Síntesis y caracterización de nanopartículas de almidón de semilla de aguacate Hass para su utilización en el desarrollo de biopelículas

dc.contributor.advisorPineda Gomez, Posidia
dc.contributor.authorFuquen Espinel, Duvan Camilo
dc.contributor.orcidFuquen Espinel, Duvan Camilo [0000000220025948]spa
dc.contributor.researchgroupMagnetismo y Materiales Avanzadosspa
dc.date.accessioned2025-04-23T14:23:25Z
dc.date.available2025-04-23T14:23:25Z
dc.date.issued2024
dc.descriptionfotografías, graficas, ilustraciones, tablasspa
dc.description.abstractActualmente se producen 7.2 millones de toneladas de aguacate por año a nivel mundial. La semilla representa entre el 11 y 16% del peso de la fruta y es considerada un desecho, sin embargo, al ser rica en almidón puede ser una potencial fuente de este biopolímero. Además, una alternativa para reducir la huella de carbono que genera el plástico es el almidón, un polímero biodegradable con interesantes propiedades fisicoquímicas. Aunque el almidón se ha estudiado por muchos años, y uno de sus usos ha sido en el desarrollo de biopelículas, todavía no se ha trabajado lo suficiente con las nanopartículas de almidón, las cuales podrían ofrecer una mejora en la industria. Por lo tanto, el objetivo de este trabajo fue sintetizar nanopartículas de almidón de la semilla de aguacate Hass con el fin de desarrollar una biopelícula compuesta de manera parcial por el almidón nativo sus nanopartículas y el xiloglucano como aditivo. Para la extracción y limpieza del almidón se usaron métodos físicos y químicos. Extraído el almidón de su fuente, se empleó la hidrólisis ácida y el ultrasonido para la síntesis de las nanopartículas. El almidón y sus nanopartículas se agregaron de manera parcial a la dispersión de almidón-xiloglucano para formar películas las cuales fueron comparadas con las muestras sin xiloglucano. Las técnicas que se usaron para analizar propiedades morfológicas, térmicas, estructurales, composicionales y tamaño de partícula fueron la microscopía electrónica de barrido de alta resolución, calorimetría diferencial de barrido, análisis termogravimétrico, difracción de rayos X y dispersión de luz dinámica, respectivamente. Se lograron sintetizar nanopartículas de almidón por medio de hidrólisis ácida y ultrasonido, luego se usaron, junto con el xiloglucano, como aditivo reforzante para conformar un biopolímero. En las películas se midió el espesor, solubilidad en agua, permeabilidad al vapor de agua, degradabilidad y propiedades mecánicas tales como resistencia a la tracción, alargamiento a la rotura y el módulo elástico; estas películas se destacan por sus propiedades mecánicas y biodegradabilidad (Texto tomado de la fuente).spa
dc.description.abstractCurrently, 7.2 million tons of avocado are produced worldwide per year. The seed represents between 11 and 16% of the weight of the fruit and is considered a waste product; however, as it is rich in starch, it can be a potential source of this biopolymer. Furthermore, an alternative to reduce the carbon footprint generated by plastic is starch, a biodegradable polymer with interesting physicochemical properties. Although starch has been studied for many years, and one of its uses has been in the development of biofilms, not enough work has yet been done with starch nanoparticles, which could offer an improvement in the industry. Therefore, the objective of this work was to synthesize starch nanoparticles from Hass avocado seed in order to develop a biofilm partially composed of native starch nanoparticles and xyloglucan as an additive. Physical and chemical methods were used for starch extraction and cleaning. Once the starch was extracted from its source, acid hydrolysis and ultrasound were used to synthesize the nanoparticles. Starch and its nanoparticles were partially added to the starch-xyloglucan dispersion to form films which were compared to samples without xyloglucan. The techniques used to analyze morphological, thermal, structural, compositional and particle size properties were high resolution scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and dynamic light scattering, respectively. Starch nanoparticles were synthesized by acid hydrolysis and ultrasound, then used together with xyloglucan as a reinforcing additive to form a biopolymer. Thickness, water solubility, water vapor permeability, degradability and mechanical properties such as tensile strength, elongation at break and elastic modulus were measured in the films; these films stand out for their mechanical properties and biodegradability.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaMateriales avanzadosspa
dc.format.extentxxi, 64 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88093
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesJobling S. Improving starch for food and industrial applications. Current Opinion in Plant Biology. 2004;7(2): 210–218. https://doi.org/10.1016/j.pbi.2003.12.001.spa
dc.relation.referencesJin Z. Functional starch and applications in food. Functional Starch and Applications in Food. 2018. https://doi.org/10.1007/978-981-13-1077-5.spa
dc.relation.referencesLi H, Qi Y, Zhao Y, Chi J, Cheng S. Starch and its derivatives for paper coatings: A review. Progress in Organic Coatings. 2019;135(April): 213–227. https://doi.org/10.1016/j.porgcoat.2019.05.015.spa
dc.relation.referencesKim HY, Park DJ, Kim JY, Lim ST. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydrate Polymers. 2013;98(1): 295–301. https://doi.org/10.1016/j.carbpol.2013.05.085.spa
dc.relation.referencesHernández-Giottonini KY, Quiñones-Rabago JA, Peñuñuri-Miranda O, Rodríguez-Córdova RJ, Zavala-Rivera P, Lucero-Acuña A. Starch nanoparticle preparation by the nanoprecipitation technique: Effects of formulation parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024;702(July). https://doi.org/10.1016/j.colsurfa.2024.135022.spa
dc.relation.referencesBeMiller J, Whistler R. Starch. Sustainability (Switzerland). 2019. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI.spa
dc.relation.referencesChel-Guerrero L, Barbosa-Martín E, Martínez-Antonio A, González-Mondragón E, Betancur-Ancona D. Some physicochemical and rheological properties of starch isolated from avocado seeds. International Journal of Biological Macromolecules. 2016;86: 302–308. https://doi.org/10.1016/j.ijbiomac.2016.01.052.spa
dc.relation.referencesDufresne A. Crystalline starch based nanoparticles. Current Opinion in Colloid and Interface Science. 2014;19(5): 397–408. https://doi.org/10.1016/j.cocis.2014.06.001.spa
dc.relation.referencesDuan B, Sun P, Wang X, Yang C. Preparation and properties of starch nanocrystals/carboxymethyl chitosan nanocomposite films. Starch/Staerke. 2011;63(9): 528–535. https://doi.org/10.1002/star.201000136.spa
dc.relation.referencesYe F, Miao M, Jiang B, Campanella OH, Jin Z, Zhang T. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles. Food Chemistry. 2017;229: 152–158. https://doi.org/10.1016/j.foodchem.2017.02.062.spa
dc.relation.referencesWang X, Chen H, Luo Z, Fu X. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties. Carbohydrate Polymers. 2016;138: 192–200. https://doi.org/10.1016/j.carbpol.2015.11.006.spa
dc.relation.referencesJones NA, Pan LC, Flannagan SE, Jones KA, Lukashova L, Wightman L, et al. Targeted enamel remineralization with mineral-loaded starch particles. JADA Foundational Science. 2024;3: 1–11. https://doi.org/10.1016/j.jfscie.2024.100041.spa
dc.relation.referencesFRENCH D. Organization of Starch Granules.. Second Edition. Starch: Chemistry and Technology. ACADEMIC PRESS; 1984. https://doi.org/10.1016/b978-0-12-746270-7.50013-6.spa
dc.relation.referencesLe Corre D, Angellier-Coussy H. Preparation and application of starch nanoparticles for nanocomposites: A review. Reactive and Functional Polymers. 2014;85: 97–120. https://doi.org/10.1016/j.reactfunctpolym.2014.09.020.spa
dc.relation.referencesOTEY FH, DOANE WM. Chemicals From Starch. Starch: Chemistry and Technology. 1984; 389–416. https://doi.org/10.1016/b978-0-12-746270-7.50017-3.spa
dc.relation.referencesKim HY, Park SS, Lim ST. Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces. 2015;126: 607–620. https://doi.org/10.1016/j.colsurfb.2014.11.011.spa
dc.relation.referencesAhmad AN, Lim SA, Navaranjan N, Hsu YI, Uyama H. Green sago starch nanoparticles as reinforcing material for green composites. Polymer. 2020;202(February): 122646. https://doi.org/10.1016/j.polymer.2020.122646.spa
dc.relation.referencesSanthosh R, Sarkar P. Jackfruit seed starch/tamarind kernel xyloglucan/zinc oxide nanoparticles-based composite films: Preparation, characterization, and application on tomato (Solanum lycopersicum) fruits. Food Hydrocolloids. 2022;133(April): 107917. https://doi.org/10.1016/j.foodhyd.2022.107917.spa
dc.relation.referencesValero-Valdivieso MF, Ortegón Y, Uscategui Y. Biopolímeros: Avances y perspectivas. DYNA (Colombia). 2013;80(181): 171–180.spa
dc.relation.referencesGenovesi Barcelona V. Caracterización de ZmXTH1, una nueva Xiloglucano endoTransglucosilasa-Hidrolasa en maíz. 2007.spa
dc.relation.referencesSanthosh R. Películas compuestas a base de nanopartículas de óxido de zinc / xiloglucano de semilla de jaca : preparación , caracterización y aplicación en frutos de tomate ( Solanum lycopersicum ). 2022; 1–30.spa
dc.relation.referencesLang W, Watanabe T, Lee C, Tagami T, Li F, Yamamoto T, et al. Fully biosourced amphiphilic block copolymer from tamarind seed xyloglucan and solanesol: synthesis, aqueous self-assembly, and drug encapsulation. Carbohydrate Polymers. 2025;352(September 2024): 123181. https://doi.org/10.1016/j.carbpol.2024.123181.spa
dc.relation.referencesCuevas Z. Obtención y caracterización de almidones termoplásticos obtenidos a partir de almidones injertados con poliésteres biodegradables. Centro de Investigación Científica de Yucatán. 2017;(Tesis): 1–110.spa
dc.relation.referencesCarvalho AJF, Job AE, Alves N, Curvelo AAS, Gandini A. Thermoplastic starch/natural rubber blends. Carbohydrate Polymers. 2003;53(1): 95–99. https://doi.org/10.1016/S0144-8617(03)00005-5.spa
dc.relation.referencesOtero-Herrera A, Fuentes-Gaviria L, Pérez-Cervera C, Andrade-Pizarro R. Development of edible films based on sweet potato (Ipomoea batatas) starch and their application in candy packaging. International Journal of Biological Macromolecules. 2025;299(January). https://doi.org/10.1016/j.ijbiomac.2025.140031.spa
dc.relation.referencesAngellier H, Putaux JL, Molina-Boisseau S, Dupeyre D, Dufresne A. Starch nanocrystal fillers in an acrylic polymer matrix. Macromolecular Symposia. 2005;221: 95–104. https://doi.org/10.1002/masy.200550310.spa
dc.relation.referencesCondés MC, Añón MC, Mauri AN, Dufresne A. Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocolloids. 2015;47: 146–157. https://doi.org/10.1016/j.foodhyd.2015.01.026.spa
dc.relation.referencesDufresne A. Polymer Nanocomposites from Biological Sources. Encyclopedia of Nanoscience and Nanotechnology. 2009;(January 2007): 1–32.spa
dc.relation.referencesPhiri R, Mavinkere Rangappa S, Siengchin S, Oladijo OP, Dhakal HN. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research. 2023;6(4): 436–450. https://doi.org/10.1016/j.aiepr.2023.04.004.spa
dc.relation.referencesShi AM, Li D, Wang LJ, Li BZ, Adhikari B. Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydrate Polymers. 2011;83(4): 1604–1610. https://doi.org/10.1016/j.carbpol.2010.10.011.spa
dc.relation.referencesPineda G�mez P. Efecto de la difusi�n de calcio en las transformaciones fisicoqu�micas en biopol�meros derivados del ma�z, sometidos a tratamientos t�rmicos alcalinos / Effect of the calcium diffusion over the physicochemical transformations in biopolymer of corn submitt. 2012; 125. http://www.bdigital.unal.edu.co/8043/spa
dc.relation.referencesAlejandra S, Urrea L. Síntesis y caracterización de nanopartículas de almidón (de mango y maíz) obtenidos por medio de nanoprecipitación para su uso como floculante. 2023;spa
dc.relation.referencesMutis González N, Pineda Gómez P, Rodríguez García ME. Effect of the addition of potassium and magnesium ions on the thermal, pasting, and functional properties of plantain starch (Musa paradisiaca). International Journal of Biological Macromolecules. 2019;124: 41–49. https://doi.org/10.1016/j.ijbiomac.2018.11.051.spa
dc.relation.referencesGuerrero-Florez V, Barbara A, Kodjikian S, Oukacine F, Trens P, Cattoën X. Dynamic light scattering unveils stochastic degradation in large-pore mesoporous silica nanoparticles. Journal of Colloid and Interface Science. 2024;676(April): 1098–1108. https://doi.org/10.1016/j.jcis.2024.07.151.spa
dc.relation.referencesRodriguez-Garcia ME, Hernandez-Landaverde MA, Delgado JM, Ramirez-Gutierrez CF, Ramirez-Cardona M, Millan-Malo BM, et al. Crystalline structures of the main components of starch. Current Opinion in Food Science. 2021;37(October 2020): 107–111. https://doi.org/10.1016/j.cofs.2020.10.002.spa
dc.relation.referencesGarcía NL, Ribba L, Dufresne A, Aranguren M, Goyanes S. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydrate Polymers. 2011;84(1): 203–210. https://doi.org/10.1016/j.carbpol.2010.11.024.spa
dc.relation.referencesMora-Palma RM, Martinez-Munoz PE, Contreras-Padilla M, Feregrino-Perez A, Rodriguez-Garcia ME. Evaluation of water diffusion, water vapor permeability coefficients, physicochemical and antimicrobial properties of thin films of nopal mucilage, orange essential oil, and orange pectin. Journal of Food Engineering. 2024;366(November 2023): 111865. https://doi.org/10.1016/j.jfoodeng.2023.111865.spa
dc.relation.referencesGONTARD N, DUCHEZ C, CUQ J ‐L, GUILBERT S. Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science & Technology. 1994;29(1): 39–50. https://doi.org/10.1111/j.1365-2621.1994.tb02045.x.spa
dc.relation.referencesDe P, Sintetizado B, De AP, De X, Paola T, Álvarez A, et al. Evaluación De La Biodegradabilidad De Una Película De. 2019.spa
dc.relation.referencesPineda-Gomez P, González NM, Contreras-Jimenez B, Rodriguez-Garcia ME. Physicochemical Characterisation of Starches from Six Potato Cultivars Native to the Colombian Andean Region. Potato Research. 2021;64(1): 21–39. https://doi.org/10.1007/s11540-020-09462-0.spa
dc.relation.referencesNazir M, Jhan F, Gani A, Gani A. Fabrication of millet starch nanocapsules loaded with beta carotene using acid hydrolysis and ultrasonication: Characterisation, release behaviour and bioactivity retention. Ultrasonics Sonochemistry. 2024;111(September): 107112. https://doi.org/10.1016/j.ultsonch.2024.107112.spa
dc.relation.referencesVázquez-Luna A, Santiago M, Rivadeneyra-Domínguez E, Díaz-Sobac R. Películas comestibles a base de almidón nanoestructurado como material de barrera a la humedad. CienciaUAT. 2019;13(2): 152. https://doi.org/10.29059/cienciauat.v13i2.1105.spa
dc.relation.referencesRamirez LMF, Rihouey C, Chaubet F, Le Cerf D, Picton L. Characterization of dextran particle size: How frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) coupled online with dynamic light scattering (DLS) leads to enhanced size distribution. Journal of Chromatography A. 2021;1653: 462404. https://doi.org/10.1016/j.chroma.2021.462404.spa
dc.relation.referencesChel-Guerrero L, Barbosa-Martín E, Martínez-Antonio A, González-Mondragón E, Betancur-Ancona D. Some physicochemical and rheological properties of starch isolated from avocado seeds. International Journal of Biological Macromolecules. 2016;86: 302–308. https://doi.org/10.1016/j.ijbiomac.2016.01.052.spa
dc.relation.referencesAraújo RG, Rodríguez-Jasso RM, Ruiz HA, Govea-Salas M, Rosas-Flores W, Aguilar-González MA, et al. Hydrothermal-microwave processing for starch extraction from Mexican avocado seeds: Operational conditions and characterization. Processes. 2020;8(7). https://doi.org/10.3390/pr8070759.spa
dc.relation.referencesRivera–González G, Amaya–Guerra CA, de la Rosa–Millán J. Physicochemical characterisation and in vitro Starch digestion of Avocado Seed Flour (Persea americana V. Hass) and its starch and fibrous fractions. International Journal of Food Science and Technology. 2019;54(7): 2447–2457. https://doi.org/10.1111/ijfs.14160.spa
dc.relation.referencesSusilowati E, Lestari AE. Preparation of chitosan-avocado seed starch (CASS) edible film as jenang dodol packaging. AIP Conference Proceedings. 2019;2194(December). https://doi.org/10.1063/1.5139855.spa
dc.relation.referencesMansaray KG, Ghaly AE. Thermogravimetric Analysis of Rice Husks in an Air Atmosphere. Energy Sources. 1998;20(7): 653–663. https://doi.org/10.1080/00908319808970084.spa
dc.relation.referencesAdair P, Sriprom P, Narkrugsa W, Phumjan L, Manamoongmongkol K, Permana L, et al. Preparation, characterization, and antimicrobial activity of xyloglucan-chitosan film from tamarind (tamarind indica L.) seed kernel. Progress in Organic Coatings. 2023;179(January): 107486. https://doi.org/10.1016/j.porgcoat.2023.107486.spa
dc.relation.referencesDutta P, Giri S, Giri TK. Xyloglucan as green renewable biopolymer used in drug delivery and tissue engineering. International Journal of Biological Macromolecules. 2020;160: 55–68. https://doi.org/10.1016/j.ijbiomac.2020.05.148.spa
dc.relation.referencesLiu C, Jiang S, Zhang S, Xi T, Sun Q, Xiong L. Characterization of edible corn starch nanocomposite films: The effect of self-assembled starch nanoparticles. Starch/Staerke. 2016;68(3–4): 239–248. https://doi.org/10.1002/star.201500252.spa
dc.relation.referencesRami G, Limbachiya P, Maradiya M, Acharya G. Next Nanotechnology Hydrophobic starch acetate nanoparticles : A biopolymer-based system for sustained antitubercular drug release. Next Nanotechnology. 2025;7(December 2024): 100120. https://doi.org/10.1016/j.nxnano.2024.100120.spa
dc.relation.referencesTester RF, Karkalas J, Qi X. Starch - Composition, fine structure and architecture. Journal of Cereal Science. 2004;39(2): 151–165. https://doi.org/10.1016/j.jcs.2003.12.001.spa
dc.relation.referencesPozo C, Rodríguez-Llamazares S, Bouza R, Barral L, Castaño J, Müller N, et al. Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research. 2018;25(12). https://doi.org/10.1007/s10965-018-1651-y.spa
dc.relation.referencesLin Q, Ji N, Li M, Dai L, Xu X, Xiong L, et al. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocolloids. 2020;104(February). https://doi.org/10.1016/j.foodhyd.2020.105760.spa
dc.relation.referencesSaidi L, Wang Y, Wich PR, Selomulya C. Polysaccharide-based edible films — strategies to minimize water vapor permeability. Current Opinion in Food Science. 2025;61: 101258. https://doi.org/10.1016/j.cofs.2024.101258.spa
dc.relation.referencesGuo Y, Liu M, Chuang R, Zhang H, Li H, Xu L, et al. Mechanistic applications of low-temperature plasma in starch-based biopolymer film : A review. Food Chemistry. 2025;479(February): 143739. https://doi.org/10.1016/j.foodchem.2025.143739.spa
dc.relation.referencesThakkar A, Patel B, Sahu SK, Yadav VK, Patel R, Sahoo DK, et al. Potato starch bioplastic films reinforced with organic and inorganic fillers: A sustainable packaging alternative. International Journal of Biological Macromolecules. 2025;306(P2): 141630. https://doi.org/10.1016/j.ijbiomac.2025.141630.spa
dc.relation.referencesZhang W, Azizi-Lalabadi M, Jafarzadeh S, Jafari SM. Starch-gelatin blend films: A promising approach for high-performance degradable food packaging. Carbohydrate Polymers. 2023;320(June): 121266. https://doi.org/10.1016/j.carbpol.2023.121266.spa
dc.relation.referencesLi Y, Wang H, Li Y, Wen H, Huang H, Huang Z, et al. Preparation of nano-Ag-Bi2WO6–TiO2/starch bionanocomposite membranes and mechanism of enhancing visible light degradation of ethylene. Ceramics International. 2023;49(19): 30989–30998. https://doi.org/10.1016/j.ceramint.2023.06.298.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalNanopartículasspa
dc.subject.proposalAlmidónspa
dc.subject.proposalSemilla de aguacatespa
dc.subject.proposalXiloglucanospa
dc.subject.proposalBiopelículasspa
dc.subject.proposalNanoparticleseng
dc.subject.proposalStarcheng
dc.subject.proposalAvocado seedeng
dc.subject.proposalXyloglucaneng
dc.subject.proposalBiofilmseng
dc.subject.unescoNanotecnologíaspa
dc.subject.unescoNanotechnologyeng
dc.subject.unescoPropiedad químicaspa
dc.subject.unescoChemical propertieseng
dc.subject.unescoMicroscopiospa
dc.subject.unescoMicroscopeseng
dc.subject.unescoRayos Xspa
dc.subject.unescoX-rayseng
dc.titleSíntesis y caracterización de nanopartículas de almidón de semilla de aguacate Hass para su utilización en el desarrollo de biopelículasspa
dc.title.translatedSynthesis and characterization of Hass avocado seed starch nanoparticles for use in the development of biofilmseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053856412.2025.pdf
Tamaño:
1.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: