Estimación de la temperatura mensual del aire usando imágenes satelitales en una zona de topografía muy variable en los Andes del sur del Ecuador

dc.contributor.advisorOspina Noreña, Jesús Efrenspa
dc.contributor.advisorBallari, Danielaspa
dc.contributor.authorOrellana Samaniego, Maria Lorenaspa
dc.coverage.countryEcuadorspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000051spa
dc.date.accessioned2021-01-19T20:48:11Zspa
dc.date.available2021-01-19T20:48:11Zspa
dc.date.issued2020-12-04spa
dc.descriptionilustraciones, gráficasspa
dc.description.abstractEl monitoreo de la temperatura del aire (Ta) tiene implicaciones en una amplia gama de aplicaciones ambientales. La Ta se mide comúnmente con estaciones meteorológicas, que proporcionan una alta precisión y una alta resolución temporal en un sitio específico. Sin embargo, estos datos in situ proporcionan información limitada sobre patrones espaciales. Dicha limitación se magnifica en regiones con topografía muy variable y con una red de monitoreo escasa, como es el caso de los Andes del sur del Ecuador. Es por eso que, debido a la continuidad espacial de la información, los datos de teledetección tienen un gran potencial para estimar la distribución espacial de las variables climatológicas. Esta investigación tiene como objetivo estimar la distribución espacial de la Ta mensual en la cuenca del río Paute utilizando métodos estadísticos y geoestadísticos como: regresión lineal LR (por sus siglas en inglés), regresión de bosques aleatorios (RF, por sus siglas en inglés) y regresión Kriging (RK); además se evalúa el uso de la altitud y otras variables auxiliares (temperatura de la superficie terrestre -LST- por sus siglas en inglés, latitud y longitud) en los modelos de regresión. Los resultados mostraron que la altitud y LST fueron las variables auxiliares más efectivas para estimar la temperatura del aire. La validación cruzada mostró que la RF tuvo un mejor desempeño que la LR, así como el uso de variables auxiliares en relación al uso solo de la altitud (basados en la mediana, LR-altitud: RMSE= 1.325°C, P-Bias= -0.150%, r= 0.775; LR-variables auxiliares: RMSE= 1.265°C, P-Bias= 0.000% r=0.795; RF-altitud: RMSE= 1.235°C, P-Bias=0.200%, r= 0.810; RF-variables auxiliares RMSE= 1.205°C, P-Bias=0.2%, r=0.820). La aplicación de RK fue limitada debido a que en menos del 50% de los meses de estudio existió autocorrelación espacial en los residuos de los modelos de regresión lineal y de bosques aleatorios. Sin embargo, en estos meses, RK aumentó ligeramente el rendimiento de las estimaciones. Estos resultados permiten obtener mapas mensuales de la Ta en la cuenca del rio Paute con exactitudes aceptables, siendo esencial en la aplicación de modelos y en actividades que requieren del uso de la Ta como variable de entrada. (Texto tomado de la fuente).spa
dc.description.abstractMonitoring of air temperature (Ta) has implications in a wide range of environmental applications. Ta is commonly measured with weather stations, which provide a high accuracy and high temporal resolution for the specific monitoring sites. However, these in-situ data provide limited information about spatial patterns. Such limitation is magnified in regions with highly variable topography ad scarce monitoring, such as the case of the southern Ecuadorian Andes. Thus, remote sensing data has a great potential to estimate the spatial distribution of climatological variables due to the spatial continuity of the information. This research aims to estimate the spatial distribution of the monthly Ta in the Paute river basin using statistical and geostatistical methods, such as linear regression (LR), random forest regression (RF) and regression Kriging (RK); while evaluating the use of altitude and other auxiliary variables (land surface temperature (LST), latitude, and longitude). The results showed that altitude and LST were the most effective auxiliary variables. Cross-validation showed that RF performed better than linear regression, as well as when using auxiliary variables compared to only the altitude (LR-altitude: RMSE= 1.325°C, P-Bias= -0.150%, r= 0.775; LR-auxiliary variables: RMSE= 1.265°C, P-Bias= 0.000% r=0.795; RF-altitude: RMSE= 1.235°C, P-Bias=0.200%, r= 0.810; RF-auxiliary variables RMSE= ±1.205°C, P-Bias=0.2%, r=0.820). The application of RK was limited since less than 50% of the study months had spatial autocorrelation in the regression model residuals. Nevertheless, in these months RK increased the estimation performance.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaTecnologías geoespacialesspa
dc.format.extentxv, 129 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78826
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAhrens, D. (2008). Essentials of Meteorology. An invitation to the Atmosphere. Time (Vol. 67). https://doi.org/10.1111/j.1467-8535.2007.00763.xspa
dc.relation.referencesAppelhans T, Mwangomo E, Hardy D.R, Hemp A, Nauss T (2015) Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro Tanzania. Spat Stat-Neth 14:91-113. https://doi.org/10.1016/j.spasta.2015.05.008spa
dc.relation.referencesBahi H, Rhinane H, Bensalmia A (2016) Contribution of MODIS satellite image to estimate the daily air temperature in the Casablanca City, Morocco. Int. arch. photogramm. remote sens. spat. inf. Sci 42:3-11. https://doi.org/10.5194/isprs-archives-XLII-2-W1-3-2016spa
dc.relation.referencesBallari D, Castro E, Campozano L (2016) Validation of satellite precipitation (TRMM 3B43) in Ecuadorian coastal plains, Andean highlands and Amazonian rainforest. Int. arch. photogramm. remote sens. spat. inf. Sci 41:305-311. https://doi.org/10.5194/isprsarchives-XLI-B8-305-2016spa
dc.relation.referencesBenali A, Carvalho A.C, Nunes J.P, Carvalhais N, Santos, A (2012) Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ 124:108-121. https://doi.org/10.1016/j.rse.2012.04.024spa
dc.relation.referencesBenavides R, Montes F, Rubio A Osoro K (2007) Geostatistical modelling of air temperature in a mountainous region of Northern Spain. Agric. For. Meteorol 146:173-188. https://doi.org/10.1016/j.agrformet.2007.05.014spa
dc.relation.referencesBendix J (2014) Adjustment of the Convective- Stratiform Technique (CST) to estimate 1991 / 93 El Nino rainfall distribution in Ecuador and Peru by means of Meteosat-3 IR data. Int. J. Remote Sens International Journal of Remote Sensing 8:1387-1394. https://doi.org/10.1080/014311697218502spa
dc.relation.referencesBreiman L (2001) Random Forests. Mach Learn 45: 5–32.spa
dc.relation.referencesCampozano L, Sánchez E, Avilés Á, Samaniego E (2014) Evaluation of infilling methods for time series of daily precipitation and temperature: The case of the Ecuadorian Andes. Maskana 5:99-115. https://doi.org/10.18537/mskn.05.01.07.spa
dc.relation.referencesChen, F., Liu, Y., & Qin, F. (2015). A statistical method based on remote sensing for the estimation of air temperature in China, 2143(July 2014), 2131–2143. https://doi.org/10.1002/joc.4113spa
dc.relation.referencesChowdhury, F. R., Shihab, Q., Ibrahim, U., Bari, S., Alam, J., Dunachie, S. J., … Patwary, I. (2018). The association between temperature , rainfall and humidity with common climate-sensitive infectious diseases in Bangladesh, 1–17.spa
dc.relation.referencesCórdova, M., Célleri, R., Shellito, C. J., Orellana-alvear, J., Abril, A., Carrillo-rojas, G., … Carrillo-rojas, G. (n.d.). Near-Surface Air Temperature Lapse Rate Over Complex Terrain in the Southern Ecuadorian Andes : Implications for Temperature Mapping Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes : implications for temperature mapping, 48(4), 678–684.spa
dc.relation.referencesCuesta, F., Bustamante, M., Becerra, M. T., Postigo, J., & Peralvo, M. (2012). Panorama andino sobre cambio climático. Condesa, 1, 167. Retrieved from http://www20.iadb.org/intal/catalogo/PE/2013/12414.pdfspa
dc.relation.referencesDidan, K., Munoz, A. B., & Huete, A. (2015). MODIS Vegetation Index User ’ s Guide ( MOD13 Series ), 2015(June).spa
dc.relation.referencesEmamifar, S., & Akbar, A. (2013). Daily mean air temperature estimation from MODIS land surface temperature products based on M5 model tree, 3181(February), 3174–3181. https://doi.org/10.1002/joc.3655spa
dc.relation.referencesFlorio, E. N., Lele, S. R., Chang, Y. C., Sterner, R., & Glass, G. E. (2004). Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: A statistical approach. International Journal of Remote Sensing, 25(15), 2979–2994. https://doi.org/10.1080/01431160310001624593spa
dc.relation.referencesForest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R., & Webster, M. D. (2002). Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations, 295(January), 113–118.spa
dc.relation.referencesFu, G., Shen, Z., Zhang, X., Shi, P., Zhang, Y., & Wu, J. (2011). Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecologica Sinica, 31(1), 8–13. https://doi.org/10.1016/j.chnaes.2010.11.002spa
dc.relation.referencesGeophysics, A. (2015). The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland. https://doi.org/10.1007/s00024-015-1199-2spa
dc.relation.referencesGornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., … Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century Implications of climate change for agricultural productivity in the early twenty-first century. https://doi.org/10.1098/rstb.2010.0158spa
dc.relation.referencesIrmak, A., Ranade, P. K., Marx, D., Irmak, S., Hubbard, K. G., Meyer, G. E., & Martin, D. L. (2010). S i c v n, 53(6), 1759–1771.spa
dc.relation.referencesJanatian, N., Sadeghi, M., Sanaeinejad, S. H., Bakhshian, E., Farid, A., Hasheminia, S. M., & Ghazanfari, S. (2017). A statistical framework for estimating air temperature using MODIS land surface temperature data. International Journal of Climatology, 37(3), 1181–1194. https://doi.org/10.1002/joc.4766spa
dc.relation.referencesJang, J., Viau, A. A., & Anctil, F. (n.d.). International Journal of Remote Neural network estimation of air temperatures from AVHRR data, (October 2014), 37–41. https://doi.org/10.1080/01431160310001657533spa
dc.relation.referencesJin, M., & Dickinson, R. E. (2010). Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environmental Research Letters, 5(4), 044004.spa
dc.relation.referencesLi, L., & Zha, Y. (2019). ScienceDirect Estimating monthly average temperature by remote sensing in China. Advances in Space Research, 63(8), 2345–2357. https://doi.org/10.1016/j.asr.2018.12.039spa
dc.relation.referencesMarzban, F., Conrad, T., Marzban, P., & Sodoudi, S. (2018). Estimation of the Near-Surface Air Temperature during the Day and Nighttime from MODIS in Berlin , Germany, 7(1), 2478–2517.spa
dc.relation.referencesMeyer, H., Katurji, M., Appelhans, T., Müller, M. U., Nauss, T., Roudier, P., & Zawar-reza, P. (n.d.). Mapping Daily Air Temperature for Antarctica Based on MODIS LST, 1–16. https://doi.org/10.3390/rs8090732spa
dc.relation.referencesMora, D. E., & Willems, P. (2012). Decadal oscillations in rainfall and air temperature in the Paute River Basin-Southern Andes of Ecuador. Theoretical and Applied Climatology, 108(1–2), 267–282. https://doi.org/10.1007/s00704-011-0527-4spa
dc.relation.referencesMutiibwa, D., Strachan, S., & Albright, T. (2015). Land surface temperature and surface air temperature in complex terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4762-4774.spa
dc.relation.referencesNaseer, A., Koike, T., Mohamad, R., & Ushiyama, T. (2019). Distributed hydrological modelling framework for quantitative and spatial bias correction for rainfall , snowfall , and mixed-phase precipitation using Vertical Profile of Temperature, 0–2. https://doi.org/10.1029/2018JD029811spa
dc.relation.referencesNieto, H., Sandholt, I., Aguado, I., Chuvieco, E., & Stisen, S. (2011). Remote Sensing of Environment Air temperature estimation with MSG-SEVIRI data : Calibration and validation of the TVX algorithm for the Iberian Peninsula. Remote Sensing of Environment, 115(1), 107–116. https://doi.org/10.1016/j.rse.2010.08.010spa
dc.relation.referencesOrt, D., Thomson, A. M., & Wolfe, D. (2011). Climate Impacts on Agriculture :, 351–370. https://doi.org/10.2134/agronj2010.0303spa
dc.relation.referencesPrata, A. J., Caselles, V., Coll, C., Sobrino, J. A., & Ottle, C. (1995). Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sensing Reviews, 12(3-4), 175-224.spa
dc.relation.referencesPrihodko, L., & Goward, S. N. (1997). Estimation of air temperature from remotely sensed observations. Remote Sensing of Environment, 60(3), 335–346.spa
dc.relation.referencesR., L. D., & Willmott, C. J. (1990). Mean Seasonal and Spatial Variability in Global Surface Air Temperature. Theoretical and Applied Climatology, 41, 11–21.spa
dc.relation.referencesRollenbeck, R., & Bendix, J. (2011). Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological fi eld observations. Atmospheric Research, 99(2), 277–289spa
dc.relation.referencesShi, Y., Jiang, Z., Dong, L., & Shen, S. (2017). Statistical Estimation of High-Resolution Surface Air Temperature from MODIS over the Yangtze River Delta , China, 31(April). https://doi.org/10.1007/s13351-017-6073-y.1.spa
dc.relation.referencesSun, H., Chen, Y., Gong, A., Zhao, X., Zhan, W., & Wang, M. (2014). Estimating mean air temperature using MODIS day and night land surface temperatures. Theoretical and Applied Climatology, 118(1–2), 81–92. https://doi.org/10.1007/s00704-013-1033-7spa
dc.relation.referencesTrapasso, L. M. (2005). Temperature Distribution. In J. E. Oliver (Ed.), Encyclopedia of World Climatology (pp. 711–716). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-3266-8_203spa
dc.relation.referencesTomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. (2011). Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Applications, 18(3), 296-306.spa
dc.relation.referencesUlloa, J., Ballari, D., Campozano, L., & Samaniego, E. (2017). Two-step downscaling of TRMM 3b43 V7 precipitation in contrasting climatic regions with sparse monitoring: The case of Ecuador in tropical South America. Remote Sensing, 9(7), 1–23. https://doi.org/10.3390/rs9070758spa
dc.relation.referencesVancutsem, C., Ceccato, P., Dinku, T., & Connor, S. J. (2010). Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449–465. https://doi.org/10.1016/j.rse.2009.10.002spa
dc.relation.referencesWan, Z. (2009). MODIS Land Surface Temperature Products Users’ Guide. Contract, (April), 30. https://doi.org/10.5067/MODIS/MOD11B3.006spa
dc.relation.referencesXu, Y., Knudby, A., & Ho, H. C. (2014). International Journal of Remote Estimating daily maximum air temperature from MODIS in British Columbia , Canada, (December), 37–41. https://doi.org/10.1080/01431161.2014.978957spa
dc.relation.referencesXu, Y., Qin, Z., & Shen, Y. (2012). International Journal of Remote Study on the estimation of near-surface air temperature from MODIS data by statistical methods, (November 2014), 37–41.spa
dc.relation.referencesYang, D., Wang, Z., Xu, L., & Liu, Y. (2019). Estimation and distribution of near-surface meteorological elements over complex terrains : a case study in the Tibetan areas of West Sichuan. International Journal of Remote Sensing, 40(23), 8811–8837. https://doi.org/10.1080/01431161.2019.1624859spa
dc.relation.referencesZheng, X., Jiao-jun, Z., & Yan, Q. (2013). Monthly Air Temperatures over Northern China Estimated by Integrating MODIS Data with GIS Techniques Monthly Air Temperatures over Northern China Estimated by Integrating MODIS Data with GIS Techniques, (September). https://doi.org/10.1175/JAMC-D-12-0264.1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocImágenes por satélitesspa
dc.subject.agrovocsatellite imageryeng
dc.subject.agrovocPronóstico meteorológicospa
dc.subject.agrovocWeather forecastingeng
dc.subject.agrovocTemperatura del airespa
dc.subject.agrovocair temperatureeng
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.proposalTemperatura del aire mensualspa
dc.subject.proposalAndeseng
dc.subject.proposalRegression modelseng
dc.subject.proposalAndesspa
dc.subject.proposalAltitudeeng
dc.subject.proposalModelos de regresiónspa
dc.subject.proposalAltitudspa
dc.subject.proposalAuxiliary variableseng
dc.subject.proposalVariables auxiliaresspa
dc.subject.proposalMonthly air temperatureeng
dc.titleEstimación de la temperatura mensual del aire usando imágenes satelitales en una zona de topografía muy variable en los Andes del sur del Ecuadorspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
0104530761.2020.pdf
Tamaño:
4.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: