John Wiley & Sons.spa
dc.relation.referencesPlackett, R. L. (1965). A class of bivariate distributions. Journal of the American Statistical Association, 60 , 516-522.spa
dc.relation.referencesR Core Team. (2020). R: A Language and Environment for Statistical Computing [Manual de software informático]. Vienna, Austria. Descargado de https://www.R-project.org/spa
dc.relation.referencesSingpurwalla, N. D. (2006). Reliability and Risk: A Bayesian Perspective. John Wiley & Sons.spa
dc.relation.referencesTableman, M., y Kim, J. S. (2003). Survival Analysis Using S: Analysis of Time-to-Event Data. CRC press.spa
dc.relation.referencesTsiatis, A. (1975). A nonidenti ability aspect of the problem of competing risks. Proceedings of the National Academy of Sciences, 72 , 20-22.spa
dc.relation.referencesVallejos, C. A., y Steel, M. F. (2017). Incorporating unobserved heterogeneity in Weibull survival models: A Bayesian approach. Econometrics and Statistics, 3 , 73-88.spa
dc.relation.referencesWang, Y.-C., Emura, T., Fan, T.-H., Lo, S. M., y Wilke, R. A. (2020). Likelihood-based inference for a frailty-copula model based on competing risks failure time data. Quality and Reliability Engineering International, 36 , 1622-1638.spa
dc.relation.referencesWatkins, A. J. (1999). An algorithm for maximum likelihood estimation in the three parameter Burr XII distribution. Computational Statistics & Data Analysis, 32 , 19-27.spa
dc.relation.referencesWienke, A. (2010). Frailty Models in Survival Analysis. CRC press.spa
dc.relation.referencesWu, M., Shi, Y., y Zhang, C. (2017). Statistical analysis of dependent competing risks model in accelerated life testing under progressively hybrid censoring using copula function. Communications in Statistics-Simulation and Computation, 46 , 4004-4017.spa
dc.relation.referencesYañez, S., Brango, H., Jaramillo, M. C., y Lopera, C. M. (2011). Comparación entre riesgos competitivos vía el estimador cópula-gráfi co. Revista Colombiana de Estadística, 34 , 231-248.spa
dc.relation.referencesYañez, S., Escobar, L. A., y González, N. (2014). Characteristics of two competing risks models with Weibull distributed risks. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38 , 298-311.spa
dc.relation.referencesZheng, M., y Klein, J. P. (1995). Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika, 82 , 127-138.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcConfiabilidad (Ingeniería) - Métodos estadísticos
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc310 - Colecciones de estadística generalspa
dc.subject.lembReliability (engineering) - statistical methods
dc.subject.proposalSistemas coherentesspa
dc.subject.proposalComponentes dependientesspa
dc.subject.proposalCópulaspa
dc.subject.proposalFragilidadspa
dc.subject.proposalCoherent systemseng
dc.subject.proposalDependent componentseng
dc.subject.proposalCopulaeng
dc.subject.proposalFrailtyeng
dc.subject.proposalReliabilityeng
dc.subject.proposalCoherent systemseng
dc.subject.proposalDependent componentseng
dc.subject.proposalCopulaeng
dc.subject.proposalFrailtyeng
dc.titleIntervalos de confianza para la confiabilidad de sistemas coherentes no-reparables con estructura dependiente en la familia Weibull.spa
dc.title.translatedConfidence interval for systems reliability of coherent non-repairable with dependent structure in the Weibull family.eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColciencias, Convocatoria 727, doctorados nacionales.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10767993_Tesis_Doctorado2021.pdf
Tamaño:
4.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: