Respuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.

dc.contributor.advisorBernal Franco, Gladys Rocío
dc.contributor.authorBarragán Jacksson, Camila María
dc.contributor.orcidBarragán Jacksson, Camila María [0000000157086106]spa
dc.contributor.researchgroupOceánicosspa
dc.date.accessioned2024-06-25T19:16:18Z
dc.date.available2024-06-25T19:16:18Z
dc.date.issued2024
dc.description.abstractLos foraminíferos bentónicos han demostrado ser herramientas locales del entendimiento de la dinámica de las emanaciones de metano a nivel mundial. Este estudio caracteriza el nivel de filtración de 18 estaciones dentro un campo de filtración entre la plataforma continental y el talud del cinturón plegado del Sinú a partir de la variabilidad espacial de las poblaciones de foraminíferos bentónicos (FB) con relación a los escapes y la actividad de filtración de fluidos. La variabilidad espacial de las filtraciones se identificó en 4 zonas de actividad, a partir de la dominancia de las asociaciones de las especies dominantes y las variables obtenidas a partir de los FB en conjunto con análisis clusters y PCA. La asociación de Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum y C. poeyanum, representa la zona de actividad baja; la asociación de L. ungeriana, C. mundulus, C. pseudoungerianus la de filtración moderada; la asociación de L. soldanii, B. irregularis y B. cf aspratilis la de filtración moderada-alta; mientras que la zona de alta filtración se identifica con C. mundulus y otras especies hialinas. Además, las adaptaciones fisiológicas como la simbiosis, el tipo de sustrato, y el trasporte del metano resultan repercutir sobre las abundancias de estas especies en las distintas zonas de filtración, indicando el favorecimiento de mayores abundancias de FB en zonas de actividad moderada. Finalmente, la relación de los FB con el metano y otras variables ambientales se identificó a partir de un análisis de redundancia (RDA) en donde las poblaciones de FB estudiadas responden principalmente al tipo de sustrato, la salinidad y las filtraciones de metano. (Texto tomado de la fuente)spa
dc.description.abstractBenthic foraminifera have proven to be local tools for understanding the dynamics of methane seepage worldwide. This study characterizes the filtration level of 18 stations within a filtration field between the continental shelf and the slope of the Sinú fold belt based on the spatial variability of benthic foraminifera (BF) populations in relation to filtrations and fluid migration activity.The spatial variability of the leaks was identified in 4 activity zones, based on the dominance of the assemblages of the dominant species and the variables obtained from BF in conjunction with cluster analysis and PCA. The assemblage of Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum and C. poeyanum, represents the zone of low activity; the assemblage of L. ungeriana, C. mundulus, C. pseudoungerianus that of moderate filtration; the assemblage of L. soldanii, B. irregularis and B. cf aspratilis with moderate-high filtration; while the high filtration zone is identified with C. mundulus and other hyaline species. Furthermore, physiological adaptations such as symbiosis, type of substrate, and methane transport turn out to have an impact on the abundances of these species in the different filtration zones, indicating the favoring of greater abundances of BF in zones of moderate activity. Finally, the relationship of BF with methane and other environmental variables was identified from a redundancy analysis (RDA) where the BF populations studied respond mainly to the type of substrate, salinity and methane seepage.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.format.extent112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86296
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAlfaro, E., & Holz, M. (2014). Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin. Marine and Petroleum Geology, 57, 294–311. https://doi.org/10.1016/j.marpetgeo.2014.06.002spa
dc.relation.referencesAmato, F. L. (1970). Petroleum Developments in South America, Central America, Mexico, and Caribbean Area in 1976. Am. Assoc. Pet. Geol. Bull.; (United States), 62:10.spa
dc.relation.referencesAmiel, N., Shaar, R., & Sivan, O. (2020). The Effect of Early Diagenesis in Methanic Sediments on Sedimentary Magnetic Properties: Case Study From the SE Mediterranean Continental Shelf. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00283spa
dc.relation.referencesAndrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191–26201. https://doi.org/10.1029/2000JC000300spa
dc.relation.referencesAristizábal, C. O., Ferrari, A. L., & Cléverson, S. G. (2009). CONTROL NEOTECTÓNICO DEL DIAPIRISMO DE LODO EN LA REGIÓN DE CARTAGENA, COLOMBIA (Neotectonic control of mud diapirism in the Cartagena region, Colombia) (Vol. 8, Issue 1).spa
dc.relation.referencesBadesab, F., Dewangan, P., & Gaikwad, V. (2020). Magnetic Mineral Diagenesis in a Newly Discovered Active Cold Seep Site in the Bay of Bengal. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.592557spa
dc.relation.referencesBarreto, M., Barrera, R., Benavides, J., Cardozo, E., Hernández, H., Marín, L., Posada, B., Salvatierra, C., Sierra, P., & Villa, A. (1999). Diagnóstico Ambiental del Golfo de Morrosquillo (Punta Rada-Tolú). In Applied Geomorphological Surveys (Vol. 23).spa
dc.relation.referencesBarry, J. P., Gary Greene, H., Orange, D. L., Baxter, C. H., Robison, B. H., Kochevar, R. E., Nybakken, J. W., R, D. L., & McHugh, C. M. (1996). Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Research Part I: Oceanographic Research Papers, 43(11–12), 1739–1762. https://doi.org/10.1016/S0967-0637(96)00075-1spa
dc.relation.referencesBasso, D., Beccari, V., Almogi-Labin, A., Hyams-Kaphzan, O., Weissman, A., Makovsky, Y., Rüggeberg, A., & Spezzaferri, S. (2020). Macro- and microfauna from cold seeps in the Palmahim Disturbance (Israeli off-shore), with description of Waisiuconcha corsellii n.sp. (Bivalvia, Vesicomyidae). Deep-Sea Research Part II: Topical Studies in Oceanography, 171(January), 1–14. https://doi.org/10.1016/j.dsr2.2019.104723spa
dc.relation.referencesBastidas, C., & Ordóñez, A. (2017). Región 7: golfo de Morrosquillo. In Regionalización oceanográfica: una visión dinámica del Caribe (pp. 126–139). INVEMAR.spa
dc.relation.referencesBernal, G., Agudelo, A. C., López, S. M., & Domínguez, J. G. (2005). Textura, Composición y Foraminíferos Bentónicos de los Sedimentos Superficiales en los Bancos de Salmedina, Caribe Colombiano. Boletín Científico CCCP, 12(12), 95–112. https://doi.org/10.26640/01213423.12.95_112spa
dc.relation.referencesBernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). PATRONES DE VARIABILIDAD DE LAS TEMPERATURAS SUPERFICIALES DEL MAR EN LA COSTA CARIBE COLOMBIANA. Ciencias de La Tierra, XXX(115), 196–208spa
dc.relation.referencesBernal, G., Ruiz Ochoa, M., Piedrahita, M., & Restrepo, E. (2008). Foraminíferos En Los Sedimentos Superficiales Del Sistema Lagunar De Cispatá Y La Interacción Río Sinú-Mar Caribe Colombiano. Boletín de Ciencias de La Tierra, 0(23), 5–20.spa
dc.relation.referencesBernhard, J. M., & Bowser, S. S. (1999). Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Science Reviews, 46, 149–165. www.elsevier.comrlocaterecorscirevspa
dc.relation.referencesBernhard, J. M., Buck, K. R., & Barry, J. P. (2001). Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera. Deep Sea Research Part I: Oceanographic Research Papers, 48(10), 2233–2249. https://doi.org/10.1016/S0967-0637(01)00017-6spa
dc.relation.referencesBernhard, J. M., Martin, J. B., & Rathburn, A. E. (2010). Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: 2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps. Paleoceanography, 25(4). https://doi.org/10.1029/2010PA001930spa
dc.relation.referencesBernhard, J. M., Ostermann, D. R., Williams, D. S., & Blanks, J. K. (2006). Comparison of two methods to identify live benthic foraminifera: A test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography, 21(4). https://doi.org/10.1029/2006PA001290spa
dc.relation.referencesBhattarai, S., Cassarini, C., & Lens, P. N. L. (2019). Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiology and Molecular Biology Reviews, 83(3). https://doi.org/10.1128/MMBR.00074-18spa
dc.relation.referencesBhaumik, K. A., & Gupta, A. (2005). Deep-sea benthic foraminifera from gas hydrate-rich zone, Blake Ridge, Northwest Atlantic (ODP Hole 997A). 1–6. https://www.researchgate.net/publication/299301008spa
dc.relation.referencesButtitta, D., Caracausi, A., Chiaraluce, L., Favara, R., Gasparo Morticelli, M., & Sulli, A. (2020). Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-55678-7spa
dc.relation.referencesCai, W.-J., Chen, F., Powell, E. N., Walker, S. E., Parsons-Hubbard, K. M., Staff, G. M., Wang, Y., Ashton-Alcox, K. A., Callender, W. R., & Brett, C. E. (2006). Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico. Earth and Planetary Science Letters, 248(1–2), 227–243. https://doi.org/10.1016/j.epsl.2006.05.020spa
dc.relation.referencesCampbell, K. A. (2006). Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 362–407. https://doi.org/10.1016/j.palaeo.2005.06.018spa
dc.relation.referencesCanfield, D. E. (1989). Reactive iron in marine sediments. Geochimica El Cosmochimica, 53, 619–632.spa
dc.relation.referencesCanfield, D. E., & Berner, R. A. (1987). Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica El Cosmochimica, 51, 645–659.spa
dc.relation.referencesCarson, B., Kastner, M., Bartlett, D., Jaeger, J., Jannasch, H., & Weinstein, Y. (2003). Implications of carbon flux from the Cascadia accretionary prism: results from long-term, in situ measurements at ODP Site 892B. Marine Geology, 198(1–2), 159–180. https://doi.org/10.1016/S0025-3227(03)00099-9spa
dc.relation.referencesCarvajal, J. H. (2016). Mud Diapirism in the Central Colombian Caribbean Coastal Zone. In World Geomorphological Landscapes (pp. 35–53). Springer. https://doi.org/10.1007/978-3-319-11800-0_3spa
dc.relation.referencesCarvajal, J. H., Mendivelso, Domingo., Forero, H., Castiblanco, C. R., Pinzón, L. M., & Prada, Miguel. (2010). Investigación del diapirismo de lodo y evolución costera del Caribe colombiano. Geomorfología Sector I. Instituto Colombiano de Geología y Minería Ingeominas, 1–234. http://recordcenter.sgc.gov.co/B12/23008002524448/documento/pdf/2105244481101000.pdfspa
dc.relation.referencesCarvajal-Arenas, L. C., Torrado, L., Mann, P., & English, J. (2020). Basin modeling of Late Cretaceous / Mio-Pliocene (.) petroleum system of the deep-water eastern Colombian Basin and South Caribbean Deformed Belt. Marine and Petroleum Geology, 121, 104511. https://doi.org/10.1016/j.marpetgeo.2020.104511spa
dc.relation.referencesConrad, R. (1989). Control of Methane Production in Terrestrial Ecosystems.spa
dc.relation.referencesCosel, R. Von, & Olu, K. (2009). Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. Deep Sea Research Part II: Topical Studies in Oceanography, 56(23), 2350–2379. https://doi.org/10.1016/j.dsr2.2009.04.016spa
dc.relation.referencesDantas, R. C., Hassan, M. B., Cruz, F. W., & Jovane, L. (2022). Evidence for methane seepage in South Atlantic from the occurrence of authigenic gypsum and framboidal pyrite in deep-sea sediments. Marine and Petroleum Geology, 142, 105727. https://doi.org/10.1016/j.marpetgeo.2022.105727spa
dc.relation.referencesDebenay, J.-P. (2013). A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM.spa
dc.relation.referencesDessandier, P. A., Borrelli, C., Kalenitchenko, D., & Panieri, G. (2019). Benthic Foraminifera in Arctic Methane Hydrate Bearing Sediments. Frontiers in Marine Science, 6(December), 1–16. https://doi.org/10.3389/fmars.2019.00765spa
dc.relation.referencesDetlef, H., Sosdian, S. M., Kender, S., Lear, C. H., & Hall, I. R. (2020). Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343). Geochimica et Cosmochimica Acta, 268, 1–21. https://doi.org/10.1016/j.gca.2019.09.025spa
dc.relation.referencesDeville, É. (2009). Mud Volcano Systems. In Volcanoes: Formation, Eruptions and Modelling: Vol. Chapter 5 (pp. 95–126). Nova Science Publishers.spa
dc.relation.referencesDi Luccio, D., Banda Guerra, I. M., Correa Valero, L. E., Morales Giraldo, D. F., Maggi, S., & Palmisano, M. (2021). Physical and geochemical characteristics of land mud volcanoes along Colombia’s Caribbean coast and their societal impacts. Science of The Total Environment, 759, 144225. https://doi.org/10.1016/j.scitotenv.2020.144225spa
dc.relation.referencesDimiza, M. D., Triantaphyllou, M. V., Portela, M., Koukousioura, O., & Karageorgis, A. P. (2022). Response of Living Benthic Foraminifera to Anthropogenic Pollution and Metal Concentrations in Saronikos Gulf (Greece, Eastern Mediterranean). Minerals, 12(5). https://doi.org/10.3390/min12050591spa
dc.relation.referencesDueñas, L. F., Puentes, V., León, J., & Herrera, S. (2021). Fauna associated with cold seeps in the deep Colombian Caribbean. Deep-Sea Research Part I: Oceanographic Research Papers, 173(November 2020). https://doi.org/10.1016/j.dsr.2021.103552spa
dc.relation.referencesElvert, M., Suess, E., & Whiticar, M. J. (1999). Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C 20 and C 25 irregular isoprenoids. In Naturwissenschaften (Vol. 86). Springer-Verlag.spa
dc.relation.referencesEnfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño‐Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296spa
dc.relation.referencesFatela, F., & Taborda, R. (2002). Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology, 45(2), 169–174. https://doi.org/10.1016/S0377-8398(02)00021-Xspa
dc.relation.referencesFeng, D., Chen, D., & Roberts, H. H. (2009). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine and Petroleum Geology, 26(7), 1190–1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001spa
dc.relation.referencesFentimen, R., Rüggeberg, A., Lim, A., Kateb, A. El, Foubert, A., Wheeler, A. J., & Spezzaferri, S. (2018). Benthic foraminifera in a deep-sea high-energy environment: the Moira Mounds (Porcupine Seabight, SW of Ireland). Swiss Journal of Geosciences, 111(3), 561–572. https://doi.org/10.1007/s00015-018-0317-4spa
dc.relation.referencesFlinch, J. (2003). Structural Evolution of the Sinu-Lower Magdalena Area (Northern Colombia). AAPG Bulletin, 1–22. https://www.researchgate.net/publication/275211246spa
dc.relation.referencesFontanier, C., Jorissen, F. J., Chaillou, G., Anschutz, P., Grémare, A., & Griveaud, C. (2005). Live foraminiferal faunas from a 2800m deep lower canyon station from the Bay of Biscay: Faunal response to focusing of refractory organic matter. Deep Sea Research Part I: Oceanographic Research Papers, 52(7), 1189–1227. https://doi.org/10.1016/j.dsr.2005.01.006spa
dc.relation.referencesFontanier, C., Mamo, B., Mille, D., Duros, P., & Herlory, O. (2020). Deep-sea benthic foraminifera at a bauxite industrial waste site in the Cassidaigne Canyon (NW Mediterranean): Ten months after the cessation of red mud dumping. Comptes Rendus. Géoscience, 352(1), 87–101. https://doi.org/10.5802/crgeos.5spa
dc.relation.referencesGamberi, F., & Rovere, M. (2010). Mud diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian sea). Basin Research, 22(4), 452–464. https://doi.org/10.1111/j.1365-2117.2010.00473.xspa
dc.relation.referencesGay, A., Lopez, M., Berndt, C., & Séranne, M. (2007). Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, 244(1–4), 68–92. https://doi.org/10.1016/j.margeo.2007.06.003spa
dc.relation.referencesGay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., & Brigaud, F. (2003). Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo basin, West African margin. Geological Society, London, Special Publications, 216(1), 173–189. https://doi.org/10.1144/GSL.SP.2003.216.01.12spa
dc.relation.referencesGieskes, J., Rathburn, A. E., Martin, J. B., Pérez, M. E., Mahn, C., Bernhard, J. M., & Day, S. (2011). Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite. Applied Geochemistry, 26(5), 738–746. https://doi.org/10.1016/j.apgeochem.2011.01.032spa
dc.relation.referencesGlock, N. (2023). Benthic foraminifera and gromiids from oxygen-depleted environments – survival strategies, biogeochemistry and trophic interactions. Biogeosciences, 20(16), 3423–3447. https://doi.org/10.5194/bg-20-3423-2023spa
dc.relation.referencesGómez, E., & Bernal, G. (2013). Influence of the environmental characteristics of mangrove forests on recent benthic foraminifera in the Gulf of Urabá, Colombian Caribbean. Ciencias Marinas, 39(1), 69–82. https://doi.org/10.7773/cm.v39i1.2175spa
dc.relation.referencesGonzalez-Penagos, F., Milkov, A., Lopez, E., & Duarte, L. (2019, June 19). Microbial and Thermogenic Petroleum Systems in the Colombian offshore Caribbean — New Geochemical Insights in an Emerging Basin. 2019 AAPG Annual Convention and Exhibition.spa
dc.relation.referencesGooday, A. J. (2003). Benthic foraminifera (protista) as tools in deep-water paleoceanography: Environmental influences on faunal characteristics. In Advances in Marine Biology (Vol. 46, pp. 1–90). https://doi.org/10.1016/S0065-2881(03)46002-1spa
dc.relation.referencesGooday, A. J., Kamenskaya, O. E., & Soltwedel, T. (2013). Basal foraminifera and gromiids (Protista) at the Håkon-Mosby Mud Volcano (Barents Sea slope). Marine Biodiversity, 43(3), 205–225. https://doi.org/10.1007/s12526-013-0148-5spa
dc.relation.referencesGooday, A. J., Nomaki, H., & Kitazato, H. (2008). Modern deep-sea benthic foraminifera: A brief review of their morphology-based biodiversity and trophic diversity. Geological Society Special Publication, 303, 97–119. https://doi.org/10.1144/SP303.8spa
dc.relation.referencesGracia, A., Rangel-Buitrago, N., & Sellanes, J. (2012). Methane seep molluscs from the Sinú-San Jacinto fold belt in the Caribbean Sea of Colombia. Journal of the Marine Biological Association of the United Kingdom, 92(6), 1367–1377. https://doi.org/10.1017/S0025315411001421spa
dc.relation.referencesHammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.spa
dc.relation.referencesHerguera, J. C., Paull, C. K., Perez, E., Ussler, W., & Peltzer, E. (2014). Limits to the sensitivity of living benthic foraminifera to pore water carbon isotope anomalies in methane vent environments. Paleoceanography, 29(3), 273–289. https://doi.org/10.1002/2013PA002457spa
dc.relation.referencesHernández-Hamón, H., Ramírez, P. Z., Zaraza, M., & Micallef, A. (2023). Google Earth Engine app using Sentinel 1 SAR and deep learning for ocean seep methane detection and monitoring. Remote Sensing Applications: Society and Environment, 32, 101036. https://doi.org/10.1016/j.rsase.2023.101036spa
dc.relation.referencesHerrera, C., & Diaz, C. (2018). Evaluación geológica, geotécnica y ambiental de los fenómenos de volcanismo de lodos en la Costa Caribe Colombiana volcano in the Colombian Caribbean Coast. Universitaria, Fundación Comfenalco, Tecnológico, 23(01), 104–111.spa
dc.relation.referencesHill, T. M., Kennett, J. P., & Spero, H. J. (2003). Foraminifera as indicators of methane-rich environments: A study of modern methane seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1–2), 123–138. https://doi.org/10.1016/S0377-8398(03)00032-Xspa
dc.relation.referencesHill, T. M., Kennett, J. P., & Valentine, D. L. (2004). Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochimica et Cosmochimica Acta, 68(22), 4619–4627. https://doi.org/10.1016/j.gca.2004.07.012spa
dc.relation.referencesHinrichs, K.-U., Hayes, J. M., Sylva, S. P., Brewer, P. G., & Delong, E. F. (1999). Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805.spa
dc.relation.referencesHorikoshi, M., & Tang, Y. (2016). ggfortify: Data Visualization Tools for Statistical Analysis Results.spa
dc.relation.referencesHoughton, J. L., Foustoukos, D. I., Flynn, T. M., Vetriani, C., Bradley, A. S., & Fike, D. A. (2016). Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry. Environmental Microbiology, 18(9), 3057–3072. https://doi.org/10.1111/1462-2920.13232spa
dc.relation.referencesIdárraga, J. (2017). GEODYNAMIC MODEL OF THE SUBDUCTION SYSTEMS BENEATH COLOMBIA FROM SEISMIC ANISOTROPY MEASUREMENTS AND ITS LINK TO THE REGIONAL MORPHO-TECTONIC CONTEXT OF THE CARIBBEAN AND PACIFIC CONTINENTAL MARGINS [Universidad Nacional de Colombia]. https://doi.org/10.13140/RG.2.2.31326.84801spa
dc.relation.referencesJones, R. Wynn., Brady, H. B., & Natural History Museum (London, E. (1994). The Challenger foraminifera. Oxford University Press.spa
dc.relation.referencesJørgensen, B. B. (2000). Bacteria and Marine Biogeochemistry. In Marine Geochemistry (pp. 173–207). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_5spa
dc.relation.referencesJørgensen, B. B., Beulig, F., Egger, M., Petro, C., Scholze, C., & Røy, H. (2019). Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments. Geochimica et Cosmochimica Acta, 254, 231–245. https://doi.org/10.1016/j.gca.2019.03.016spa
dc.relation.referencesJorissen, F. J. (1988). BENTHIC FORAMINIFERA FROM THE ADRIATIC SEA; PRINCIPLES OF PHENOTYPIC VARIATION. 1–174.spa
dc.relation.referencesJorissen, F. J., de Stigter, H. C., & Widmark, J. G. V. (1995). A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26(1–4), 3–15. https://doi.org/10.1016/0377-8398(95)00047-Xspa
dc.relation.referencesJorissen, F. J., Fontanier, C., & Thomas, E. (2007). Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics. In Developments in Marine Geology (Vol. 1, pp. 263–325). https://doi.org/10.1016/S1572-5480(07)01012-3spa
dc.relation.referencesJudd, A., & Hovland, M. (2007). Seabed fluid flow: the impact on geology, biology, and the marine environment. In Choice Reviews Online (Vol. 45, Issue 01). https://doi.org/10.5860/choice.45-0294spa
dc.relation.referencesKaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22(8), 719. https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2spa
dc.relation.referencesKaiho, K. (1999). Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine Micropaleontology, 37(1), 67–76. https://doi.org/10.1016/S0377-8398(99)00008-0spa
dc.relation.referencesKatz, B., & Williams, K. (2003). Biogenic Gas Potential Offshore Guajira Peninsula, Colombia.spa
dc.relation.referencesKay, M. (2023). ggdist: Visualizations of Distributions and Uncertainty (R package version 3.3.0). https://doi.org/10.5281/zenodo.3879620spa
dc.relation.referencesKelley, D., ’Richards, C., & WG127 SCOR/IAPSO. (2022). gsw: Gibbs Sea Water Functions (1.1-1).spa
dc.relation.referencesKelley, D., & ’Richards, C. (2023). oce: Analysis of Oceanographic Data (1.8-0).spa
dc.relation.referencesKellog, J., Toto, E., & Ceron, J. (2005). STRUCTURE AND TECTONICS OF THE SINU-SAN JACINTO ACCRETIONARY PRISM IN NORTHERN COLOMBIA.spa
dc.relation.referencesKiel, S., & Peckmann, J. (2019). Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis. PLoS ONE, 14(9). https://doi.org/10.1371/journal.pone.0221887spa
dc.relation.referencesKurniasih, A., Hari Nugroho, S., & Setyawan, R. (2017). Marine ecology conditions at Weda Bay, North Maluku based on statistical analysis on distribution of recent foraminifera. MATEC Web of Conferences, 101, 04014. https://doi.org/10.1051/matecconf/201710104014spa
dc.relation.referencesKnittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63(1), 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130spa
dc.relation.referencesKopf, A. J. (2002). SIGNIFICANCE OF MUD VOLCANISM. Reviews of Geophysics, 40(2), 2-1-2–52. https://doi.org/10.1029/2000RG000093spa
dc.relation.referencesKranner, M., Harzhauser, M., Beer, C., Auer, G., & Piller, W. E. (2022). Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index. Scientific Reports, 12(1), 1376. https://doi.org/10.1038/s41598-022-05295-8spa
dc.relation.referencesLanglet, D., Bouchet, V. M. P., Riso, R., Matsui, Y., Suga, H., Fujiwara, Y., & Nomaki, H. (2020). Foraminiferal Ecology and Role in Nitrogen Benthic Cycle in the Hypoxic Southeastern Bering Sea. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.582818spa
dc.relation.referencesLee, J. J., Morales, J., Symons, A., & Hallock, P. (1995). Diatom symbionts in larger foraminifera from M Caribbean hosts. In Marine Micropaleontology (Vol. 26).spa
dc.relation.referencesLeprich, D. J., Flood, B. E., Schroedl, P. R., Ricci, E., Marlow, J. J., Girguis, P. R., & Bailey, J. V. (2021). Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. The ISME Journal, 15(7), 2043–2056. https://doi.org/10.1038/s41396-021-00903-3spa
dc.relation.referencesLi, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., Wang, H., & Chen, D. (2021). Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews, 136(February), 104247. https://doi.org/10.1016/j.oregeorev.2021.104247spa
dc.relation.referencesLinke, P., & Lutze, G. F. (1993). Microhabitat preferences of benthic foraminifera a static concept or a dynamic adaptation to optimize food acquisition? In Marine Micropaleontology (Vol. 20).spa
dc.relation.referencesLintner, M., Wildner, M., Lintner, B., Wanek, W., & Heinz, P. (2023). Spectroscopic analysis of sequestered chloroplasts in Elphidium williamsoni (Foraminifera). Journal of Photochemistry and Photobiology B: Biology, 238. https://doi.org/10.1016/j.jphotobiol.2022.112623spa
dc.relation.referencesLopez Ramos, E., Penagos, F. G., Martinez, D. A. R., & Gomez, N. R. M. (2022). DETACHMENT LEVELS OF COLOMBIAN CARIBBEAN MUD VOLCANOES. CTyF - Ciencia, Tecnologia y Futuro, 12(2), 49–77. https://doi.org/10.29047/01225383.401spa
dc.relation.referencesLorenson, T. D., Kvenvolden, K. A., Hostettler, F. D., Rosenbauer, R. J., Orange, D. L., & Martin, J. B. (2002). Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary. Marine Geology, 181(1–3), 285–304. https://doi.org/10.1016/S0025-3227(01)00272-9spa
dc.relation.referencesLovlie, R., Lowrie, W., & Jacobs, M. (n.d.). MAGNETIC PROPERTIES AND MINERALOGY OF FOUR DEEP-SEA CORES*.spa
dc.relation.referencesLu, Y., Yang, H., Huang, B., Liu, Y., & Lu, H. (2023). Foraminifera associated with cold seeps in marine sediments. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1157879spa
dc.relation.referencesMachain-Castillo, M. L., Ruiz-Fernández, A. C., Gracia, A., Sanchez-Cabeza, J. A., Rodríguez-Ramírez, A., Alexander-Valdés, H. M., Pérez-Bernal, L. H., Nava-Fernández, X. A., Gómez-Lizárraga, L. E., Almaraz-Ruiz, L., Schwing, P. T., & Hollander, D. J. (2019). Natural and anthropogenic oil impacts on benthic foraminifera in the southern Gulf of Mexico. Marine Environmental Research, 149(November 2018), 111–125. https://doi.org/10.1016/j.marenvres.2019.06.006spa
dc.relation.referencesMagurran, A. E. (1988). Ecological Diversity and Its Measurement. Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0spa
dc.relation.referencesMartin, J. B., Day, S. A., Rathburn, A. E., Perez, M. E., Mahn, C., & Gieskes, J. (2004). Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 5(4), n/a-n/a. https://doi.org/10.1029/2003GC000629spa
dc.relation.referencesMartin, R. A., Nesbitt, E. A., & Campbell, K. A. (2010). The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology, 272(1–4), 270–284. https://doi.org/10.1016/j.margeo.2009.03.024spa
dc.relation.referencesMcGann, M., & Conrad, J. E. (2018). Faunal and stable isotopic analyses of benthic foraminifera from the Southeast Seep on Kimki Ridge offshore southern California, USA. Deep-Sea Research Part II: Topical Studies in Oceanography, 150, 92–117. https://doi.org/10.1016/j.dsr2.2018.01.011spa
dc.relation.referencesMelaniuk, K., Sztybor, K., Treude, T., Sommer, S., & Rasmussen, T. L. (2022). Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N. Scientific Reports, 12(1), 1169. https://doi.org/10.1038/s41598-022-05175-1spa
dc.relation.referencesMilkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. 29–42. www.elsevier.nl/locate/margeospa
dc.relation.referencesMolina Márquez, A., Molina Márquez, C., Giraldo Ospina, L., Parra Llanos, C., & Chevillot, P. (1994). Dinámica marina y sus efectos sobre la geomorfología del Golfo de Morrosquillo. Boletín Científico CIOH, 15, 93–113. https://doi.org/10.26640/01200542.15.93_113spa
dc.relation.referencesMontoya-Sánchez, R. A., Devis-Morales, A., Bernal, G., & Poveda, G. (2018). Seasonal and interannual variability of the mixed layer heat budget in the Caribbean Sea. Journal of Marine Systems, 187, 111–127. https://doi.org/10.1016/j.jmarsys.2018.07.003spa
dc.relation.referencesMoodley, L., & Hess, C. (1992). This content downloaded from 188.64.177.143 on Tue. In Source: Biological Bulletin (Vol. 183, Issue 1).spa
dc.relation.referencesMora, J. A., Oncken, O., Le Breton, E., Ibánez‐Mejia, M., Faccenna, C., Veloza, G., Vélez, V., de Freitas, M., & Mesa, A. (2017). Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction. Tectonics, 36(11), 2599–2629. https://doi.org/10.1002/2017TC004612spa
dc.relation.referencesMurray, J. W. (2006). Ecology and applications of benthic foraminifera. www.cambridge.org/9780521828390spa
dc.relation.referencesNaehr, T. H., Eichhubl, P., Orphan, V. J., Hovland, M., Paull, C. K., Ussler, W., Lorenson, T. D., & Greene, H. G. (2007). Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11–13), 1268–1291. https://doi.org/10.1016/j.dsr2.2007.04.010spa
dc.relation.referencesNaehr, T., Rodriguez, N., Bohrmann, G., Paull, C., & Botz, R. (2000). METHANE-DERIVED AUTHIGENIC CARBONATES ASSOCIATED WITH GAS HYDRATE DECOMPOSITION AND FLUID VENTING ABOVE THE BLAKE RIDGE DIAPIR 1. In Scientific Results (Vol. 164).spa
dc.relation.referencesNi, S., Quintana Krupinski, N. B., Groeneveld, J., Persson, P., Somogyi, A., Brinkmann, I., Knudsen, K. L., Seidenkrantz, M. S., & Filipsson, H. L. (2020). Early diagenesis of foraminiferal calcite under anoxic conditions: A case study from the Landsort Deep, Baltic Sea (IODP Site M0063). Chemical Geology, 558. https://doi.org/10.1016/j.chemgeo.2020.119871spa
dc.relation.referencesNomaki, H., Chikaraishi, Y., Tsuchiya, M., Toyofuku, T., Ohkouchi, N., Uematsu, K., Tame, A., & Kitazato, H. (2014). Nitrate uptake by foraminifera and use in conjunction with endobionts under anoxic conditions. Limnology and Oceanography, 59(6), 1879–1888. https://doi.org/10.4319/lo.2014.59.6.1879spa
dc.relation.referencesOjeda, G., Restrepo-correa, I., & Correa, I. (2007). Morfología Y Arquitectura Interna De Una Plataforma Continental Cambiante: Golfo De Morrosquillo. Boletín de Geología, 29(2), 105–114.spa
dc.relation.referencesOksanen, J., Gavin, L., Simpson, L., Blanchet, G., & Kindt, R. (2022). vegan: Community Ecology Package (2.6-4).spa
dc.relation.referencesOsorio-Granada, A. M., Jigena-Antelo, B., Vidal-Perez, J., Zambianchi, E., Osorio-Granada, E. G., Torrecillas, C., Romero-Cozar, J., Leon-Rincón, H., Oviedo-Prada, K., & Muñoz-Perez, J. J. (2023). Acoustic Evidence of Shallow Gas Occurrences in the Offshore Sinú Fold Belt, Colombian Caribbean Sea. Journal of Marine Science and Engineering, 11(11), 2121. https://doi.org/10.3390/jmse11112121spa
dc.relation.referencesOtero, L. J., Ortiz-Royero, J. C., Ruiz-Merchan, J. K., Higgins, A. E., & Henriquez, S. A. (2016). Storms or cold fronts: ¿what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Natural Hazards and Earth System Sciences, 16(2), 391–401. https://doi.org/10.5194/nhess-16-391-2016spa
dc.relation.referencesPalmisano, M., Balassone, G., Maggi, S., Arenas, A. A., Banda Guerra, I. M., Correa Valero, L. E., Ippolito, F., Mondillo, N., Morales Giraldo, D. F., Mormone, A., Pellino, A., Putzolu, F., & Di Luccio, D. (2024). Geochemistry and mineralogy of muds and thermal waters from mud volcanoes in the NW Caribbean Coast of Colombia and their potential for pelotherapy. Catena, 235. https://doi.org/10.1016/j.catena.2023.107621spa
dc.relation.referencesPan, M., Wu, D., Yang, F., Sun, T., Wu, N., & Liu, L. (2018). Geochemical sedimentary evidence from core 973-2 for methane activity near the Jiulong Methane Reef in the northern South China Sea. Interpretation, 6(1), T163–T174. https://doi.org/10.1190/INT-2017-0001.1spa
dc.relation.referencesPanieri, G. (2006). Foraminiferal response to an active methane seep environment: A case study from the Adriatic Sea. Marine Micropaleontology, 61(1–3), 116–130. https://doi.org/10.1016/j.marmicro.2006.05.008spa
dc.relation.referencesPanieri, G., Aharon, P., Sen Gupta, B. K., Camerlenghi, A., Ferrer, F. P., & Cacho, I. (2014). Late Holocene foraminifera of blake ridge diapir: Assemblage variation and stable-isotope record in gas-hydrate bearing sediments. Marine Geology, 353, 99–107. https://doi.org/10.1016/j.margeo.2014.03.020spa
dc.relation.referencesPanieri, G., Bünz, S., Fornari, D. J., Escartin, J., Serov, P., Jansson, P., Torres, M. E., Johnson, J. E., Hong, W., Sauer, S., Garcia, R., & Gracias, N. (2017). An integrated view of the methane system in the pockmarks at Vestnesa Ridge, 79°N. Marine Geology, 390, 282–300. https://doi.org/10.1016/j.margeo.2017.06.006spa
dc.relation.referencesPanieri, G., Camerlenghi, A., Cacho, I., Cervera, C. S., Canals, M., Lafuerza, S., & Herrera, G. (2012). Tracing seafloor methane emissions with benthic foraminifera: Results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea). Marine Geology, 291–294, 97–112. https://doi.org/10.1016/j.margeo.2011.11.005spa
dc.relation.referencesPanieri, G., Camerlenghi, A., Conti, S., Pini, G. A., & Cacho, I. (2009). Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3–4), 271–282. https://doi.org/10.1016/j.palaeo.2009.10.006spa
dc.relation.referencesPanieri, G., & Sen Gupta, B. K. (2008). Benthic Foraminifera of the Blake Ridge hydrate mound, Western North Atlantic Ocean. Marine Micropaleontology, 66(2), 91–102. https://doi.org/10.1016/j.marmicro.2007.08.002spa
dc.relation.referencesParada Ruffinatti, C., Castillo Rodríguez, E., & Miranda Peña, M. C. (1985). Ecología, sistemática y distribución de Foraminíferos Bentónicos entre la desembocadura del río Sinú y Coveñas, Caribe Colombiano. Caldasia, 14(67), 299–327.spa
dc.relation.referencesPardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627spa
dc.relation.referencesParnell, J. (2002). Fluid Seeps at Continental Margins: towards an Integrated Plumbing System. Geofluids, 2(2), 57–61. https://doi.org/10.1046/j.1468-8123.2002.00035.xspa
dc.relation.referencesPierre, C. (2017). Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449, 158–164. https://doi.org/10.1016/j.chemgeo.2016.11.005spa
dc.relation.referencesPuerres, Lizeth Y., Barragán-Jacksson, Camila María, & Bernal, Gladys. (2022). Revisión de metodologías de foraminíferos relacionadas con filtraciones de hidrocarburos en el fondo del océano: implicaciones para el Caribe colombiano. Boletín de Ciencias de la Tierra, (51), 38-49. Publicación electrónica del 18 de febrero de 2023. https://doi.org/10.15446/rbct.101793spa
dc.relation.referencesQuintero, J. (2012). Interpretación sísmica de volcanes de lodo en la zona Occidental del Abanico del delta del Rio Magdalena, Caribe Colombiano. Universidad de EAFIT.spa
dc.relation.referencesR Core Team. (2023). A Language and Environment for Statistical Computing (4.3.0).spa
dc.relation.referencesRathburn, A. E., Levin, L. A., Held, Z., & Lohmann, K. C. (2000). Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology, 38(3–4), 247–266. https://doi.org/10.1016/S0377-8398(00)00005-0spa
dc.relation.referencesRathburn, A. E., Pérez, M. E., Martin, J. B., Day, S. A., Mahn, C., Gieskes, J., Ziebis, W., Williams, D., & Bahls, A. (2003). Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 4(12). https://doi.org/10.1029/2003GC000595spa
dc.relation.referencesRestrepo, J. D., & Kjerfve, B. (2000). Water Discharge and Sediment Load from the Western Slopes of the Colombian Andes with Focus on Rio San Juan. The Journal of Geology, 108(1), 17–33. https://doi.org/10.1086/314390spa
dc.relation.referencesRestrepo, J. D., & Kjerfve, B. (2004). The Pacific and Caribbean Rivers of Colombia: Water Discharge, Sediment Transport and Dissolved Loads. In Environmental Geochemistry in Tropical and Subtropical Environments (pp. 169–187). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07060-4_14spa
dc.relation.referencesRincón-Martínez, D., Ruge, S. M., & Silva Arias, A. (2022). Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore. Journal of South American Earth Sciences, 116. https://doi.org/10.1016/j.jsames.2022.103800spa
dc.relation.referencesRodríguez, I., Bulnes, M., Poblet, J., Masini, M., & Flinch, J. (2021). Structural style and evolution of the offshore portion of the Sinu Fold Belt (South Caribbean Deformed Belt) and adjacent part of the Colombian Basin. Marine and Petroleum Geology, 125, 104862. https://doi.org/10.1016/j.marpetgeo.2020.104862spa
dc.relation.referencesRossello, E. A., Osorio, J. A., & López-Isaza, S. (2022). The argilokinetic diapirism of the Colombian Caribbean Margin: a review of its sedimentary conditioning factors applied to hydrocarbon exploration. Boletin de Geologia, 44(1), 15–48. https://doi.org/10.18273/revbol.v44n1-2022001spa
dc.relation.referencesRovere, M., Gamberi, F., Mercorella, A., Rashed, H., Gallerani, A., Leidi, E., Marani, M., Funari, V., & Pini, G. A. (2014). Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea. Marine Geology, 347, 153–171. https://doi.org/10.1016/j.margeo.2013.11.013spa
dc.relation.referencesRueda, J. L., Díaz-del-Río, V., Sayago-Gil, M., López-González, N., Fernández-Salas, L. M., & Vázquez, J. T. (2012). Fluid Venting Through the Seabed in the Gulf of Cadiz (SE Atlantic Ocean, Western Iberian Peninsula). In Seafloor Geomorphology as Benthic Habitat (pp. 831–841). Elsevier. https://doi.org/10.1016/B978-0-12-385140-6.00061-Xspa
dc.relation.referencesSahling, H., Bohrmann, G., Spiess, V., Bialas, J., Breitzke, M., Ivanov, M., Kasten, S., Krastel, S., & Schneider, R. (2008). Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow. Marine Geology, 249(3–4), 206–225. https://doi.org/10.1016/j.margeo.2007.11.010spa
dc.relation.referencesSanta-Rosa, L. C. de C., Disaró, S. T., Totah, V., Watanabe, S., & Guimarães, A. T. B. (2021). Living Benthic Foraminifera from the Surface and Subsurface Sediment Layers Applied to the Environmental Characterization of the Brazilian Continental Slope (SW Atlantic). Water, 13(13), 1863. https://doi.org/10.3390/w13131863spa
dc.relation.referencesSchwing, P. T., O’Malley, B. J., Romero, I. C., Martínez-Colón, M., Hastings, D. W., Glabach, M. A., Hladky, E. M., Greco, A., & Hollander, D. J. (2017). Characterizing the variability of benthic foraminifera in the northeastern Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environmental Science and Pollution Research, 24(3), 2754–2769. https://doi.org/10.1007/s11356-016-7996-zspa
dc.relation.referencesSen Gupta, B. K. (1999). Foraminifera in marginal marine environments. In Modern Foraminifera (pp. 141–159). Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_9spa
dc.relation.referencesSivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., & Eckert, W. (2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56(4), 1536–1544. https://doi.org/10.4319/lo.2011.56.4.1536spa
dc.relation.referencesSlowikowski, K. (2023). ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2” (R package version 0.9.3).spa
dc.relation.referencesStuhr, M., Cameron, L. P., Blank-Landeshammer, B., Reymond, C. E., Doo, S. S., Westphal, H., Sickmann, A., & Ries, J. B. (2021). Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans, 2(2), 281–314. https://doi.org/10.3390/oceans2020017spa
dc.relation.referencesTakata, H., Cho, J. H., Kang, J., Asahi, H., Lim, H. S., Park, Y.-H., & Hyun, S. (2022). Biotic responses of deep-sea benthic foraminifera in the equatorial Indian Ocean during the Quaternary: Influence of the ballasting effect on organic matter by calcareous plankton skeletons. Palaeogeography, Palaeoclimatology, Palaeoecology, 585(January 2021), 110724. https://doi.org/10.1016/j.palaeo.2021.110724spa
dc.relation.referencesTalukder, A. R. (2012). Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova, 24(4), 255–272. https://doi.org/10.1111/j.1365-3121.2012.01066.xspa
dc.relation.referencesTarazona, D. M., Prieto, J. A., Murphy, W., & Vesga, J. N. (2021). Identification of submarine landslides in the Colombian Caribbean Margin (Southern Sinú Fold Belt) using seismic investigations. The Leading Edge, 40(12), 914–922. https://doi.org/10.1190/tle40120914.1spa
dc.relation.referencesTheodor, M., Schmiedl, G., & Mackensen, A. (2016). Stable isotope composition of deep-sea benthic foraminifera under contrasting trophic conditions in the western Mediterranean Sea. Marine Micropaleontology, 124, 16–28. https://doi.org/10.1016/j.marmicro.2016.02.001spa
dc.relation.referencesThomas, E. (2003). Extinction and food at the seafloor: A high-resolution benthic foraminiferal record across the Initial Eocene Thermal Maximum, Southern Ocean Site 690. Special Paper of the Geological Society of America, 369, 319–332. https://doi.org/10.1130/0-8137-2369-8.319spa
dc.relation.referencesTinivella, U., & Giustiniani, M. (2012). An Overview of Mud Volcanoes Associated to Gas Hydrate System. In Updates in Volcanology - New Advances in Understanding Volcanic Systems. InTech. https://doi.org/10.5772/51270spa
dc.relation.referencesTorres, M. E., Martin, R. A., Klinkhammer, G. P., & Nesbitt, E. A. (2010). Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates. Earth and Planetary Science Letters, 299(1–2), 10–22. https://doi.org/10.1016/j.epsl.2010.07.048spa
dc.relation.referencesTorres, M. E., Mix, A. C., Kinports, K., Haley, B., Klinkhammer, G. P., McManus, J., & de Angelis, M. A. (2003). Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography, 18(3), 1–13. https://doi.org/10.1029/2002pa000824spa
dc.relation.referencesToto, A. E. L., & Kellogg, J. N. (1992). Structure of the Sinu-San Jacinto fold belt-An active accretionary prism in northern Colombia. In Journal of South American Earth Sciences (Vol. 5, Issue 2).spa
dc.relation.referencesTrejos-Tamayo, R., Vallejo, F., Arias, V., García, C., Pardo-Trujillo, A., Bedoya, E., & Flores, J. A. (2020). Biostratigraphy of ejected material from mud volcanoes in the Caribbean region of Colombia: Contribution to the stratigraphy of Sinú Basin. Journal of South American Earth Sciences, 103. https://doi.org/10.1016/j.jsames.2020.102782spa
dc.relation.referencesValentine, D. L. (2002). Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. In Antonie van Leeuwenhoek (Vol. 81). https://doi.org/10.1023/A:1020587206351spa
dc.relation.referencesValentine, D. L., & Reeburgh, W. S. (2000). New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2(5), 477–484. https://doi.org/10.1046/j.1462-2920.2000.00135.xspa
dc.relation.referencesVan Dover, C. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press.spa
dc.relation.referencesVernette, G., Mauffret, A., Bobier, C., Briceno, L., & Gayet, J. (1992). Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian Margin. Tectonophysics, 202(2–4), 335–349. https://doi.org/10.1016/0040-1951(92)90118-Pspa
dc.relation.referencesVillareal, H., Álvarez, M., Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M., & Umaña, A. M. (2004). MANUAL DE MÉTODOS PARA EL DESARROLLO DE INVENTARIOS DE BIODIVERSIDAD (C. M. Villa, Ed.). Instituto de investigación de Recursos Biológicos Alexander von Humboldt. www.humboldt.org.cospa
dc.relation.referencesVinnels, J. S., Butler, R. W. H., McCaffrey, W. D., & Paton, D. A. (2010). Depositional processes across the Sinú Accretionary Prism, offshore Colombia. Marine and Petroleum Geology, 27(4), 794–809. https://doi.org/10.1016/j.marpetgeo.2009.12.008spa
dc.relation.referencesWei, T., & Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix (0.92).spa
dc.relation.referencesWhiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. In Chemical Geology (Vol. 161). www.elsevier.comrlocaterchemgeospa
dc.relation.referencesWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.spa
dc.relation.referencesWilfert, P., Krause, S., Liebetrau, V., Schönfeld, J., Haeckel, M., Linke, P., & Treude, T. (2015). Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea. Marine and Petroleum Geology, 68, 731–742. https://doi.org/10.1016/j.marpetgeo.2015.07.012spa
dc.relation.referencesWollenburg, J. E., & Mackensen, A. (2009). The ecology and distribution of benthic foraminifera at the Håkon Mosby mud volcano (SW Barents Sea slope). Deep-Sea Research Part I: Oceanographic Research Papers, 56(8), 1336–1370. https://doi.org/10.1016/j.dsr.2009.02.004spa
dc.relation.referencesWoRMS Editorial Board. (2024, January 31). World Register of Marine Species.spa
dc.relation.referencesWurgaft, E., Findlay, A. J., Vigderovich, H., Herut, B., & Sivan, O. (2019). Sulfate reduction rates in the sediments of the Mediterranean continental shelf inferred from combined dissolved inorganic carbon and total alkalinity profiles. Marine Chemistry, 211, 64–74. https://doi.org/10.1016/j.marchem.2019.03.004spa
dc.relation.referencesYang, J., Lu, M., Yao, Z., Wang, M., Lu, S., Qi, N., & Xia, Y. (2021). A Geophysical Review of the Seabed Methane Seepage Features and Their Relationship with Gas Hydrate Systems. Geofluids, 2021. https://doi.org/10.1155/2021/9953026spa
dc.relation.referencesZhang, B., Pan, M., Wu, D., & Wu, N. (2018). Distribution and isotopic composition of foraminifera at cold-seep Site 973-4 in the Dongsha area, northeastern South China Sea. Journal of Asian Earth Sciences, 168(May), 145–154. https://doi.org/10.1016/j.jseaes.2018.05.007spa
dc.relation.referencesZhuang, C., Chen, F., Cheng, S. H., Lu, H. F., Wu, C., Cao, J., & Duan, X. (2016). Light carbon isotope events of foraminifera attributed to methane release from gas hydrates on the continental slope, northeastern South China Sea. Science China Earth Sciences, 59(10), 1981–1995. https://doi.org/10.1007/s11430-016-5323-7spa
dc.relation.referencesZyakun. (1992). Isotopes and their possible use as biomarkers of microbial products.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebradosspa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembContaminación ambiental
dc.subject.lembOceanografía
dc.subject.proposalForaminíferos bentónicosspa
dc.subject.proposalBenthic foraminiferaeng
dc.subject.proposalOffshore del cinturón plegado del Sinúspa
dc.subject.proposalOffshore of the Sinú folded belteng
dc.subject.proposalIntensidad de filtraciónspa
dc.subject.proposalFiltraciones fríasspa
dc.subject.proposalCold seepseng
dc.subject.proposalCaribe Surspa
dc.subject.proposalSouth Caribbeaneng
dc.subject.proposalZona de transición sulfato- metanospa
dc.subject.proposalSulfate and methane transition zoneeng
dc.subject.proposalFiltration intensityeng
dc.titleRespuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.spa
dc.title.translatedResponse and variability of benthic foraminifera to methane seepage and environmental variables in the offshore zone of the Sinú fold belt.
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleMethane Seep Hunting a multi-scale and multi-method approachspa
oaire.fundernameMincienciasspa
oaire.fundernameANHspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053859882.2024.pdf
Tamaño:
7.22 MB
Formato:
Adobe Portable Document Format
Descripción:
tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: