Influencia de la estructura en el comportamiento dinámico de suelos arcillosos

dc.contributor.advisorTapias Camacho, Mauricio Albertospa
dc.contributor.advisorColmenares Montañez, Julio Estebanspa
dc.contributor.authorWiest Zea, Hans Kurtspa
dc.contributor.researchgroupGeotechnical Engineering Knowledge and Innovation Genkispa
dc.date.accessioned2025-02-28T17:43:40Z
dc.date.available2025-02-28T17:43:40Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractEl presente trabajo tiene como objetivo principal el análisis de la influencia de la estructura en el comportamiento dinámico de suelos arcillosos estabilizados con cemento, identificando las variaciones en sus propiedades mecánicas y dinámicas. La investigación se centró en la generación de estructura inducida en el suelo mediante la mezcla de un suelo arcilloso (caolín) con cemento Portland, evaluando su respuesta bajo cargas estáticas y cíclicas. Para ello, se realizó una serie de ensayos de caracterización física, química, mecánica y dinámica. Los resultados demostraron que el proceso de cementación inducida generó una estructura a nivel microscópico en el suelo, incrementando significativamente el módulo de corte (G) y reduciendo la relación de amortiguamiento (D), a medida que el contenido de cemento fue mayor. Además, fue posible identificar cambios relevantes en: (1) la compresibilidad, por el aumento en el esfuerzo de cedencia (σ’vy) y en los índices de compresibilidad (Cc y Cr), y (2) en la resistencia al corte por el incremento en el intercepto de cohesión (c’) y el ángulo de resistencia al corte (ϕ’), lo cual corrobora la generación de estructura en el suelo. La investigación también permitió concluir que la degradación de la rigidez y los incrementos en la presión de poros, característicos del ablandamiento cíclico, afectan a los suelos arcillosos cementados bajo ciertas condiciones, y ocurren de forma simultánea con la rotura de enlaces entre las partículas generadas por la cementación. Sin embargo, se destacó el mejoramiento en las propiedades dinámicas del suelo arcilloso gracias a la estructura generada. Este trabajo contribuye al entendimiento del comportamiento dinámico de suelos estructurados artificialmente, proporcionando bases para su aplicación en la práctica de la ingeniería como en el diseño de cimentaciones y estructuras en suelos estabilizados, así como para la comparación con el comportamiento de suelos estructurados naturalmente (Texto tomado de la fuente).spa
dc.description.abstractThe main objective of this study is to analyze the influence of soil structure on the dynamic behavior of cement-stabilized clay soils by identifying variations in their mechanical and dynamic properties. The research focused on soil structure generation induced by mixing a clayey soil (kaolin) with Portland cement and evaluating its response under static and cyclic loads. A series of physical, chemical, mechanical, and dynamic characterization tests were conducted. The results demonstrated that the induced cementation process generated a microstructure in the soil, significantly increasing the shear modulus (G) and reducing the damping ratio (D) as the cement content increased. Additionally, the study identified significant changes in: (1) compressibility, with an increase in the yield stress (σ’vy) and compression indices (Cc and Cr), and (2) shear strength, with an increase in the cohesion intercept (c’) and the angle of internal friction (ϕ’), confirming the formation of structure within the soil. The study also concluded that the stiffness degradation and pore pressure buildup, characteristic of cyclic softening, affect cemented clay soils under specific conditions and occur simultaneously with the breakdown of interparticle bonding created by cementation. However, the improvement in the soil’s dynamic properties due to the generated structure was noteworthy. This work contributes to the understanding of the dynamic behavior of artificially structured soils, providing a foundation for their application in engineering practice, particularly in the design of foundations and structures on stabilized soils, and enabling comparisons with the behavior of naturally structured soils.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.methodsEl desarrollo de este trabajó se realizó siguiendo un enfoque metodológico cuantitativo experimental, cuya finalidad fue realizar un análisis del comportamiento mecánico y dinámico de un suelo arcilloso (caolín) con estructura inducida a partir de la adición de cemento y compactación. El trabajo se realizó por medio de la ejecución de diferentes ensayos de laboratorio, para evaluar las propiedades físicas, químicas, mecánicas y dinámicas del material objeto de estudio.spa
dc.description.researchareaRelaciones constitutivas de suelos, rocas y materiales afínesspa
dc.format.extentxxiv, 192 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87569
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAbdulhussein Saeed, K., Kassim, K. A., & Nur, H. (2014). Physicochemical characterization of cement treated kaolin clay. Građevinar, 66(6), 513-521. https://doi.org/10.14256/JCE.976.2013spa
dc.relation.referencesAshango, A. A., & Patra, N. R. (2013). Dynamic properties of stabilized subgrade clay soil. En Seventh International Conference on Case Histories in Geotechnical Engineering. Missouri University of Science and Technology. https://scholarsmine.mst.edu/icchge/7icchge/session_06/15spa
dc.relation.referencesASTM. (2011). Standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus (ASTM D3999-11). ASTM International. https://doi.org/10.1520/D3999-11spa
dc.relation.referencesASTM. (2019). Standard test method for strength properties of tissue papers (ASTM D8295-19). ASTM International. https://doi.org/10.1520/D8295-19spa
dc.relation.referencesASTM. (2021). Standard test methods for modulus and damping of soils by the resonant column method (ASTM D4015-21). ASTM International. https://doi.org/10.1520/D4015-21spa
dc.relation.referencesBahador, M., & Pak, A. (2011). Small-Strain shear modulus of cement-admixed kaolinite. Geotechnical and Geological Engineering, 30(1), 163-171. https://doi.org/10.1007/s10706-011-9458-1spa
dc.relation.referencesBasto Urbina, D. (2023). Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana. (Tesis de Maestría). Universidad Nacional de Colombia. Bogotá, Colombiaspa
dc.relation.referencesBorden, R. H., Shao, L., & Gupta, A. (1996). Dynamic properties of Piedmont residual soils. Journal of Geotechnical Engineering, 122(10), 813-821. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(813)spa
dc.relation.referencesBurland, J. B. (1990). On the compressibility and shear strength of natural clays. Géotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329spa
dc.relation.referencesBurland, J. B., Rampello, S., Georgiannou, V. N., & Calabresi, G. (1996). A laboratory study of the strength of four stiff clays. Géotechnique, 46(3), 491-514. https://doi.org/10.1680/geot.1996.46.3.491spa
dc.relation.referencesCafaro, F., & Cotecchia, F. (2001). Structure degradation and changes in the mechanical behaviour of a stiff clay due to weathering. Géotechnique, 51(5), 441-453. https://doi.org/10.1680/geot.2001.51.5.441spa
dc.relation.referencesCai, Y., & Liang, X. (2004). Dynamic properties of composite cemented clay. Journal of Zhejiang University SCIENCE, 5(3), 309-316. https://doi.org/10.1631/BF02841016spa
dc.relation.referencesChaves Agudelo, J. F. (2011). Generación de presión de poros en procesos cíclicos no drenados (Tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesChew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and engineering behavior of cement-treated clays. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 696-706. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)spa
dc.relation.referencesCruz, N., Rodrigues, C., & Viana da Fonseca, A. (2011). The influence of cementation in the critical state behaviour of artificial bonded soils. En Deformation Characteristics of Geomaterials (pp. 730-737). IOS Press. https://doi.org/10.3233/978-1-60750- 822-9-730spa
dc.relation.referencesDay, R. W. (2012). Geotechnical earthquake engineering handbook: With the 2012 International building code (2nd ed.). McGraw-Hillspa
dc.relation.referencesElia, G., & Rouainia, M. (2016). Investigating the cyclic behaviour of clays using a kinematic hardening soil model. Soil Dynamics and Earthquake Engineering, 88, 399-411. http://doi.org/10.1016/j.soildyn.2016.06.014spa
dc.relation.referencesEspinel Manrique, O. (2019). Efecto de la estructura sobre la contracción volumétrica de suelos sometidos a procesos de desecación. (Tesis de Maestría). Universidad Nacional de Colombiaspa
dc.relation.referencesFernández-Lavín, A., Chamorro-Zurita, C., & Ovando-Shelley, E. (2024). An Alternative Method to Analyze Waveforms from Bender Element Tests in Soft Clays. Geotechnical and Geological Engineering, 42(1), 43-60. https://doi.org/10.1007/s10706-023-02551-0spa
dc.relation.referencesGarcía Toro, J. R. (2019). Estudio de la técnica de suelo-cemento para la estabilización de vías terciarias en Colombia que posean un alto contenido de caolín (Tesis de pregrado). Universidad Católica de Colombia, Bogotá, Colombiaspa
dc.relation.referencesGhavami, S., & Rajabi, M. (2021). Investigating the influence of the combination of cement kiln dust and fly ash on compaction and strength characteristics of high-plasticity clays. Journal of Civil Engineering and Materials Application, 5(1), 9–16. https://doi.org/10.22034/JCEMA.2020.250727.1040spa
dc.relation.referencesGu, C., Wang, J., Cai, Y., Yang, Z., & Gao, Y. (2012). Undrained cyclic triaxial behavior of saturated clays under variable confining pressure. Soils and Foundations, 52(4), 615-627. https://doi.org/10.1016/j.soildyn.2012.03.011spa
dc.relation.referencesHardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: Measurement and parameter effects. Journal of the Soil Mechanics and Foundations Divisions, 98(7), 667–692spa
dc.relation.referencesHorpibulsuk, S., Miura, N., & Bergado, D. T. (2004). Undrained shear behavior of cement admixed clay at high water content.Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1096-1105. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1096)spa
dc.relation.referencesHorpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011-2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011spa
dc.relation.referencesHoyos, L. R., Puppala, A. J., & Chainuwat, P. (2004). Dynamic properties of chemically stabilized sulfate-rich clay. Journal of Geotechnical and Geoenvironmental Engineering, 130(2), 153–162. https://doi.org/10.1061/(ASCE)1090- 0241(2004)130:2(153)spa
dc.relation.referencesInstituto Nacional de Vías. (2013). Normas de ensayo de materiales para carreteras: Sección 100 - Suelos. Bogotá, Colombia: Instituto Nacional de Víasspa
dc.relation.referencesJha, A. K., & Sivapullaiah, P. V. (2015). Mechanism of improvement in the strength and volume change behavior of lime stabilized soil. Engineering Geology, 198, 53-64. https://doi.org/10.1016/j.enggeo.2015.08.020spa
dc.relation.referencesKramer, S. L. (1996). Geotechnical earthquake engineering. Prentice Hallspa
dc.relation.referencesKumar, A., & Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737-742. https://doi.org/10.1016/j.matpr.2019.10.037spa
dc.relation.referencesLade, P. V. (2016). Triaxial testing of soils. Wiley-Blackwellspa
dc.relation.referencesLang, L., Li, F., & Chen, B. (2020). Small-strain dynamic properties of silty clay stabilized by cement and fly ash. Construction and Building Materials, 237, 117646. https://doi.org/10.1016/j.conbuildmat.2019.117646spa
dc.relation.referencesLee, J. S., & Santamarina, J. C. (2005). Bender elements: performance and signal interpretation. Journal of geotechnical and geoenvironmental engineering, 131(9), 1063-1070. doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)spa
dc.relation.referencesLeong, E. C., Cahyadi, J., & Rahardjo, H. (2009). Measuring shear and compression wave velocities of soil using bender-extender elements. Canadian Geotechnical Journal, 46(7), 792-812. https://doi.org/10.1139/T09-026spa
dc.relation.referencesLiu, M. D., & Carter, J. P. (2000). Modelling the destructuring of soils during virgin compression. Géotechnique, 50(4), 479-483. https://doi.org/10.1680/geot.2000.50.4.479spa
dc.relation.referencesLorenzo, G. A., & Bergado, D. T. (2004). Fundamental parameters of cement-admixed clay: New approach. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1042-1050. https://doi.org/10.1061/(ASCE)1090- 0241(2004)130:10(1042)spa
dc.relation.referencesMakusa, G. P. (2013). Soil stabilization methods and materials: State of the art review. Luleå University of Technologyspa
dc.relation.referencesMendoza Serrano, C. E. (2004). Influencia de la succión en el módulo de corte a muy pequeñas deformaciones de suelos compactados (Tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombiaspa
dc.relation.referencesMitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior (3rd ed.). Wileyspa
dc.relation.referencesMonteagudo Viera, Silvia M. (2014). Estudio microestructural y de los procesos de hidratación de cementos con adiciones. Tesis (Doctoral), E.T.S.I. Caminos, Canales y Puertos (UPM). https://doi.org/10.20868/UPM.thesis.30409spa
dc.relation.referencesMurthy, R., Nazarian, S., & Picornell, M. (2008). Dynamic properties of naturally-cemented silts. In Geotechnical Earthquake Engineering and Soil Dynamics IV (pp. 1-8). American Society of Civil Engineers (ASCE). https://doi.org/10.1061/40975(318)55spa
dc.relation.referencesNorton, L. D. (1994). Micromorphology of silica cementation in soils. In A. J. Ringrose Voase & G. S. Humphreys (Eds.), Soil Micromorphology: Studies in Management and Genesis. Proceedings of the IX International Working Meeting on Soil Micromorphology, Townsville, Australia, July 1992 (pp. 811-824). Elsevierspa
dc.relation.referencesOrjuela Garzón, A. (2021). Influencia de la succión en la compresibilidad de suelos no saturados en trayectorias k0. (Tesis de Maestría). Universidad Nacional de Colombia, Bogotá, Colombiaspa
dc.relation.referencesPineda, J. A., Colmenares, J. E., & Hoyos, L. R. (2014). Effect of fabric and weathering intensity on dynamic properties of residual and saprolitic soils via resonant column testing. Geotechnical Testing Journal, 37(5), 800–816. doi:10.1520/GTJ20120132, ISSN 0149-6115spa
dc.relation.referencesPoulos, H. (2017). Designing piles for seismic events. En DFI-PFSF Piled Foundations & Ground Improvement Technology for the Modern Building and Infrastructure Sector. Evento organizado por el Deep Foundations Institute, Melbournespa
dc.relation.referencesSaeed, K., Kassim, K. A., & Nur, H. (2014). Physicochemical characterization of cement treated kaolin clay. Gradevinar, 66(6), 513-521spa
dc.relation.referencesShackel, B. (1970) The Compaction of Uniform Replicate Soil Specimens. Journal of the Australian Road Research Board. Vol 4, Nº 5, pp 12 – 31spa
dc.relation.referencesSubramaniam, P., & Banerjee, S. (2014). Factors affecting shear modulus degradation of cement treated clay. Soil Dynamics and Earthquake Engineering, 65, 181-188. https://doi.org/10.1016/j.soildyn.2014.06.013spa
dc.relation.referencesSubramaniam, P., & Banerjee, S. (2020). Dynamic properties of cement-treated marine clay. International Journal of Geomechanics, 20(6), 04020065. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001673spa
dc.relation.referencesTejedor Bonilla, C. (2022). Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana. (Tesis de Maestría). Universidad Nacional de Colombia. Bogotá, Colombiaspa
dc.relation.referencesThom, R., Sivakumar, R., Sivakumar, V., Murray, E. J., & Mackinnon, P. (2007). Pore size distribution of unsaturated compacted kaolin: The initial states and final states following saturation. Géotechnique, 57(5), 469–474. https://doi.org/10.1680/geot.2007.57.5.469spa
dc.relation.referencesTorres, J., de Gutiérrez, R. M., Castelló, R., & Vizcayno, C. (2011). Análisis comparativo de caolines de diferentes fuentes para la producción de metacaolín. Revista Latinoamericana de Metalurgia y Materiales, 31(1), 35-43spa
dc.relation.referencesTowhata, I. (2008). Geotechnical earthquake engineering. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-35783-4spa
dc.relation.referencesTrhlíková, J., Mašín, D., & Boháč, J. (2012). Small-strain behaviour of cemented soils. Géotechnique, 62(10), 943-947. https://doi.org/10.1680/geot.9.P.100spa
dc.relation.referencesTsai, P. H., & Ni, S. H. (2011). A study on dynamic properties of cement-stabilized soils. Advanced Materials Research, 243-249, 2050-2054. https://doi.org/10.4028/www.scientific.net/AMR.243-249.2050spa
dc.relation.referencesUral, N. (2021). The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosciences, 13(1), 197-218. https://doi.org/10.1515/geo-2020-0145spa
dc.relation.referencesVan Olphen, H. (1977). An introduction to clay colloid chemistry (2nd ed.). Wiley Interscience, New Yorkspa
dc.relation.referencesVenkatarama-Reddy, B. V., & Jagadish, K. S. (1993). The static compaction of soils. Geotechnique, 43(2), 337-341. https://doi.org/10.1680/geot.1993.43.2.337spa
dc.relation.referencesVerastegui Flores, R., & Van Impe, W. (2009). Stress-strain behavior of artificially cemented Kaolin clay. In 17th International conference on Soil Mechanics and Geotechnical Engineering (pp. 283-286). IOS Press. http://doi.org/10.3233/978-1-60750-031-5-283spa
dc.relation.referencesWang, D., & Korkiala-Tanttu, L. (2018). 1-D compressibility behaviour of cement-lime stabilized soft clays. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2018.1440633spa
dc.relation.referencesWang, F., Li, D., Du, W., Zarei, C., & Liu, Y. (2021). Bender element measurement for small strain shear modulus of compacted loess. International Journal of Geomechanics, 21(5), 04021063. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002004spa
dc.relation.referencesWichtmann, T., & Triantafyllidis, T. (2018). Monotonic and cyclic tests on Kaolin—a database for the development, calibration, and verification of constitutive models for cohesive soils with focus on cyclic loading. Acta Geotechnica, 13(1), 1-27. https://doi.org/10.1007/s11440-017-0588-3spa
dc.relation.referencesYoshida, N. (2015). Seismic ground response analysis. Springer. https://doi.org/10.1007/978-94-017-9460-2spa
dc.relation.referencesYuan-qiang, C., & Xu, L. (2004). Dynamic properties of composite cemented clay. Journal of Zhejiang University-SCIENCE A, 5(3), 309-316. https://doi.org/10.1631/BF02841016spa
dc.relation.referencesZhang, L., Shi, J., Peng, Q., & Chen, C. (2023). Dynamic behavior of Haikou marine clay treated with cement. Construction and Building Materials, 405, 133320. https://doi.org/10.1016/j.conbuildmat.2023.133320spa
dc.relation.referencesZhao, H., Zhou, K., Zhao, C., Gong, B. W., & Liu, J. (2015). A long-term investigation on microstructure of cement-stabilized Handan clay. European Journal of Environmental and Civil Engineering, 20(2), 199–214. https://doi.org/10.1080/19648189.2015.1030087spa
dc.relation.referencesZhao, Y., Qiao, F., Meng, F., Zheng, Z., Gu, J., & Li, H. (2024). Experimental study on the effect of different cement content on the improvement of dynamic characteristics of seismic-prone poor soil. PLOS ONE, 19(5), e0300849. https://doi.org/10.1371/journal.pone.0300849spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembSUELOS ARCILLOSOS-ANALISISspa
dc.subject.lembClay soils - analysiseng
dc.subject.lembPROPIEDADES MECANICASspa
dc.subject.lembMechanical Propertieseng
dc.subject.lembCEMENTO PORTLAND-PRUEBASspa
dc.subject.lembPortland cement - testingeng
dc.subject.lembDINAMICA DE ESTRUCTURASspa
dc.subject.lembStructural dynamicseng
dc.subject.lembENSAYO DINAMICO DE MATERIALESspa
dc.subject.lembMaterials - dynamic testingeng
dc.subject.proposalComportamiento dinámicospa
dc.subject.proposalSuelos cementadosspa
dc.subject.proposalMódulo de cortespa
dc.subject.proposalRelación de amortiguamientospa
dc.subject.proposalSuelos estructuradosspa
dc.subject.proposalCaolín Cementadospa
dc.subject.proposalDynamic behavioreng
dc.subject.proposalCemented soilseng
dc.subject.proposalCemented kaolineng
dc.subject.proposalShear moduluseng
dc.subject.proposalDamping ratioeng
dc.subject.proposalStructured soilseng
dc.titleInfluencia de la estructura en el comportamiento dinámico de suelos arcillososspa
dc.title.translatedInfluence of soil structure on the dynamic behavior of clayey soilseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1052410886.2024.pdf
Tamaño:
8.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería-Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: