Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material

dc.contributor.advisorRodriguez Pineda, Carlos Eduardo
dc.contributor.authorSandoval Montoya, Sebastián
dc.date.accessioned2021-06-21T21:37:00Z
dc.date.available2021-06-21T21:37:00Z
dc.date.issued2021
dc.descriptionilustraciones, mapasspa
dc.description.abstractEn el presente trabajo de investigación se elaboró un marco metodológico para determinar distancias y velocidades de deslizamientos utilizando el Método del Punto Material, usando el MPM_UN desarrollado por León (2019) como software de análisis del comportamiento de los taludes. De esta manera, se desarrollaron una serie de modelos de taludes con diferentes propiedades mecánicas y geométricas, para así obtener resultados de velocidades y distancias de viaje de deslizamientos para los diferentes casos en análisis. Así, se estudió el efecto de las propiedades mecánicas y geométricas en las propiedades cinemáticas en estudio para los deslizamientos. Paralelo a lo anterior, se realizó el cálculo de velocidades y distancias de viaje utilizando el método del bloque deslizante, planteado en la “Guía Metodológica para estudios de Amenaza, Vulnerabilidad y Riesgo por movimientos en masa” del Servicio Geológico Colombiano, para los mismos casos desarrollados con el MPM y de esta manera se compararon los resultados obtenidos.spa
dc.description.abstractIn this research work, a methodological framework was developed to determine travel distances and velocities of landslides using the Material Point Method, using the MPM_UN as software for analysis of the behavior of slopes. Thereby, a series of slope models with different mechanical and geometric properties was developed, to obtain results of travel distances and velocities of landslides for the different cases under analysis. Thus, the effect of mechanical and geometric properties on the kinematic properties under study for landslides was studied. In the same way, the calculation of travel distances and velocities of landslides was performed using the sliding block method, proposed in the "Methodological Guide for studies of Threat, Vulnerability and Risk due to mass movements" of the Colombian Geological Survey, for the same cases developed with the MPM and in this way the results obtained were compared.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaTaludes, laderas, cauces y zonificación geotécnica, modelación y análisis en geotecniaspa
dc.format.extent238 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79665
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAbbo, A. J., & Sloan, S. (1995). A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers & structures 54(3), 427-441.spa
dc.relation.referencesAbe, K., Soga, K., & Bandara, S. (2014). Material Point Method for Coupled Hydromechanical Problems. . Journal of Geotechnical and Geoenvironmental Engineering 140, 1-16.spa
dc.relation.referencesAndersen, S. M. (2009). Material-Point Analysis of Large-Strain Problems: Modelling of Landslides. . Tesis de doctorado, AALBORG University.spa
dc.relation.referencesBates, R., & Jackson, J. (1987). Glossary of Geology. Virginia: American Geological Institute.spa
dc.relation.referencesBelytschko, T., Kam-Liu, W., & Moran, B. (2000). 4 - Lagrangian meshes. Nonlinear Finite Elements for Continua and Structures. , 141-215.spa
dc.relation.referencesBeuth, L. (2012). Formulation and application of a quasi-static material point method. Tesis PhD , Universit¨at Stuttgart.spa
dc.relation.referencesBhandari, T., Hamad, F., Moormann, C., Sharma, K., & Westrich, B. (2015). Numerical modelling od seismic slope failure using MPM. Computers and Geotechnics, 126-134.spa
dc.relation.referencesBrackbill, J., & Ruppel, H. (1986). Flip: A method for adaptively zoned, particlein-cell calculations of fluid flows in two dimensions. Journal of Computational Physics 65, 314-343.spa
dc.relation.referencesCastellví Linde, H. (2015). El deslizamiento de Selborne: Modelación mediante el Método del Punto Material (Tesis de maestría). Barcelona.spa
dc.relation.referencesCeccato, F. (2014). Studio di problemi geotecnici a grandi deformazioni con il Material Point Method. Universitá degli studi di Padova: Tesi di Laurea dottorale.spa
dc.relation.referencesCooper, M. (1996). The progressive development of a failure surface in overconsolidated clay at Selborne. Proceedings 7th International Symposium on Landslides, Trondheim, 683-688.spa
dc.relation.referencesCornforth, D. (2005). Landslide in practice:Investigation, Analysis, and Remedial Opions in Soils. Wiley.spa
dc.relation.referencesCoulomb, C. A. (1773). On an application of the rules of maximum and minimum to some statical problems, relevant to architecture.spa
dc.relation.referencesCruden, D. (1991). A simple definition of a landslide. Bulletin of the International Association of ENGINEERING GEOLOGY. Paris: No. 43.spa
dc.relation.referencesCruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. Landslides: investigation and mitigation. Transportation Research Board, Special Report 247, 36-75.spa
dc.relation.referencesDuncan, J., & Chang, C. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division-ASCE 96(SM5), 1629-1653.spa
dc.relation.referencesDuncan, J., & Wright, S. (2005). Soil strenght and slope stability. John Wiley and sons.spa
dc.relation.referencesFell, R., Hungr, O., & Leroueil, S. (2000). Geotechnical engineering of the stability of natural slopes, and cuts and fills in soil. Keynote lecture.spa
dc.relation.referencesFinlay, P. J., Mostyn, G., & Fell, R. (1999). Landslide risk assessment: prediction of travel distance. Canadian Geotechnical Journal 36 (3), 556-562.spa
dc.relation.referencesGingold, R. A., & Monaghan. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, 375-389.spa
dc.relation.referencesHarlow, F. H. (1957). The particle-in-cell method for hydrodynamic calculations. Technical report, DTIC Document.spa
dc.relation.referencesHungr, O., Corominas, J., & Eberhardt, E. (2005). State of the Art Paper # 4. Estimating landslide motion mechanism, travel distance and velocity. Vancouver, Canada: Landslides Risk Management.spa
dc.relation.referencesHungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslides types, an update. Landslide, 167-194.spa
dc.relation.referencesIdelsohm, S., Onate, & F., P. (2004). The particle finite element method: a powerful tool to solve incompressible flows with free-surface and breaking waves. International Journal for Numerical Methods in Engineering , 964-989.spa
dc.relation.referencesLabuz, J., & Zang, A. (2012). Mohr–Coulomb Failure Criterion. Rock Mech Rock Eng 45, 975–979.spa
dc.relation.referencesLeón, D. E. (2019). Impementación del Método del Punto Material para aplicaciones geotécnicas bajo cargas estáticas. Universidad Nacional de Colombia, Bogotá: Tesis de Maestría.spa
dc.relation.referencesLi, X., He, S., Luo, Y., & Wu, Y. (2011). Simulation of the sliding process of Donghekou landslide triggered by the Wenchuan earthquake using a distinct element method. Environmental Earth Sciences, 1049-1054.spa
dc.relation.referencesLucy, L. (1977). A numerical approach to the testing of the . The astronomical journal 82, 1013-1024.spa
dc.relation.referencesMcDougall, S. (2017). 2014 Canadian Geotechnical Colloquium: Landslide runout analysis. Canadian Geotechnical Journal 54(5), , 605-620.spa
dc.relation.referencesMelo, E. (2013). Manual de reconocimiento de deslizamientos a partir de características geomorfológicas (Tésis de Maestría). Bogotá: Pontificia Universidad Javeriana.spa
dc.relation.referencesMirada Larroca, F. (2015). The Material Point Method in Slope Stability Analysis (Tesis de Maestría). Escola de Camins, Barcelona.spa
dc.relation.referencesMontero, J. (2017). Clasifiación de movimientos en masa y su distribución en terrenos geológicos de Colombia. Bogotá: Servicio Geológico Colombiano.spa
dc.relation.referencesNguyen, V. P. (2014). Material point method: basics and applications. Institute of Advanced Mechanics and Materials, Cardiff University.spa
dc.relation.referencesOñate, E., Celigueta, M., Idelsohn, S., & Salazar, F. (2011). Possibilities of the particle finite element method for fluid-soil-structure interaction problemas. Computational Mechanics, 48(3), 307-318.spa
dc.relation.referencesOñate, E., Idelsohm, S., Pin, D., & Aubry, R. (2004). The Particle Finite Element Method an overview. International Journal of Computational Methods 01(2), 267-307.spa
dc.relation.referencesServicio Geológico Colombiano & Universidad Nacional de Colombia. (2016). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Bogotá.spa
dc.relation.referencesSulsky, D., & Schreyer, H. (1996). Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems. Computer Methods in Applied Mechanics and Engineering.spa
dc.relation.referencesSulsky, D., Chen, Z., & Schreyer, H. (1994). A particle method for hystory-dependent materials. Computer Methods in Applied Mechanics and Engineering 118, 179-186.spa
dc.relation.referencesTerzaghi, K. (1950). Mechanism of landslides. Geotechnical Society of America, 83-125.spa
dc.relation.referencesVon Soos, S. (1991). Normalized oedometric stiffness for various soil classes”. Berlin: Ernst and Son.spa
dc.relation.referencesWieckowski, Z. (2004). The material point method in large strain engineering problems. . Computer Methods in Applied Mechanics and Engineering, 193(39-41):4417–4438.spa
dc.relation.referencesWieckowski, Z., Youn, S. K., & Yeon, J. H. (1999). A particle-in-cell solution to the silo discharging problem. International Journal for Numerical Methods in Engineering, 45, 1203-1225.spa
dc.relation.referencesYerro, A. (2015). MPM modelling of landslides in brittle and unsaturated soils. Universitat Politecnica de Catalunya: Tesis de doctorado.spa
dc.relation.referencesYerro, A., Alonso, E., & Pinyol, N. (2013). A promising computational tool in Geotechnics. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical, Paris, 853-856.spa
dc.relation.referencesYue, Z. (2014). Dynamics of large and rapid landslides with long travel distance under dense gas expanding power. Springer, 233-240.spa
dc.relation.referencesZhao, T., Utili, S., & Crosta, G. B. (2015). Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analysis. Rock Mechanics and Rock Engineering.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembMateria-Propiedades
dc.subject.lembFenomenos de la superficie
dc.subject.proposalDeslizamientosspa
dc.subject.proposalDistancias de viajespa
dc.subject.proposalVelocidades de deslizamientosspa
dc.subject.proposalMétodo del Punto Materialspa
dc.subject.proposalLandslideseng
dc.subject.proposalTravel distanceseng
dc.subject.proposalLandslide velocitieseng
dc.subject.proposalMaterial Point Methodeng
dc.titleEstimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material
dc.title.translatedEstimation of travel distances and velocities of Landslides using the Material Point Methodeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032472063.2021.pdf
Tamaño:
42.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: