Influencia de la estructura en el comportamiento dinámico de suelos arcillosos
dc.contributor.advisor | Tapias Camacho, Mauricio Alberto | spa |
dc.contributor.advisor | Colmenares Montañez, Julio Esteban | spa |
dc.contributor.author | Wiest Zea, Hans Kurt | spa |
dc.contributor.researchgroup | Geotechnical Engineering Knowledge and Innovation Genki | spa |
dc.date.accessioned | 2025-02-28T17:43:40Z | |
dc.date.available | 2025-02-28T17:43:40Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías, tablas | spa |
dc.description.abstract | El presente trabajo tiene como objetivo principal el análisis de la influencia de la estructura en el comportamiento dinámico de suelos arcillosos estabilizados con cemento, identificando las variaciones en sus propiedades mecánicas y dinámicas. La investigación se centró en la generación de estructura inducida en el suelo mediante la mezcla de un suelo arcilloso (caolín) con cemento Portland, evaluando su respuesta bajo cargas estáticas y cíclicas. Para ello, se realizó una serie de ensayos de caracterización física, química, mecánica y dinámica. Los resultados demostraron que el proceso de cementación inducida generó una estructura a nivel microscópico en el suelo, incrementando significativamente el módulo de corte (G) y reduciendo la relación de amortiguamiento (D), a medida que el contenido de cemento fue mayor. Además, fue posible identificar cambios relevantes en: (1) la compresibilidad, por el aumento en el esfuerzo de cedencia (σ’vy) y en los índices de compresibilidad (Cc y Cr), y (2) en la resistencia al corte por el incremento en el intercepto de cohesión (c’) y el ángulo de resistencia al corte (ϕ’), lo cual corrobora la generación de estructura en el suelo. La investigación también permitió concluir que la degradación de la rigidez y los incrementos en la presión de poros, característicos del ablandamiento cíclico, afectan a los suelos arcillosos cementados bajo ciertas condiciones, y ocurren de forma simultánea con la rotura de enlaces entre las partículas generadas por la cementación. Sin embargo, se destacó el mejoramiento en las propiedades dinámicas del suelo arcilloso gracias a la estructura generada. Este trabajo contribuye al entendimiento del comportamiento dinámico de suelos estructurados artificialmente, proporcionando bases para su aplicación en la práctica de la ingeniería como en el diseño de cimentaciones y estructuras en suelos estabilizados, así como para la comparación con el comportamiento de suelos estructurados naturalmente (Texto tomado de la fuente). | spa |
dc.description.abstract | The main objective of this study is to analyze the influence of soil structure on the dynamic behavior of cement-stabilized clay soils by identifying variations in their mechanical and dynamic properties. The research focused on soil structure generation induced by mixing a clayey soil (kaolin) with Portland cement and evaluating its response under static and cyclic loads. A series of physical, chemical, mechanical, and dynamic characterization tests were conducted. The results demonstrated that the induced cementation process generated a microstructure in the soil, significantly increasing the shear modulus (G) and reducing the damping ratio (D) as the cement content increased. Additionally, the study identified significant changes in: (1) compressibility, with an increase in the yield stress (σ’vy) and compression indices (Cc and Cr), and (2) shear strength, with an increase in the cohesion intercept (c’) and the angle of internal friction (ϕ’), confirming the formation of structure within the soil. The study also concluded that the stiffness degradation and pore pressure buildup, characteristic of cyclic softening, affect cemented clay soils under specific conditions and occur simultaneously with the breakdown of interparticle bonding created by cementation. However, the improvement in the soil’s dynamic properties due to the generated structure was noteworthy. This work contributes to the understanding of the dynamic behavior of artificially structured soils, providing a foundation for their application in engineering practice, particularly in the design of foundations and structures on stabilized soils, and enabling comparisons with the behavior of naturally structured soils. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | spa |
dc.description.methods | El desarrollo de este trabajó se realizó siguiendo un enfoque metodológico cuantitativo experimental, cuya finalidad fue realizar un análisis del comportamiento mecánico y dinámico de un suelo arcilloso (caolín) con estructura inducida a partir de la adición de cemento y compactación. El trabajo se realizó por medio de la ejecución de diferentes ensayos de laboratorio, para evaluar las propiedades físicas, químicas, mecánicas y dinámicas del material objeto de estudio. | spa |
dc.description.researcharea | Relaciones constitutivas de suelos, rocas y materiales afínes | spa |
dc.format.extent | xxiv, 192 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87569 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Abdulhussein Saeed, K., Kassim, K. A., & Nur, H. (2014). Physicochemical characterization of cement treated kaolin clay. Građevinar, 66(6), 513-521. https://doi.org/10.14256/JCE.976.2013 | spa |
dc.relation.references | Ashango, A. A., & Patra, N. R. (2013). Dynamic properties of stabilized subgrade clay soil. En Seventh International Conference on Case Histories in Geotechnical Engineering. Missouri University of Science and Technology. https://scholarsmine.mst.edu/icchge/7icchge/session_06/15 | spa |
dc.relation.references | ASTM. (2011). Standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus (ASTM D3999-11). ASTM International. https://doi.org/10.1520/D3999-11 | spa |
dc.relation.references | ASTM. (2019). Standard test method for strength properties of tissue papers (ASTM D8295-19). ASTM International. https://doi.org/10.1520/D8295-19 | spa |
dc.relation.references | ASTM. (2021). Standard test methods for modulus and damping of soils by the resonant column method (ASTM D4015-21). ASTM International. https://doi.org/10.1520/D4015-21 | spa |
dc.relation.references | Bahador, M., & Pak, A. (2011). Small-Strain shear modulus of cement-admixed kaolinite. Geotechnical and Geological Engineering, 30(1), 163-171. https://doi.org/10.1007/s10706-011-9458-1 | spa |
dc.relation.references | Basto Urbina, D. (2023). Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana. (Tesis de Maestría). Universidad Nacional de Colombia. Bogotá, Colombia | spa |
dc.relation.references | Borden, R. H., Shao, L., & Gupta, A. (1996). Dynamic properties of Piedmont residual soils. Journal of Geotechnical Engineering, 122(10), 813-821. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(813) | spa |
dc.relation.references | Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Géotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329 | spa |
dc.relation.references | Burland, J. B., Rampello, S., Georgiannou, V. N., & Calabresi, G. (1996). A laboratory study of the strength of four stiff clays. Géotechnique, 46(3), 491-514. https://doi.org/10.1680/geot.1996.46.3.491 | spa |
dc.relation.references | Cafaro, F., & Cotecchia, F. (2001). Structure degradation and changes in the mechanical behaviour of a stiff clay due to weathering. Géotechnique, 51(5), 441-453. https://doi.org/10.1680/geot.2001.51.5.441 | spa |
dc.relation.references | Cai, Y., & Liang, X. (2004). Dynamic properties of composite cemented clay. Journal of Zhejiang University SCIENCE, 5(3), 309-316. https://doi.org/10.1631/BF02841016 | spa |
dc.relation.references | Chaves Agudelo, J. F. (2011). Generación de presión de poros en procesos cíclicos no drenados (Tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia. | spa |
dc.relation.references | Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and engineering behavior of cement-treated clays. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 696-706. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696) | spa |
dc.relation.references | Cruz, N., Rodrigues, C., & Viana da Fonseca, A. (2011). The influence of cementation in the critical state behaviour of artificial bonded soils. En Deformation Characteristics of Geomaterials (pp. 730-737). IOS Press. https://doi.org/10.3233/978-1-60750- 822-9-730 | spa |
dc.relation.references | Day, R. W. (2012). Geotechnical earthquake engineering handbook: With the 2012 International building code (2nd ed.). McGraw-Hill | spa |
dc.relation.references | Elia, G., & Rouainia, M. (2016). Investigating the cyclic behaviour of clays using a kinematic hardening soil model. Soil Dynamics and Earthquake Engineering, 88, 399-411. http://doi.org/10.1016/j.soildyn.2016.06.014 | spa |
dc.relation.references | Espinel Manrique, O. (2019). Efecto de la estructura sobre la contracción volumétrica de suelos sometidos a procesos de desecación. (Tesis de Maestría). Universidad Nacional de Colombia | spa |
dc.relation.references | Fernández-Lavín, A., Chamorro-Zurita, C., & Ovando-Shelley, E. (2024). An Alternative Method to Analyze Waveforms from Bender Element Tests in Soft Clays. Geotechnical and Geological Engineering, 42(1), 43-60. https://doi.org/10.1007/s10706-023-02551-0 | spa |
dc.relation.references | García Toro, J. R. (2019). Estudio de la técnica de suelo-cemento para la estabilización de vías terciarias en Colombia que posean un alto contenido de caolín (Tesis de pregrado). Universidad Católica de Colombia, Bogotá, Colombia | spa |
dc.relation.references | Ghavami, S., & Rajabi, M. (2021). Investigating the influence of the combination of cement kiln dust and fly ash on compaction and strength characteristics of high-plasticity clays. Journal of Civil Engineering and Materials Application, 5(1), 9–16. https://doi.org/10.22034/JCEMA.2020.250727.1040 | spa |
dc.relation.references | Gu, C., Wang, J., Cai, Y., Yang, Z., & Gao, Y. (2012). Undrained cyclic triaxial behavior of saturated clays under variable confining pressure. Soils and Foundations, 52(4), 615-627. https://doi.org/10.1016/j.soildyn.2012.03.011 | spa |
dc.relation.references | Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: Measurement and parameter effects. Journal of the Soil Mechanics and Foundations Divisions, 98(7), 667–692 | spa |
dc.relation.references | Horpibulsuk, S., Miura, N., & Bergado, D. T. (2004). Undrained shear behavior of cement admixed clay at high water content.Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1096-1105. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1096) | spa |
dc.relation.references | Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., & Suddeepong, A. (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011-2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011 | spa |
dc.relation.references | Hoyos, L. R., Puppala, A. J., & Chainuwat, P. (2004). Dynamic properties of chemically stabilized sulfate-rich clay. Journal of Geotechnical and Geoenvironmental Engineering, 130(2), 153–162. https://doi.org/10.1061/(ASCE)1090- 0241(2004)130:2(153) | spa |
dc.relation.references | Instituto Nacional de Vías. (2013). Normas de ensayo de materiales para carreteras: Sección 100 - Suelos. Bogotá, Colombia: Instituto Nacional de Vías | spa |
dc.relation.references | Jha, A. K., & Sivapullaiah, P. V. (2015). Mechanism of improvement in the strength and volume change behavior of lime stabilized soil. Engineering Geology, 198, 53-64. https://doi.org/10.1016/j.enggeo.2015.08.020 | spa |
dc.relation.references | Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice Hall | spa |
dc.relation.references | Kumar, A., & Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737-742. https://doi.org/10.1016/j.matpr.2019.10.037 | spa |
dc.relation.references | Lade, P. V. (2016). Triaxial testing of soils. Wiley-Blackwell | spa |
dc.relation.references | Lang, L., Li, F., & Chen, B. (2020). Small-strain dynamic properties of silty clay stabilized by cement and fly ash. Construction and Building Materials, 237, 117646. https://doi.org/10.1016/j.conbuildmat.2019.117646 | spa |
dc.relation.references | Lee, J. S., & Santamarina, J. C. (2005). Bender elements: performance and signal interpretation. Journal of geotechnical and geoenvironmental engineering, 131(9), 1063-1070. doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063) | spa |
dc.relation.references | Leong, E. C., Cahyadi, J., & Rahardjo, H. (2009). Measuring shear and compression wave velocities of soil using bender-extender elements. Canadian Geotechnical Journal, 46(7), 792-812. https://doi.org/10.1139/T09-026 | spa |
dc.relation.references | Liu, M. D., & Carter, J. P. (2000). Modelling the destructuring of soils during virgin compression. Géotechnique, 50(4), 479-483. https://doi.org/10.1680/geot.2000.50.4.479 | spa |
dc.relation.references | Lorenzo, G. A., & Bergado, D. T. (2004). Fundamental parameters of cement-admixed clay: New approach. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1042-1050. https://doi.org/10.1061/(ASCE)1090- 0241(2004)130:10(1042) | spa |
dc.relation.references | Makusa, G. P. (2013). Soil stabilization methods and materials: State of the art review. Luleå University of Technology | spa |
dc.relation.references | Mendoza Serrano, C. E. (2004). Influencia de la succión en el módulo de corte a muy pequeñas deformaciones de suelos compactados (Tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia | spa |
dc.relation.references | Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior (3rd ed.). Wiley | spa |
dc.relation.references | Monteagudo Viera, Silvia M. (2014). Estudio microestructural y de los procesos de hidratación de cementos con adiciones. Tesis (Doctoral), E.T.S.I. Caminos, Canales y Puertos (UPM). https://doi.org/10.20868/UPM.thesis.30409 | spa |
dc.relation.references | Murthy, R., Nazarian, S., & Picornell, M. (2008). Dynamic properties of naturally-cemented silts. In Geotechnical Earthquake Engineering and Soil Dynamics IV (pp. 1-8). American Society of Civil Engineers (ASCE). https://doi.org/10.1061/40975(318)55 | spa |
dc.relation.references | Norton, L. D. (1994). Micromorphology of silica cementation in soils. In A. J. Ringrose Voase & G. S. Humphreys (Eds.), Soil Micromorphology: Studies in Management and Genesis. Proceedings of the IX International Working Meeting on Soil Micromorphology, Townsville, Australia, July 1992 (pp. 811-824). Elsevier | spa |
dc.relation.references | Orjuela Garzón, A. (2021). Influencia de la succión en la compresibilidad de suelos no saturados en trayectorias k0. (Tesis de Maestría). Universidad Nacional de Colombia, Bogotá, Colombia | spa |
dc.relation.references | Pineda, J. A., Colmenares, J. E., & Hoyos, L. R. (2014). Effect of fabric and weathering intensity on dynamic properties of residual and saprolitic soils via resonant column testing. Geotechnical Testing Journal, 37(5), 800–816. doi:10.1520/GTJ20120132, ISSN 0149-6115 | spa |
dc.relation.references | Poulos, H. (2017). Designing piles for seismic events. En DFI-PFSF Piled Foundations & Ground Improvement Technology for the Modern Building and Infrastructure Sector. Evento organizado por el Deep Foundations Institute, Melbourne | spa |
dc.relation.references | Saeed, K., Kassim, K. A., & Nur, H. (2014). Physicochemical characterization of cement treated kaolin clay. Gradevinar, 66(6), 513-521 | spa |
dc.relation.references | Shackel, B. (1970) The Compaction of Uniform Replicate Soil Specimens. Journal of the Australian Road Research Board. Vol 4, Nº 5, pp 12 – 31 | spa |
dc.relation.references | Subramaniam, P., & Banerjee, S. (2014). Factors affecting shear modulus degradation of cement treated clay. Soil Dynamics and Earthquake Engineering, 65, 181-188. https://doi.org/10.1016/j.soildyn.2014.06.013 | spa |
dc.relation.references | Subramaniam, P., & Banerjee, S. (2020). Dynamic properties of cement-treated marine clay. International Journal of Geomechanics, 20(6), 04020065. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001673 | spa |
dc.relation.references | Tejedor Bonilla, C. (2022). Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana. (Tesis de Maestría). Universidad Nacional de Colombia. Bogotá, Colombia | spa |
dc.relation.references | Thom, R., Sivakumar, R., Sivakumar, V., Murray, E. J., & Mackinnon, P. (2007). Pore size distribution of unsaturated compacted kaolin: The initial states and final states following saturation. Géotechnique, 57(5), 469–474. https://doi.org/10.1680/geot.2007.57.5.469 | spa |
dc.relation.references | Torres, J., de Gutiérrez, R. M., Castelló, R., & Vizcayno, C. (2011). Análisis comparativo de caolines de diferentes fuentes para la producción de metacaolín. Revista Latinoamericana de Metalurgia y Materiales, 31(1), 35-43 | spa |
dc.relation.references | Towhata, I. (2008). Geotechnical earthquake engineering. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-35783-4 | spa |
dc.relation.references | Trhlíková, J., Mašín, D., & Boháč, J. (2012). Small-strain behaviour of cemented soils. Géotechnique, 62(10), 943-947. https://doi.org/10.1680/geot.9.P.100 | spa |
dc.relation.references | Tsai, P. H., & Ni, S. H. (2011). A study on dynamic properties of cement-stabilized soils. Advanced Materials Research, 243-249, 2050-2054. https://doi.org/10.4028/www.scientific.net/AMR.243-249.2050 | spa |
dc.relation.references | Ural, N. (2021). The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosciences, 13(1), 197-218. https://doi.org/10.1515/geo-2020-0145 | spa |
dc.relation.references | Van Olphen, H. (1977). An introduction to clay colloid chemistry (2nd ed.). Wiley Interscience, New York | spa |
dc.relation.references | Venkatarama-Reddy, B. V., & Jagadish, K. S. (1993). The static compaction of soils. Geotechnique, 43(2), 337-341. https://doi.org/10.1680/geot.1993.43.2.337 | spa |
dc.relation.references | Verastegui Flores, R., & Van Impe, W. (2009). Stress-strain behavior of artificially cemented Kaolin clay. In 17th International conference on Soil Mechanics and Geotechnical Engineering (pp. 283-286). IOS Press. http://doi.org/10.3233/978-1-60750-031-5-283 | spa |
dc.relation.references | Wang, D., & Korkiala-Tanttu, L. (2018). 1-D compressibility behaviour of cement-lime stabilized soft clays. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2018.1440633 | spa |
dc.relation.references | Wang, F., Li, D., Du, W., Zarei, C., & Liu, Y. (2021). Bender element measurement for small strain shear modulus of compacted loess. International Journal of Geomechanics, 21(5), 04021063. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002004 | spa |
dc.relation.references | Wichtmann, T., & Triantafyllidis, T. (2018). Monotonic and cyclic tests on Kaolin—a database for the development, calibration, and verification of constitutive models for cohesive soils with focus on cyclic loading. Acta Geotechnica, 13(1), 1-27. https://doi.org/10.1007/s11440-017-0588-3 | spa |
dc.relation.references | Yoshida, N. (2015). Seismic ground response analysis. Springer. https://doi.org/10.1007/978-94-017-9460-2 | spa |
dc.relation.references | Yuan-qiang, C., & Xu, L. (2004). Dynamic properties of composite cemented clay. Journal of Zhejiang University-SCIENCE A, 5(3), 309-316. https://doi.org/10.1631/BF02841016 | spa |
dc.relation.references | Zhang, L., Shi, J., Peng, Q., & Chen, C. (2023). Dynamic behavior of Haikou marine clay treated with cement. Construction and Building Materials, 405, 133320. https://doi.org/10.1016/j.conbuildmat.2023.133320 | spa |
dc.relation.references | Zhao, H., Zhou, K., Zhao, C., Gong, B. W., & Liu, J. (2015). A long-term investigation on microstructure of cement-stabilized Handan clay. European Journal of Environmental and Civil Engineering, 20(2), 199–214. https://doi.org/10.1080/19648189.2015.1030087 | spa |
dc.relation.references | Zhao, Y., Qiao, F., Meng, F., Zheng, Z., Gu, J., & Li, H. (2024). Experimental study on the effect of different cement content on the improvement of dynamic characteristics of seismic-prone poor soil. PLOS ONE, 19(5), e0300849. https://doi.org/10.1371/journal.pone.0300849 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.lemb | SUELOS ARCILLOSOS-ANALISIS | spa |
dc.subject.lemb | Clay soils - analysis | eng |
dc.subject.lemb | PROPIEDADES MECANICAS | spa |
dc.subject.lemb | Mechanical Properties | eng |
dc.subject.lemb | CEMENTO PORTLAND-PRUEBAS | spa |
dc.subject.lemb | Portland cement - testing | eng |
dc.subject.lemb | DINAMICA DE ESTRUCTURAS | spa |
dc.subject.lemb | Structural dynamics | eng |
dc.subject.lemb | ENSAYO DINAMICO DE MATERIALES | spa |
dc.subject.lemb | Materials - dynamic testing | eng |
dc.subject.proposal | Comportamiento dinámico | spa |
dc.subject.proposal | Suelos cementados | spa |
dc.subject.proposal | Módulo de corte | spa |
dc.subject.proposal | Relación de amortiguamiento | spa |
dc.subject.proposal | Suelos estructurados | spa |
dc.subject.proposal | Caolín Cementado | spa |
dc.subject.proposal | Dynamic behavior | eng |
dc.subject.proposal | Cemented soils | eng |
dc.subject.proposal | Cemented kaolin | eng |
dc.subject.proposal | Shear modulus | eng |
dc.subject.proposal | Damping ratio | eng |
dc.subject.proposal | Structured soils | eng |
dc.title | Influencia de la estructura en el comportamiento dinámico de suelos arcillosos | spa |
dc.title.translated | Influence of soil structure on the dynamic behavior of clayey soils | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1052410886.2024.pdf
- Tamaño:
- 8.89 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería-Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: