Respuestas hematológicas a la práctica de canotaje en hipoxía

dc.contributor.advisorCristancho, Edgar
dc.contributor.advisorMancera Soto, Érica Mabel
dc.contributor.authorRojas Mosquera, Lasnier Giovanni Washide
dc.date.accessioned2024-07-31T15:13:32Z
dc.date.available2024-07-31T15:13:32Z
dc.date.issued2024-01-01
dc.descriptionilustraciones, diagramasspa
dc.description.abstractDebido a que el canotaje en el país ha sido de corta práctica no ha existido interés por caracterizar hematológicamente la disciplina. Objetivos: Determinar la respuesta de variables hematológicas y antropométricas que genera la práctica de canotaje en hipoxia. Diseño: Se realizó un estudio observacional transversal mediante el método de re-inhalación de monóxido de carbono para estimar las variables hematológicas como concentración de Hemoglobina [Hb], Hematocrito (Hct), masa total de Hemoglobina (Hbt). Las variables anteriores fueron conjugadas para estimar el volumen de eritrocitos (VE), volumen de plasma (VP) y volumen de sangre (VS). Variables antropométricas de Masa Muscular (MM) y % tejido muscular (TM) fueron determinadas mediante análisis de cuatro componentes; se aplicó estadística descriptiva, valores promedios, desviación estándar estimando el coeficiente de Spearman y valor de p. Lugar: Se llevo a cabo en la ciudad de Bogotá, en la liga de canotaje ubicada en el parque metropolitano Simón Bolívar. Población: deportistas de canotaje entre los 14 años y 26 años. Mediciones: Se determinaron las variables hematológicas. así como variables antropométricas;. Resultados: La Hbt y los volúmenes sanguíneos presentan fuerte y positiva correlación con MM. La sobreestimación del valor de MM no elimina la correlación sino los valores absolutos de las variables. Del mismo modo, las variables antropométricas evidenciaron respuestas de normalidad para el rango de edad y curva de crecimiento dados por la OMS, por otro lado, la variable de % tejido muscular, presento un valor elevado para la edad de los participantes. Conclusiones: Los valores de Hct y [Hb] de los deportistas de canotaje presentan rangos de variación normal, para la edad y el grado de hipoxia altitudinal. Los niveles de Hbt y volúmenes sanguíneos son superiores a los de la población no entrenada, pero relativamente bajos para la disciplina, debido al corto tiempo de permanencia en el deporte. (Texto tomado de la fuente)spa
dc.description.abstractObjectives: Determine the response of hematological and anthropometric variables that generate the practice of canoeing in hypoxia. Design: A cross- sectional observational study was carried out, where the carbon monoxide re-inhalation method was applied to estimate the hematological variables and four- component analysis for the anthropometric variables, descriptive statistics were applied through frequency tables, measurements of trend. central estimating the Spearman coefficient and p value (alpha of 0.005). Place: It took place in the city of Bogotá, in the canoeing league located in the Simón Bolívar metropolitan park. Population: canoe athletes between 14 years and 26 years old. Measurements: Hematological variables were estimated; Hb, Hbt, VE, VS; VP, Hct, and anthropometric variables; height, weight, BMI, Muscle Weight and % muscle tissue. Main results: Hbt and MM, as well as VE vs MM, presented significant statistics with a p value of 0.001 and the VS vs MM variables had a strong weighting. Likewise, the anthropometric variables in the face of chronic hypoxic canoeing showed normal responses for the age range and growth curve data from the WHO. On the other hand, the % muscle tissue variable presented a high value for the age of the participants. Conclusions: Hematological responses in canoeing resemble other endurance sports disciplines in conditions of hypoxia, and anthropometrically they present characteristics within the sports modality that are close to other countries in Latin America and Europe.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Fisioterapia del Deporte y la Actividad Físicaspa
dc.description.methodsObservacional descriptivospa
dc.description.researchareaAdaptación A La Hipoxia Y Al Ejerciciospa
dc.format.extentx, 45 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86663
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisioterapia del Deporte y la Actividad Físicaspa
dc.relation.references1. Página web de la secretaria de cultura recreación y deporte de Bogotá. https://www.culturarecreacionydeporte.gov.co. Consultada 27.06.2019.spa
dc.relation.references2. Böning D., Rojas J., Serrato M., Ulloa C., Coy L., Mora M., Gomez J., Hütler M. Hemoglobin mass and peak oxygen uptake in untrained and trained residents of moderate altitude. Int. J. Sport. Med. 2001;22 :572-8.spa
dc.relation.references3. Böning D., Cristancho E., Serrato M., et al. Hemoglobin mass and peak oxygen uptake in untrained and trained female altitude residents. Int J Sports Med. 2004;25: 1- 9.spa
dc.relation.references4. Schmidt W., Heinicke K., Rojas J., Gomez J. M., Serrato M, Mora M, Wolfarth B, Schmid A, Keul J. Blood volume and hemoglobin mass in endurance athletes from moderate altitude. Med. Sci. Sports Exerc. 2002; 34:1934-40.spa
dc.relation.references5. Cristancho E., Reyes O., Serrato M., et al. Arterial oxygen saturation and Hemoglobin mass in postmenopausal untrained and trained altitude residents. High Alt. Med. Biol. 2007; 8:296 – 306spa
dc.relation.references6. Lakomy H.K.A. & Lakomy J. Estimation of maximum oxygen uptake from submaximal exercise on a Concept II rowing ergometer. J. Sport Sci, 1993; 11:227-32.spa
dc.relation.references7. Bielik V., Lendvorsk L., Lengvarsk L., Lopa T. P., et al. Road to the Olympics: physical fitness of medalists of the Canoe Sprint Junior European and World Championship events over the past 20 years. J. Sport Med. Phys. Fit. 2018; 58:768-77.spa
dc.relation.references8. Larsen H. B., & Sheel A. W. The Kenyan runners. Scand. J. Med. Sci. Sports 2015: 25 (Suppl. 4): 110–118.spa
dc.relation.references9. Fulco C.S., Rock P.B. and Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat. Space Environ. Med. 1998,69:793 – 801.spa
dc.relation.references10. Kendall K. L., Fukuda D.H., Smith A.E., et al. Predicting maximal aerobic capacity (VO2max from the critical velocity test in female collegiate rowers. J. Strength Cond. Res. 2012, 26:733-8.spa
dc.relation.references11. Cosgrove M.J., Wilson J., Watt D., and Grant S.F. The relationship between selected Physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. J. Sport Sci. 1999; 17:845 – 52.spa
dc.relation.references12. Coyle E.F. Integration of Physiological factors determinig endurance performance ability. Exerc. Sport Sc. Rev. 1995; 23:25 – 64.spa
dc.relation.references13. Yoshiga C. & Higuchi M. Oxygen uptake and ventilation during rowing and running in females and males. Scand J Med Sci Sports 2003: 13: 359 –363.spa
dc.relation.references14. Londerre B.R., Thomas T.R., ZIogas G et al. %V O2 max vs %HRmax regressios for six modes of exercise. Med. Sci. Sports Exerc. 1995,27:458 – 461.spa
dc.relation.references15. Calbet J.A., Holmberg H.-C., and H. Rosdahl. Why do arms extract less oxygen than legs during exercise? Am J Physiol 2005, 289: R1448–R1458.spa
dc.relation.references16. Schmidt W., Prommer N. The optimised CO-rebreathing method: a new tool to determine total hemoglobin mass routinely. Eur. J. Appl Physiol 2005, 95:486 – 495.spa
dc.relation.references17. Hütler M., Beneke R., Böning D. (two thousand) Determination of circulating hemoglobin mass and related quantities by using capillary blood. Med. Sci. Sports Exerc. 32-1024-1027.spa
dc.relation.references18. Burge C.M. & Skinner S.I. Determination of hemoglobin mass and blood volumen with CO: evaluation and application of a method. J. Appl. Physiol. 1995;79: 623-631.spa
dc.relation.references19. Gregersen m. I., Rawson R. A. Blood volume. Physiol. Rev. 1959; 39:307-42.spa
dc.relation.references20. Dijkhuizen P., Buursma A., Fogers T.M. et al. The oxygen binding capacity of human haemoglobin. Hüfner's factor redetermined. Pflugers Arch. 1977,369:223-31.spa
dc.relation.references21. Bailey D, Willie C, Hoiland R, Bain A, MacLeod D, Santoro M et al. Surviving Without Oxygen: How Low Can the Human Brain Go? High Altitude Medicine & Biology. 2017;18(1):73-79.spa
dc.relation.references22. Bonetti D, Hopkins W, Kilding A. High-Intensity Kayak Performance after Adaptation to Intermittent Hypoxia. International Journal of Sports Physiology and Performance. 2006;1(3):246-260.spa
dc.relation.references23. Czuba M, Wilk R, Karpiński J, Chalimoniuk M, Zajac A, Langfort J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLOS ONE. 2017;12(8): e0180380.spa
dc.relation.references24. Hess H, Hostler D. Respiratory Muscle Training Effects on Performance in Hypo- and Hyperbaria. Aerospace Medicine and Human Performance. 2018;89(11):996-1001.spa
dc.relation.references25. Sheykhlouvand M, Gharaat M, Khalili E, Agha-Alinejad H, Rahmaninia F, Arazi H. Low-Volume High-Intensity Interval Versus Continuous Endurance Training. Journal of Strength and Conditioning Research. 2018;32(7):1852- 1860.spa
dc.relation.references26. García-Ramos A, Štirn I, Padial P, Argüelles-Cienfuegos J, De la Fuente B, Strojnik V et al. The maximal mechanical capabilities of leg extensors muscles to generate velocity and power improve at altitude. Journal of Strength and Conditioning Research. 2016;1.spa
dc.relation.referencesVargas Pinilla O. Exercise and Training at Altitudes: Physiological Effects and Protocols. Ciencias de la Salud [Internet]. 2014;12(1):115-130. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692- 72732014000100008spa
dc.relation.referencesNakamura F, Borges T, Sales O, Cyrino E, Kokubun E. Estimativa do custo energético e contribuição das diferentes vias metabólicas na canoagem de velocidade. Revista Brasileira de Medicina do Esporte. 2004;10(2):70-77.spa
dc.relation.references29. Alacid F, Muyor J, Alvero-Cruz J, Isorna M, López-Miñarro P. Índices Antropométricos en Canoístas de Elite Jóvenes de Aguas Tranquilas. International Journal of Morphology. 2012;30(2):583-587.spa
dc.relation.references30. Almonacid Fierro M, Urzua Alul L. Impacto del suministro de monohidrato de creatina en deportistas de canotaje / The impact of the supply of creatine monohydrate in canoeing athletes. Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte. 2016;2(1):1.spa
dc.relation.references31. Girard O, Brocherie F, Millet G. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Medicine. 2017;47(10):1931-1949.spa
dc.relation.references32. Treff G. [Internet]. 2019 [cited 6 June 2019]. Available from: https://www.researchgate.net/profile/Gunnar_Treff/publication/261748332_I mpact_of_insidious_gastrointestinal_blood_loss_on_endurance_performan ce_in_an_elite_rower/links/5601921108ae42bbd541c690.pdf?origin=public ation_detail.spa
dc.relation.references33. Lee B, Thake C. Physiological Responses to Treadmill Running with Body Weight Support in Hypoxia Compared With Normoxia. Journal of Sport Rehabilitation. 2018;27(3):224-229.spa
dc.relation.references34. Hauser A, Troesch S, Saugy J, Schmitt L, Cejuela-Anta R, Faiss R et al. Individual hemoglobin mass response to normobaric and hypobaric “live high–train low”: A one-year crossover study. Journal of Applied Physiology. 2017;123(2):387-393.spa
dc.relation.references35. Addinsoft. (1995-2023). XLSTAT. Statistical Software. BroNY, USA: Addinsoft, Inc.spa
dc.relation.references36. Addinsoft. (1995-2023). XLSTAT. Statistical Software. BroNY, USA: Addinsoft, Inc.spa
dc.relation.references37. Retamales Muñoz F, Valle Parodi R. Composición corporal Y Somatotipo de deportistas de alto rendimiento de la disciplina canotaje en la Región del Bio Bio, Chile. Journal of Movement & Health. 2015;16(2). doi:10.5027/jmh- vol16-issue2(2015) art88spa
dc.relation.references38. Alacid F, Muyor JM, Alvero-Cruz JR, Isorna M, López-Miñarro PÁ. Índices antropométricos en canoístas de elite Jóvenes de Aguas tranquilas. International Journal of Morphology. 2012;30(2):583–7. doi:10.4067/s0717- 95022012000200037spa
dc.relation.references39. Alacid F, Muyor JM, Vaquero R, López-Miñarro PÁ. Características Morfológicas y maduración en mujeres kayakistas jóvenes de aguas tranquilas y slalom. International Journal of Morphology. 2012;30(3):895– 901. doi:10.4067/s0717-95022012000300022spa
dc.relation.references40. Hagner-Derengowska M, Hagner W, Zubrzycki I, Krakowiak H, Słomko W, Dzierżanowski M, et al. Body structure and composition of canoeists and kayakers: Analysis of junior and teenage polish national canoeing team. Biology of Sport. 2014;31(4):323–6. doi:10.5604/20831862.1133937spa
dc.relation.referencesGutiérrez-Leyton L, Zavala-Crichton J, Fuentes-Toledo C, Yáñez- Sepúlveda R. Características Antropométricas y somatotipo en Seleccionados Chilenos de Remo. International Journal of Morphology. 2020;38(1):114–9. doi:10.4067/s0717-95022020000100114spa
dc.relation.referencesCoufalová K, Busta J, Cochrane DJ, Bíly M. Morphological characteristics of European slalom canoe and Kayak Paddlers. International Journal of Morphology. 2021;39(3):896–901. doi:10.4067/s0717-95022021000300896spa
dc.relation.references43. Merea Longa FF. Necesidades del Proceso de Abastecimiento de insumos alimenticios en los comedores Principales de los eventos panamericanos Y parapanamericanos lima 2019. doi: 10.26439/ulima.tesis/11228spa
dc.relation.references44. Orrego ML. Hematocrite and hemoglobine values in sportsmen assessed at the Sports Institute of Medellin, Colombia. Red de Revistas Científicas de América Latina, el Caribe, España y Portugal. 2007 oct 1; 32:196–205.spa
dc.relation.references45. Heinicke K, Wolfarth B, Winchenbach P, Biermann B, Schmid A, Huber G, et al. Blood volume and hemoglobin mass in elite athletes of different disciplines. International Journal of Sports Medicine. 2001;22(7):504–12. doi:10.1055/s-2001-17613spa
dc.relation.references46. Treff G. Impact of insidious gastrointestinal blood loss on endurance performance in an elite rower. 2014 jun 1; 54:335–9.spa
dc.relation.references47. Bonilla JF. Respuesta hematológica al ejercicio. Scielo. 2005 Dec 1;3.spa
dc.relation.references48. Li L, Wong SH-S, Sun F-H. Effects of protein addition to carbohydrate– electrolyte solutions on postexercise rehydration. Journal of Exercise Science & Fitness. 2015;13(1):8–15. doi: 10.1016/j.jesf.2014.11.001spa
dc.relation.references49. Lopez JO. Hematological study in school athletes of the EIDE “Pedro Batista”. Granma. Macrocycle 2014- 2015. Revista de la Facultad de Cultura Física de la Universidad de Granma. 2018 nov 12;16.spa
dc.relation.references50. Mancera-Soto EM, Ramos-Caballero DM, Rojas J. JA, Duque L, Chaves- Gomez S, Cristancho-Mejía E, et al. Hemoglobin Mass, blood volume and VO2max of trained and untrained children and adolescents living at different altitudes. Frontiers in Physiology. 2022;13. doi:10.3389/fphys.2022.892247spa
dc.relation.references51. Mancera‐Soto E, Ramos‐Caballero DM, Magalhaes J, Chaves Gomez S, Schmidt WF, Cristancho‐Mejía E. Quantification of testosterone‐dependent erythropoiesis during male puberty. Experiment. Physiol. 2021;106(7):1470–81. doi:10.1113/ep089433spa
dc.relation.references52. HUtLER M, BENEKE R, B??NING D. Determination of circulating hemoglobin mass and related quantities by using capillary blood. Medicine & Science in Sports & Exercise. 2000;1024–7. doi:10.1097/00005768-200005000-00022.spa
dc.relation.references53. Aguirre Siancas, E.E. (2014) ‘Influencia de la hipoxia sobre el metabolismo óseo. ROL central del factor inducible por hipoxia’, An. Fac. Med., 74(4), p. 321. doi:10.15381/anales. v74i4.2706.spa
dc.relation.references54. Ichijima T, Matsuzaka K, Tonogi M, Yamane GY, Inoue T. Osteogenic differences in cultured rat periosteal cells under hypoxic and normal conditions. Exp. Ther. Med. 2012;3(2):165-70.spa
dc.relation.references55. Vogt, M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler M. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173-82.spa
dc.relation.references56. Stupin M, Stupin A, Rasic L, Cosic A, Kolar L, Seric V, et al. Acute exhaustive rowing exercise reduces skin microvascular dilator function in young adult rowing athletes. Eur. J. Appl. Physiol. 2017;118(2):461–74. doi:10.1007/s00421-017-3790-y.spa
dc.relation.references57. Santos D. A.,. Dawson J.A.,. Matias C.N. y cols. Reference Values for Body Composition and Anthropometric Measurements in Athletes, PLoS ONE 9(5): e97846. doi: 10.1371/journal.pone.0097846.spa
dc.relation.references58. Aguilar de Plata A., Pradilla A., Mosquera M., y col. Centile values for anthropometric variables in Colombian adolescents. Endocrinol. Nutr. 58(1): 16 – 23, 2011.spa
dc.relation.references59. Malina R.M. Body Composition in Athletes: Assessment and Estimated Fatness, Clin. Sport. Med. (26):37 – 68, 2007.spa
dc.relation.references60. Penichet-Tomas A., Pueo B., Selles-Perez S and M. Jimenez-Olmedo J.,, Analysis of Anthropometric and Body Composition Profile in Male and Female Traditional Rowers. Int J Environ Res Public Health. 18: 1-11, 2021.spa
dc.relation.references61. Muncker R. Hematology, Biology and Clinical Managment, Juman Press, 2d ed, 2007.spa
dc.relation.references62. Gutiérrez-Leyton, L., Zavala-Crichton, J., Fuentes-Toledo, C., & Yáñez-Sepúlveda R. Características Antropométricas y Somatotipo en Seleccionados Chilenos de Remo. 38(1):114-119, 2020.spa
dc.relation.references63. Kerr D. B. An anthropometric method for fractionation of skin, adipose, bone, muscle and residual tissue masses in males and females age 6 to 77 years. Thesis in partial fullfilment of the requirements for the degree of Master of Sciences in the School of Kinesiology. Curtin University of Technology Western Australia, 1988. 170 pags.spa
dc.relation.references64. Royal J.T., Fisher J.T., Mlinar T.,, Mekjavic I.B y cols. Validity and reliability of capillary vs. Venous blood for the assessment of haemoglobin mass and intravascular volumes. Front Physiol. 2022 doi: 10.3389/fphys.2022.1021588.spa
dc.relation.referencesCanda A. Study of the anthropometric indices of muscle mass in different sports modalities of all genders. Anthropol. Anz. 81:121–129, 2024.spa
dc.relation.references66. Hunding A., Jordal R., and Paulev P-E. Runner’s Anemia and Iron Deficiency. Acta Med. Scand. 209: 315-318, 1981.spa
dc.relation.references67. Treff G., Schmidt W., Wachsmuth N., Völzke C., Steinacker J. M. Total Haemoglobin Mass, Maximal and Submaximal Power in Elite Rowers. Int. J. Sport Med. 35: 571 – 74, 2014.spa
dc.relation.references68. Heinicke K., Wolfarth B., Winchenbach P., Biermann B. y cols. Blood Volume and Hemoglobin Mass in Elite Athletes of Different Disciplines. Int. J. Sport Med. 22: 504 – 512, 2001.spa
dc.relation.references69. BUONO M., SJOHOLM N. (1988) Effect of physical training on peripheral sweat production. J. Appl. Physiol. 65:811-814.spa
dc.relation.references70. Penichet-Tomas A., Pueo B., Selles-Perez S., and Jimenez-Olmedo J.M. Analysis of Anthropometric and Body Composition Profile in Male and Female Traditional Rowers. Int. J. Environ. Res. Pub. Health. 18: 1–11, 2021.spa
dc.relation.references71. Bajaa B. Einfluss von Kraft- und Ausdauertraining auf das Blutvolumen und die totale Hämoglobinmenge. Tesis doctoral. Bayreuth Univesität, Alemania. 2012, 175 pag.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.decsAntropometría
dc.subject.decsAnthropometry
dc.subject.decsHipoxia
dc.subject.proposalHipoxiaspa
dc.subject.proposalHematologíaspa
dc.subject.proposalAntropometríaspa
dc.subject.proposalCanotajespa
dc.subject.proposalMasa total de Hemoglobinaspa
dc.subject.proposalHematocritospa
dc.subject.proposalComposición corporalspa
dc.subject.proposalHypoxiaeng
dc.subject.proposalHematologyeng
dc.subject.proposalAnthropometryeng
dc.subject.proposalBoatingeng
dc.subject.proposalTotal hemoglobin masseng
dc.subject.proposalHematocriteng
dc.subject.proposalBody compositioneng
dc.subject.wikidatacanoeingspa
dc.subject.wikidatacanotajeeng
dc.titleRespuestas hematológicas a la práctica de canotaje en hipoxíaspa
dc.title.translatedHematological responses to the practice of canoeing in hypoxiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
HEMATOLOGICAL RESPONSES TO THE PRACTICE OF CANOEING IN HYPOXIA..pdf
Tamaño:
924.98 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Fisioterapia Del Deporte y La Actividad Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: