Evaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cemento

dc.contributor.advisorOrozco, Carlos Augusto
dc.contributor.advisorTobon, Jorge Ivan
dc.contributor.authorGómez Alvarez, Ana Cristina
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcciónspa
dc.date.accessioned2022-03-16T16:15:32Z
dc.date.available2022-03-16T16:15:32Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa baja compatibilidad entre los aditivos superplastificantes base policarboxilato (PCE) y los agregados con trazas de arcilla, se ha considerado uno de los retos a resolver en la producción de concreto en los últimos años. A partir de una arena natural, se identificaron fases arcillosas tipo caolinita e Illita, mediante ensayos de Difracción de rayos X (DRX) y por tanto se seleccionaron 2 arcillas puras caolinita (KGa-2) e illita-esmectita (ISCz-1) de capacidad de intercambio catiónico (CIC) de 2.75 meq/100 g y de 27.50 meq/100 g respectivamente. Se evaluaron isotermas de adsorción entre la arcilla y el PCE mediante carbono orgánico total (COT) y se cuantificó una adsorción del 99% del aditivo en la arcilla ISCz-1 así como un incremento de la distancia interplanar de la arcilla de 10.68 Å hasta 11.54 Å, lo que sugiere la intercalación del PCE en la arcilla. Para KGa-2, la adsorción del PCE fue 79 % y no presentó cambios en la distancia interplanar, ni variaciones significativas en el área superficial específica debido a que la interacción entre ambas fases fue fundamentalmente física. Como estrategia de mitigación, se emplearon 2 aminas cuaternarias como agentes de sacrificio de diferente peso molecular; bromuro de hexadeciltrimetil amonio (HTB) y bromuro de tetraetil amonio (TTB) variando las proporciones en función de la capacidad de intercambio catiónico de la arcilla. Los cambios en ISCz-1 funcionalizada mostraron una reducción de 76% en el área superficial específica (BET) para 1.0 CIC-HTB y del 21 % a una relación 1.5 CIC-TTB. Los ensayos de mini-slump y reología mostraron que a mayor peso molecular, en especial para HTB, que presenta una cadena unida al átomo de nitrógeno más larga que TTB, puede ocurrir un efecto sinérgico entre el aditivo y la arcilla funcionalizada que aumenta la fluidez del mortero y reduce el esfuerzo de cedencia de la mezcla, así como una disminución del 25 % para HTB y 4% a 28 días para TTB en la resistencia a compresión de los morteros debido a poca adherencia de la arcilla funcionalizada con la pasta y a la alta fluidez que se obtiene en los morteros con la arcilla funcionalizada, específicamente con HTB. (Texto tomado de la fuente)spa
dc.description.abstractThe low compatibility between polycarboxylate-based superplasticizer admixtures and aggregates with traces of clay has been considered one of the challenges in concrete production in recent years. Therefore, kaolinite and illite clay minerals were identified in natural sand by X-ray diffraction (XRD), and two pure clays were selected for the study, kaolinite (KGa-2) and illite (ISCz-1) with cation exchange capacity (CEC) 2.75 meq/100 g y de 27.50 meq/100 g respectively. The adsorption isotherms with PCE using Total organic carbon (TOC) showed 99% adsorption of admixture on ISCz-1 and interplanar spacing increase from 10,68 Å to 11.54 Å, suggesting intercalation between the admixture and the clay. For KGa-2, the PCE adsorption was 79 % and did not change the interplanar spacing or specific surface area associated with physical interaction. A mitigation strategy based on two quaternary ammonium compounds as sacrificial agents with different molecular weight were tested: hexadecyltrimethylammonium bromide (HTB) and tetraethylammonium bromide (TTB) varying their proportions based on the cation exchange capacity of clay. The surface changes on functionalized ISCz-1 showed a reduction of 76 % on the surface area for 1.0 CEC HTB and 22 % for 1.5CEC TTB. The results by mini-slump tests and rheology measurements suggest that with higher molecular weight, in fact for HTB , that has a long chain linked to nitrogen atom, a synergistic effect may occur between the PCE increasing the mortar fluidity and cause a reduction in shear stress. A 25 % compressive strength decreased was measured at 28 days for HTB molecule and 4 % for TTB to low bond functionalized clay-paste and higher slump on functionalized mortar, mainly for HTB.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaMateriales y Mineralesspa
dc.format.extentxvi, 101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81248
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesRamachandran, V.S., Paroli, M., Beaudoin, J., Delgado, A. (2002). Handbook of Thermal Analysis of Construction Materials. New York, USA, Noyes Publication.spa
dc.relation.referencesGao, G., Ren, J., Liu, Y., Guo, J., Li, J. (2017). Interaction of polycarboxylate-based superplasticiser with clay in Portland cement systems. Advances in Cement Research, 30(6): 270–276.spa
dc.relation.referencesLui, X., Guan, J., Lai, G., Zheng, Y., Wang, Z., Cui, S., Lan, M, Li, H. (2017). Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete. Journal of Industrial and Engineering Chemistry,55, 80–90.spa
dc.relation.referencesBorralleras, P. (2019). Intercalation mechanism of polycarboxylate-based superplasticizers into montmorillonite clays. (Tesis de doctorado). Universitat Politècnica de Catalunya, Barcelona.spa
dc.relation.referencesPansu, M., Gautheyrou, J. (2006). Handbook of Soil Analysis, Mineralogical, organic and Inorganic Methods. Holanda, Springer-Verlag Berlin Heidelberg.spa
dc.relation.referencesNorvell, K., Stewart. G, Juenger, M., Fowler, D. (2007). Influence of Clays and Clay-Sized Particles on Concrete Performance. Journal of Materials in Civil Engineering, 19 (12), 1053-1059.spa
dc.relation.referencesMuñoz, F., Tejedor, M., Isabel, M, Anderson, Marc, A., Cramer, S. (2010). Detection of Aggregate Clay Coatings and Impacts on Concrete. ACI Materials Journal, 107 (4), 387-395.spa
dc.relation.referencesTugrul, A., Hasdemir, S., Yılmaz, M. (2014). The Effect of Feldspar, Mica and Clay Minerals on Compressive Strength of Mortar. IAEG XII Congress, Engineering Geology for Society and Territory, 5, 93-96spa
dc.relation.referencesXu, H., Sun, S., Yu, Q., Wei, J. (2018). Effect of b-cyclodextrin pendant on the dispersion robustness of polycarboxylate superplasticizer toward kaolin. Polymer Composite, 39 (3), 55-761.spa
dc.relation.referencesLei, L., Werani, M (2021). Influence of side chain length of MPEG – based polycarboxylate superplasticizers on their resistance towards intercalation into clay structures. Construction and Building Materials, 281,122621.spa
dc.relation.referencesLei, L, Plank, J. (2014). A Study on the Impact of Different Clay Minerals on the Dispersing Force of Conventional and Modified Vinyl Ether Based Polycarboxylate Superplasticizers. Cement and Concrete Research, 60,1-10.spa
dc.relation.referencesZhao, Q., Choo, H., Bhatt, A., Burns, S., Bate, B. (2017). Review of the fundamental geochemical and physical behaviors of organoclays in barrier applications. Applied Clay Science. 142, 2-20.spa
dc.relation.referencesTang, X., Zhao, C., Yang, Y., Dong, Y., Lu, X. (2020). Amphoteric polycarboxylate superplasticizers with enhanced clay tolerance: Preparation, performance and mechanism. Construction and Building Materials, 252 (20), 119052.spa
dc.relation.referencesMa, Y., Shi, C., Lei, L., Sha, S., Zhou, B., Liu, Y, Xiao, Y. (2020). Research progress on polycarboxylate based superplasticizers with tolerance to clays - A review. Construction and Building Materials, 255, 119386.spa
dc.relation.referencesTan, H., Guo, Y., Ma, B., Huang, J., Gu, B., Zou, F. (2018). Effect of Sodium Tripolyphosphate on Clay Tolerance of Polycarboxylate Superplasticizer. KSCE Journal of Civil Engineering, 22, 2934-2941.spa
dc.relation.referencesJardine, L., Koyata, H., Folliard, K., Chin Ou, C., Jachimowic, F., Chun, B., Jeknovarian, A. Hill, C. (2003). Admixture for optimizing addition of EO/PO. USA, US 6,670,415 B2, Columbia, Oficina de Patentes y Marcas de Estados Unidos.spa
dc.relation.referencesKoyata, H., Zhang, S., Chun, B. (2017). Method for modifying clay-activity and enhancing slump retention of hydratable cementitous compositions comprising clay-containing aggregates. Unión Europea EP-2 303 801 B1, Oficina Europea de Patentes.spa
dc.relation.referencesJacquet, A., Villard, E., Watt, O. (2007). Method for inerting impurities. US 2007/0287794 A1, Virginia, Oficina de Patentes y Marcas de Estados Unidos.spa
dc.relation.referencesKuo, L., Favero, C., Roux, C., Tregger, N. (2015). Functionalized polyamines clay mitigation. US 2015/0065614 A1, Columbia, Oficina de Patentes y Marcas de Estados Unidos.spa
dc.relation.referencesBergaya, F., Lagaly, G. (2006). Handbook of Clay Science, Amsterdam, Holanda, Elsevier.spa
dc.relation.referencesNehdi, M. (2014). Clay in cement-based materials: Critical overview of state-of-the-art. Construction and Building Materials, 51, 372–382.spa
dc.relation.referencesHuggett J. M, (2015). Clay Minerals, Reference Module in Earth Systems and Environmental Sciences, Elsevier.spa
dc.relation.referencesWhitworth, T. (1998) Clay minerals: Ion exchange. In: Geochemistry. Encyclopedia of Earth Science. Springer, Dordrecht.spa
dc.relation.referencesNorma Técnica Colombiana, NTC 5268. Determinación de la capacidad de intercambio catiónico, 2006.spa
dc.relation.referencesAl Ani, T., Sarapää, O. (2008). Clay and clay mineralogy. Geological Survey of Finland, Reportspa
dc.relation.referencesBetega de Paiva, L., Morales, A., Valenzuela Díaz, F. (2008). Organoclays: Properties, preparation and applications. Applied Clay science. 42 (1-2),8-24.spa
dc.relation.referencesPuertas, F., Palacios, M., Alonso, M. (2009). Aditivos para el hormigón: compatibilidad cemento-aditivos basados en policarboxilatos. Monografías del Instituto Eduardo Torroja. Madrid, Consejo Superior de Investigaciones Científicas.spa
dc.relation.referencesMahmoud, A., Shehab, M., El-Dieb, A. (2010). Concrete mixtures incorporating synthesized sulfonated acetophenone–formaldehyde resin as superplasticizer. Cement and Concrete Composites, 32 (5), 392-397.spa
dc.relation.referencesDransfield, J. (2003). Admixtures for concrete, mortar and grout, In Advanced Concrete Technology, Butterworth-Heinemann, Oxford, 3-36.spa
dc.relation.referencesSha, S., Wang, M., Shi, C., Xiao, Y. (2020). Influence of the structures of polycarboxylate superplasticizer on its performance in cement-based materials-A review. Construction and Building Materials, 233,117257.spa
dc.relation.referencesFlatt, R., Schober, I. (2012). Superplasticizers and the rheology of concrete. Understanding the Rheology of Concrete, Cambridge, UK, Woodhead Publishing, 144-208.spa
dc.relation.referencesDalas, F., Nonat, A., Pourchet, S., Mosquet, M., Rinaldi, D., Sabio, S . (2015). Tailoring the anionic function and the side chains of comb-like superplasticizers to improve their adsorption. Cement and Concrete Research, 67, 21-30.spa
dc.relation.referencesHe, H., Zhou, Q., Martens, W., Kloprogge, T., Yuan, P., Zhu, J., Frost, R. (2006). Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 54, 689–696.spa
dc.relation.referencesOyanedel-Craver, V., Smith, J.(2006).Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. Journal of Hazardous Materials B137, 1102–1114.spa
dc.relation.referencesShah, K., Mishra, M., Shukla, A., Imae, T., Shah, D. (2013). Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. Journal of Colloid and Interface Science, 407 (1), 493–499.spa
dc.relation.referencesMadejova, J., Jankovič, L., Slany, M., Hronsky,V. (2020). Conformation heterogeneity of alkylammonium surfactants self-assembled on montmorillonite: Effect of head-group structure and temperature. Applied Surface Science, 503 (2020) 144125.spa
dc.relation.referencesGuéran, R. (2019). Organoclay applications and limits in the environment. Comptes Rendus Chimie, 22 (2-3), 132-141.spa
dc.relation.referencesChen, X., Guo, Y., Li, B., Zhou, M., Li, B., Liu, Z., Zhou, J. (2020). Coupled effects of the content and methylene blue value (MBV) of microfines on the performance of manufactured sand concrete. Construction and Building Materials, 240, 117953.spa
dc.relation.referencesWang, W., Deng, Z., Feng, Z., Lefeng, F., Baicun, Z. (2015). Interaction of Polycarboxylate-based Superplasticizer/Poly (vinyl alcohol) with Bentonite and Its Application in Mortar with Clay-bearing Aggregates. Superplasticizers and other chemical admixtures in concrete. Eleventh International Conference , Ontario, Canada, 333-348.spa
dc.relation.referencesFernandes, V., Purnell, P., Still, G., Thomas, T. (2007). The effect of clay content in sands used for cementitious materials in developing countries. Cement and Concrete Research, 37,751–758.spa
dc.relation.referencesNg, S., Plank, J. (2012). Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cement and Concrete Research, 42(6), 847–854.spa
dc.relation.referencesLei, L., Plank, J. (2012). A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance. Cement and Concrete Research, 42(10), 1299–1306.spa
dc.relation.referencesFarris, S., Mora, L., Capretti, G., Piergiovanni, L. (2011). Charge density quantification of polyelectrolyte polysaccharides by conductometric titration: an analytical chemistry experiment. Journal of Chemical education, 89,121-124.spa
dc.relation.referencesEPA Method 415.1. Determination of Total Organic Carbon in Water using Combustion or Oxidation.spa
dc.relation.referencesASTM C136 / C136M – 19. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.spa
dc.relation.referencesASTM C128/C128M-15. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.spa
dc.relation.referencesASTM C29/C29M-17. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate.spa
dc.relation.referencesASTM C40/C40M-20. Standard Test Method for Organic Impurities in Fine Aggregates for Concrete.spa
dc.relation.referencesASTM C117-17. Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing.spa
dc.relation.referencesINV E-235-13. Valor de azul de metileno en agregados finos.spa
dc.relation.referencesWang, X ., Wang, H. (2021). Structural Analysis of Interstratified Illite-Smectite by the Rietveld Method. Crystals, 11, 244.spa
dc.relation.referencesChipera, S., Bish, D. (2001). Baseline studies of the clay mineral society source clays: Powder X-ray diffraction analyses. Clay and Clay minerals, Vol 49 (5),398-409.spa
dc.relation.referencesVaculíková , l., Plevová, E, Vallová, S. Koutník, I .(2011).characterization and differentiation of kaolinites from selected czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodyn. Geomater., Vol. 8, No. 1 (161), 59–67.spa
dc.relation.referencesWilson, M., Wilson, L., Patey, I. (2014). The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights. Clay minerals, 49, 147-164.spa
dc.relation.referencesWeibel, R., Nielsen, M., Therkelsen, J., Jakobsen, F., Bjerager, M., Mørk, F., Mathiesen, A., Hovikoski, J., Pedersen, S., Johannessen, P., Dybkjær, K. (2020). Illite distribution and morphology explaining basinal variations in reservoir properties of Upper Jurassic sandstones, Danish North Sea, Marine and Petroleum Geology,116, 104290.spa
dc.relation.referencesGiles, C., Smith, D., Huitson, A. (1974). General Treatment and Classification of the Solute Adsorption Isotherm. Journal of Colloid and Interface Science, 47 (3).spa
dc.relation.referencesGiles, C., MacEwan, T., Nakhwa, S., Smith, D. (1960). Studies in Adsorption. Part XI. A System of Classification of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. Journal of Chemical Society,3973-3993.spa
dc.relation.referencesAit-Akbour, R., Boustingorry, P., Leroux., F., Taviot-Guého, C. (2015). Adsorption of PolyCarboxylate Poly(ethylene glycol) (PCP) esters on Montmorillonite (Mmt): Effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure. Journal of Colloid and Interface Science, 437,227–234.spa
dc.relation.referencesChalghaf, R., Oueslatin, W., Ammar, M., Ben Rhaiem, H., Haj Amara, A. (2013). Effect of temperature and pH value on cation exchange performance of a natural clay for selective (Cu2þ, Co2þ) removal: Equilibrium, sorption and kinetics. Progress in Natural Science: Materials International, 23-35spa
dc.relation.referencesCaglar, B., Afsin, A., Tabak, A., Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal. 149,242–248.spa
dc.relation.referencesCheng, T., Yang, Y., Zhao, Y., Rao, F., Song, S. (2018). Evaluation of exfoliation degree of montmorillonite in aqueous dispersions through turbidity measurement. RSC Adv., 8, 40823-40828.spa
dc.relation.referencesLi, Z., Jiang, W., Hong, H. (2008). An FTIR investigation of hexadecyltrimethylammonium intercalation into rectorite. Spectrochimica Acta Part A 71, 1525–1534.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.lembCement - additives
dc.subject.lembCemento - Aditivos
dc.subject.proposalArcillasspa
dc.subject.proposalFuncionalización de arcillasspa
dc.subject.proposalÁrea superficial específicaspa
dc.subject.proposalCapacidad de intercambio catiónicospa
dc.subject.proposalAditivo superplastificantespa
dc.subject.proposalAminas cuaternariasspa
dc.subject.proposalClayeng
dc.subject.proposalOrganoclayeng
dc.subject.proposalSpecific surface areaeng
dc.subject.proposalCation exchange capacityeng
dc.subject.proposalSuperplasticizereng
dc.subject.proposalQuaternary ammonium compoundseng
dc.titleEvaluación del efecto del peso molecular de agentes de sacrificio en la interacción de los aditivos superplastificantes con las arcillas presentes en mezclas base cementospa
dc.title.translatedEvaluation of the effect of the molecular weight of the sacrificial agents in the interaction of the superplasticizer admixtures with the clays present in cement-based mixeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037583382.2021.pdf
Tamaño:
3.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: