Separación de Delta 9-Tetrahidrocannabinol de extractos de Cannabis sativa L. por cromatografía de partición centrífugal a escala industrial

dc.contributor.advisorGil Chaves, Iván Darío
dc.contributor.advisorSánchez Correa, César Augusto
dc.contributor.authorGallo Molina, Ada Carolina
dc.contributor.orcidGallo Molina, Ada Carolina [0000000342358193]
dc.coverage.countryColombia
dc.date.accessioned2026-02-05T13:15:41Z
dc.date.available2026-02-05T13:15:41Z
dc.date.issued2026
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractLa industria del cannabis medicinal se expande rápidamente y ya tiene un impacto económico y regulatorio tangible en Colombia. Para 2025, la Junta Internacional de Fiscalización de Estupefacientes (JIFE) asignó al país una cuota de 85.955,64 kg de cannabis para fines médicos y científicos (aprox. 86 toneladas métricas), lo que ubica a Colombia entre los principales productores y conlleva una alta responsabilidad de cumplir las regulaciones internacionales sobre el control, la trazabilidad y la calidad de los productos derivados del cannabis. En este contexto, esta tesis presenta un enfoque integrado para el diseño y la operación de procesos preparativos de separación de cannabinoides mediante cromatografía de particición centrífuga (CPC), orientado a la remoción de Delta-9-tetrahidrocannabinol (Delta-9-THC) y a la purificación selectiva de cannabidiol (CBD), cannabigerol (CBG) y cannabicromeno (CBC). La propuesta articula, de manera coherente, fundamentos conceptuales sobre la planta de cannabis, modelación termodinámica del equilibrio líquido–líquido (ELL) aplicada a procesos de separación de cannabinoides, una metodología alternativa para la selección del sistema bifásico y pruebas experimentales en dos escalas orientadas a obtener productos libres de Delta-9-THC (formulaciones de espectro amplio / Broad Spectrum). Se seleccionó el sistema heptano/etanol/agua (HEtWat) como plataforma de solventes por su desempeño, seguridad y alineación normativa. Para comprender y predecir su comportamiento en presencia de cannabinoides, se midió experimentalmente el equilibrio líquido–líquido del sistema multicomponente agua/etanol/heptano/Delta-9-THC/CBD a 282,15; 285,15 y 288,15 K, bajo presión atmosférica, en mezclas con una relación CBD:Delta-9-THC aproximada de 10:1. Los solventes se cuantificaron mediante GC-FID/TCD y los cannabinoides mediante HPLC-DAD. La correlación de los datos se realizó con un cálculo flash isotérmico acoplado al algoritmo de Rachford–Rice y al modelo NRTL, implementado en un código propio en MATLAB. Así, se estimaron para todas las parejas de componentes los parámetros Aij y Bij (energías de interacción) y alfaij (parámetro de no aleatoriedad). Su disponibilidad es clave para el diseño y el escalado de procesos en simuladores como Aspen Plus y herramientas afines. La calidad y coherencia termodinámica de los parámetros se verificó mediante análisis gráficos y numéricos complementarios: se calcularon superficies de la energía libre de Gibbs de mezcla reducida (Delta G de mezcla / RT); se aplicó el criterio de tangente común en subsistemas binarios y ternarios; se ejecutó la prueba de estabilidad de Michelsen; y se compararon los diagramas construidos con parámetros predeterminados de Aspen Plus v12 frente a los parámetros ajustados en este trabajo. La representación de Delta G de mezcla / RT en función de la fracción de la fase alfa, superpuesta con las líneas experimentales de ELL, brindó una evaluación final de consistencia termodinámica de los parámetros obtenidos. Con los parámetros ajustados, se verificó la solubilidad de los cannabinoides en los solventes seleccionados y, mediante diagramas ternarios, se acotó racionalmente la subregión bifásica con mayor probabilidad de éxito para separar CBD y Delta-9-THC. Los sistemas candidatos se evaluaron mediante el cálculo de los coeficientes de partición (K, método shake-flask) y del factor de separación (alfa). Este filtro termodinámico, junto con criterios operativos, condujo a ensayos en un CPC-250 de laboratorio comparando los modos ascendente (fase móvil orgánica) y descendente (fase móvil acuosa). Se definió el sistema HEtWat 4,6/3,5/1 (v/v/v) para las siguientes pruebas en equipos CPC. Para demostrar la versatilidad de la estrategia, se trabajó con materias primas obtenidas industrialmente: (i) full spectrum producido mediante SFE con CO2 y winterización; (ii) destilados de full spectrum para quimiotipos I y III; y (iii) licor madre proveniente de la cristalización de CBD. Esta diversidad de matrices permitió definir las condiciones en que cada objetivo es más factible: HEtWat 4,6/3,5/1 (v/v/v) en modo descendente se perfila como idóneo para obtener THC-free en quimiotipo III, mientras que el modo ascendente aplicado al destilado de quimiotipo I habilita la purificación de Delta-9-THC en una sola corrida cromatográfica, alcanzando purezas del 98,3% en fracciones definidas y concentrando CBN en fracciones posteriores. Las pruebas en el equipo industrial se realizaron en un rCPC de 2 L con fases premezcladas y decantadas e inyección de la muestra preparada en la fase orgánica (por solubilidad y K). Un ensayo descendente inicial estimó una retención de fase estacionaria aproximada del 67%, confirmando la estabilidad del rotor con el sistema de solventes en la composición seleccionada. Con un diseño factorial 2×3×2 (150–200 mL/min; 0,40–0,52 min; 0,4 g/mL), se descartaron combinaciones poco productivas o que excedían límites operativos (por ejemplo, más de 50 g por loop). Las cargas entre 31 y 41 g ofrecieron el mejor compromiso entre productividad y separación. En pruebas en el equipo industrial, una carga de 41,4 g por loop permitió recuperar el 93% de la masa y producir 90,7 g de un producto Broad Spectrum con 55,18 g de CBD y una masa de Delta-9-THC de 0,08 g (rendimiento 73%). En una corrida extendida de 25 loops con una carga inferior (32 g por loop; total 800 g de full spectrum), con el fin de contar con un producto competitivo en mercados internacionales, se alcanzó una recuperación global del 97,9% en 9,16 h; las fracciones F2–F7 integradas aportaron 613 g (78%) con CBD mayor al 80% y Delta-9-THC menor al 0,05%; el 85,3% del Delta-9-THC eluyó en F9–F10 y el CBC quedó mayoritariamente en residuos/extrusión. En conjunto, la estrategia basada en el estudio termodinámico de la separación de cannabinoides en el sistema de solventes seleccionado (ajuste de parámetros NRTL en un sistema multicomponente) y una metodología experimental consistente en dos escalas habilita procesos reproducibles y transferibles para obtener THC-free alineado con la regulación y, cuando se requiere, para la purificación eficiente de Delta-9-THC. Como recomendación operativa, se propone trabajar en torno a 200 mL/min, 0,40–0,46 min, 0,4 g/mL y aproximadamente 32–37 g por loop, ajustando el modo (ascendente/descendente) a la matriz y al objetivo del proceso. (Texto tomado de la fuente)spa
dc.description.abstractThe medical cannabis industry is expanding rapidly and already has a tangible economic and regulatory impact in Colombia. For 2025, the International Narcotics Control Board (INCB) assigned the country a quota of 85,955.64 kg of cannabis for medical and scientific purposes (≈ 86 metric tonnes), placing Colombia among the leading producers and entailing a high responsibility to comply with international regulations on the control, traceability, and quality of cannabis-derived products. In this context, this thesis presents an integrated approach to the design and operation of preparative cannabinoid separation processes using centrifugal partition chromatography (CPC), aimed at removing ∆9-tetrahydrocannabinol (∆9-THC) and selectively purifying cannabidiol (CBD), cannabigerol (CBG), and cannabichromene (CBC). The approach coherently brings together conceptual foundations on the cannabis plant, liquid--liquid equilibrium (LLE) thermodynamic modeling applied to cannabinoid separation, an alternative methodology for biphasic system selection, and two-scale experimental trials oriented toward obtaining ∆9-THC-free products (broad-spectrum formulations). The heptane/ethanol/water system (HEtWat) was selected as the solvent platform due to its performance, safety, and regulatory alignment. To understand and predict its behavior in the presence of cannabinoids, liquid--liquid equilibrium (LLE) of the multicomponent water/ethanol/heptane/∆9-THC/CBD system was measured experimentally at 282.15, 285.15, and 288.15 K under atmospheric pressure, using mixtures with a CBD:∆9-THC ratio of ≈ 10:1. Solvents were quantified by GC-FID/TCD, and cannabinoids by HPLC-DAD. Data correlation was performed using an isothermal flash calculation coupled with the Rachford--Rice algorithm and the NRTL model, implemented in an in-house MATLAB code. Thus, for all component pairs, the Aij and Bij interaction-energy parameters and the αij nonrandomness parameter were estimated. Their availability is essential for process design and scale-up in simulators such as Aspen Plus and related tools. Thermodynamic quality and coherence of the parameters were verified using complementary graphical and numerical analyses: reduced Gibbs free energy of mixing surfaces (∆GM/RT) were computed; the commontangent criterion was applied in binary and ternary subsystems; the Michelsen stability test was performed; and diagrams built with Aspen Plus v12 default parameters were compared against those generated with the fitted parameters of this work. Plotting ∆GM/RT as a function of φ (alpha-phase fraction) and superposing experimental LLE tie-lines provided a final assessment of thermodynamic consistency. With the fitted parameters, cannabinoid solubility in the selected solvents was verified. Ternary diagrams were then used to rationally delimit the biphasic subregion with the highest likelihood of successfully separating CBD and ∆9-THC. Candidate systems were evaluated by measuring partition coefficients (K, shake-flask ) and the separation factor (α). This thermodynamic filter, together with operational criteria, led to trials on a CPC-250 laboratory unit comparing ascending (organic mobile phase) and descending (aqueous mobile phase) modes. HEtWat 4.6/3.5/1 (v/v/v) was selected for subsequent tests on CPC equipment. To demonstrate strategy versatility, industrially sourced feeds were processed: (i) full spectrum (FS) produced via CO2 SFE and winterization; (ii) FS distillates for chemotypes I and III; and (iii) mother liquor from CBD crystallization. This diversity of matrices allowed defining the conditions under which each objective is more feasible: HEtWat 4.6/3.5/1 (v/v/v) in descending mode is suitable for THC-free products in chemotype III, whereas ascending mode applied to chemotype-I distillate enables one-pass ∆9-THC purification, reaching 98.3 % purity in defined fractions and concentrating CBN in later fractions. Trials on an industrial CPC unit (rCPC, 2 L) were conducted with pre-mixed and decanted phases and the sample prepared in the organic phase (based on solubility and K). An initial descending-mode test estimated Sf ≈ 67 %, confirming rotor stability for the selected solvent composition. Using a 2 × 3 × 2 factorial design (150--200 mL·min−1 ; 0.40--0.52 min; 0.4 g·mL−1 ), combinations that were unproductive or exceeded operating limits (e.g., > 50 g per loop) were discarded. Loads between 31 and 41 g offered the best compromise between productivity and separation. In trials on the industrial unit, a 41.4 g-per-loop load enabled 93 % mass recovery and yielded 90.7 g of a broad-spectrum product with 55.18 g of CBD and a mass of 0.08 g of ∆9-THC (73 % yield). In an extended 25-loop campaign with a lower load (32 g per loop; total 800 g FS), targeting a product competitive in international markets, an overall recovery of 97.9 % was achieved in 9.16 h; pooled F2--F7 provided 613 g (78 %) with CBD > 80 % and ∆9-THC < 0.05 %; 85.3 % of ∆9-THC eluted in F9--F10, and CBC was largely found in residues/extrusion. Taken together, the strategy—thermodynamic study of cannabinoid separation in the selected solvent system (NRTL parameter fitting for a multicomponent system) plus a consistent two-scale experimental methodology—enables reproducible and transferable processes to obtain THC-free products aligned with regulatory requirements and, when needed, efficient ∆9-THC purification. As an operational recommendation, work around 200 mL·min−1 , 0.40--0.46 min, 0.4 g·mL−1, and approximately 32--37 g per loop, adjusting the operating mode (ascending/descending) to the feed matrix and process objective.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctora en Ingeniería Química
dc.description.methodsEn este trabajo se establece una metodología robusta
dc.description.researchareaProcesos Químicos y Bioquímicos
dc.format.extentxvi, 95 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89397
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.relation.referencesDavid J. Newman and Gordon M. Cragg. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, 3 2020. ISSN 15206025.
dc.relation.referencesHui Chen Lu and Ken Mackie. Review of the endocannabinoid system, 6 2021. ISSN 24519030.
dc.relation.referencesMerlin M. D. Archaeological evidence for the tradition of psychoactive plant use in the old world. 57:295--323, 2003.
dc.relation.referencesUnited Nations Office on Drugs and Crime. Terminology and information on drugs, volume V.03-86493. 2003. ISBN 9211481635. doi: E.03.XI.14. URL http://www.unodc.org/pdf/publications/report_2003-09-01_1.pdf
dc.relation.referencesEthan B. Russo. History of cannabis and its preparations in saga, science, and sobriquet, volume 4, pages 1614--1648. 2007. doi: 10.1002/cbdv.200790144.
dc.relation.referencesMahmoud A. ElSohly. Chemical constituents of Cannabis. 2013. ISBN 9780203479506.
dc.relation.referencesMarcus Schley, Andreas Legler, Gisela Skopp, Christoph Konrad, and Roman Rukwied. Delta - 9-thc based monotherapy in fibromyalgia patients on experimentally induced pain , axon reflex flare , and pain relief. Current Medical Research and Opinion®, 22:1269--1276, 2006. doi: 10.1185/030079906X112651
dc.relation.referencesJeremy R Johnson and M B Chb. An open-label extension study to investigate the long-term safety and tolerability of thc / cbd oromucosal spray and oromucosal thc spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. Journal of Pain and Symptom Management, 46:207--218, 2013. ISSN 0885-3924. doi: 10.1016/j.jpainsymman.2012.07.014. URL http://dx.doi.org/10.1016/j.jpainsymman.2012.07.014.
dc.relation.referencesAlexia Blake, Bo Angela Wan, Leila Malek, Carlo Deangelis, Patrick Diaz, Nicholas Lao, Edward Chow, and Shannon O Hearn. A selective review of medical cannabis in cancer pain management a selective review of medical cannabis in cancer pain management. 2017. doi: 10.21037/apm.2017.08.05.
dc.relation.referencesSimon Vlad Luca, Marco Bruesewitz, and Mirjana Minceva. Evaluation of advanced liquid–liquid chromatography operating modes for the tetrahydrocannabinol-remediation of hemp extracts. Chemical Engineering Science, 282, 12 2023. ISSN 00092509. doi: 10.1016/j.ces.2023.119279.
dc.relation.referencesSmall E. and Beckstead H. Cannabinoid phenotypes in cannabis sativa. Nature, 245:147--148, 1973.
dc.relation.referencesR. Mechoulam and Y. Shvo. Hashish-i. the structure of cannabidiol. Tetrahedron, 1963. ISSN 00404020. doi: 10.1016/0040-4020(63) 85022-X.
dc.relation.referencesDaniel Ribeiro Grijó, Ignacio Alberto Vieitez Osorio, and Lúcio Cardozo-Filho. Supercritical extraction strategies using co2 and ethanol to obtain cannabinoid compounds from cannabis hybrid flowers. Journal of CO2 Utilization, 2019. ISSN 22129820. doi: 10.1016/j.jcou.2018.12.014.
dc.relation.referencesRuth Gallily, Zhannah Yekhtin, and Lumír Ondřej Hanuš. Overcoming the bell-shaped dose-response of cannabidiol by using &lt;i&gt;cannabis&lt;/i&gt; extract enriched in cannabidiol. Pharmacology &amp; Pharmacy, 2015. ISSN 2157-9423. doi: 10.4236/pp.2015.62010.
dc.relation.referencesJ.A Ramos Atance and J.J. (Madrid). Fernández Ruiz. Monografía Cannabis, volume 12. 2000.
dc.relation.referencesRaphael Mechoulam and Ruth Gallily. Cannabidiol: An overview of some pharmacological aspects. The Journal of Clinical Pharmacology, 42:11--19, 2010. doi: 10.1177/0091270002238789.
dc.relation.referencesOAS-CICAD. Cannabis with a high concentration of tetrahydrocannabinol (thc) and synthetic cannabinoids in latin america and the caribbean. Technical report, 2023.
dc.relation.referencesAlain Berthod. Countercurrent chromatography: from the milligram to the kilogram, pages 324--351. 2009. ISBN 9781420060379.
dc.relation.referencesSimon Vlad Luca, Simon Roehrer, Karin Kleigrewe, and Mirjana Minceva. Approach for simultaneous cannabidiol isolation and pesticide removal from hemp extracts with liquid-liquid chromatography. Industrial Crops and Products, 155, 11 2020. ISSN 09266690. doi: 10.1016/j.indcrop.2020.112726.
dc.relation.referencesSimon Vlad Luca, Lukas Braumann, Melanie Gerigk, Oliver Frank, and Mirjana Minceva. Separation of minor cannabinoids from hemp extract with trapping multiple dual mode liquid-liquid chromatography. Journal of Chromatography A, 1658, 11 2021. ISSN 18733778. doi: 10.1016/j.chroma.2021.462608.
dc.relation.referencesJohannes R. Popp, Eleftherios A. Petrakis, Apostolis Angelis, Maria Halabalaki, Günther K. Bonn, Hermann Stuppner, and Leandros A. Skaltsounis. Rapid isolation of acidic cannabinoids from cannabis sativa l. using ph-zone-refining centrifugal partition chromatography. Journal of Chromatography A, 1599:196--202, 2019. ISSN 18733778. doi: 10.1016/j.chroma.2019.04.048. URL https://doi.org/10.1016/j.chroma.2019.04.048.
dc.relation.referencesVorawut Wongumpornpinit, Prapapan Temkitthawon, Nattakanwadee Khumpirapang, Sujittra Paenkaew, Tongchai Saesong, Panatpong Boonnoun, Eakkaluk Wongwad, Neti Waranuch, and Kornkanok Ingkaninan. Pilot-scale preparation of broad-spectrum cbd: Extraction optimization and purification using centrifugal partition chromatography. Medical Cannabis and Cannabinoids, pages 1--26, 5 2025. ISSN 2504-3889. doi: 10.1159/000546263. URL https://karger.com/article/doi/10.1159/000546263.
dc.relation.referencesJ. Brent Friesen, James B. McAlpine, Shao Nong Chen, and Guido F. Pauli. Countercurrent separation of natural products: An update, 2015. ISSN 15206025.
dc.relation.referencesAlain Berthod, Maria Jose Ruiz-Angel, and Samuel Carda-Broch. Elution-extrusion countercurrent chromatography. use of the liquid nature of the stationary phase to extend the hydrophobicity window. Analytical Chemistry, 75:5886--5894, 11 2003. ISSN 00032700. doi: 10.1021/ac030208d
dc.relation.referencesMatej Maly, Frantisek Benes, Zuzana Binova, Marie Zlechovcova, Petr Kastanek, and Jana Hajslova. Effective isolation of cannabidiol and cannabidiolic acid free of psychotropic phytocannabinoids from hemp extract by fast centrifugal partition chromatography. Analytical and Bioanalytical Chemistry, 415:4827--4837, 8 2023. ISSN 16182650. doi: 10.1007/s00216-023-04782-9.
dc.relation.referencesElisabeth Hopmann, Wolfgang Arlt, and Mirjana Minceva. Solvent system selection in counter-current chromatography using conductor-like screening model for real solvents. Journal of Chromatography A, 1218:242--250, 1 2011. ISSN 00219673. doi: 10.1016/j.chroma.2010.11.018.
dc.relation.referencesThomas P. Abbott and Robert Kleiman. Solvent selection guide for counter-current chromatography. Journal of Chromatography A, 538:109--118, 1991. ISSN 00219673. doi: 10.1016/S0021-9673(01)91627-9.
dc.relation.referencesJ. Brent Friesen and Guido F. Pauli. G.u.e.s.s. - a generally useful estimate of solvent systems in ccc. Journal of Liquid Chromatography and Related Technologies, 28:2777--2806, 2005. ISSN 10826076. doi: 10.1080/10826070500225234.
dc.relation.referencesKarine Faure, Nazim Mekaoui, Jeremy Meucci, and Alain Berthod. Solvent selection in countercurrent chromatography using small-volume hydrostatic columns. LCGC North America, 2013. ISSN 15275949.
dc.relation.referencesMerlin M. D. Archaeological evidence for the tradition of psychoactive plant use in the old world. 57:295--323, 2003.
dc.relation.referencesUnited Nations Office on Drugs and Crime. Terminology and information on drugs, volume V.03-86493. 2003. ISBN 9211481635. doi: E.03.XI.14. URL http://www.unodc.org/pdf/publications/report_2003-09-01_1.pdf.
dc.relation.referencesE. Joseph Brand and Zhongzhen Zhao. Cannabis in chinese medicine: Are some traditional indications referenced in ancient literature related to cannabinoids?, 3 2017. ISSN 16639812.
dc.relation.referencesR F Turk, J E Manno, N C Jain, and R B Forney. The identification, isolation, and preservation of delta-9-tetrahydrocannabinol (delta-9-thc). The Journal of pharmacy and pharmacology, 23:190--195, 1971. ISSN 0022-3573 (Print).
dc.relation.referencesErnest Small. Evolution and classification of cannabis sativa (marijuana, hemp) in relation to human utilization. Botanical Review, 81:189--294, 2015. ISSN 00068101. doi: 10.1007/s12229-015-9157-3.
dc.relation.referencesEthan B. Russo. History of cannabis and its preparations in saga, science, and sobriquet, volume 4, pages 1614--1648. 2007. doi: 10.1002/cbdv.200790144.
dc.relation.referencesRavindra B Malabadi, Kiran P Kolkar, Raju Krishna Chalannavar, Himansu Baijnath, and Raju K Chalannavar. Cannabis sativa: Extraction methods for phytocannabinoids-an update. Article in World Journal of Biology Pharmacy and Health Sciences, 2024. doi: 10.30574/wjbphs.2024.20.3.0962. URL https://doi.org/10.30574/wjbphs.2024.20.3.0962.
dc.relation.referencesSmall E. and Beckstead H. Cannabinoid phenotypes in cannabis sativa. Nature, 245:147--148, 1973.
dc.relation.referencesDan Jin, Philippe Henry, Jacqueline Shan, and Jie Chen. Identification of phenotypic characteristics in three chemotype categories in the genus cannabis. HortScience, 56:481--490, 4 2021. ISSN 23279834. doi: 10.21273/HORTSCI15607-20.
dc.relation.referencesMahmoud A. ElSohly and Desmond Slade. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sciences, 78:539--548, 2005. ISSN 00243205. doi: 10.1016/j.lfs.2005.09.011.
dc.relation.referencesMahmoud A Elsohly, Mohamed M Radwan, Waseem Gul, Suman Chandra, and Ahmed Galal. Phytochemistry of Cannabis sativa L . 2017. ISBN 9783319455419. doi: 10.1007/978-3-319-45541-9.
dc.relation.referencesElSohly Mahmound, Gul Shahbaz, and Gul Waseem. A comprehensive review of cannabis phytocannabinoids, pages 63--91. 2023.
dc.relation.referencesMarc Antoine Crocq. History of cannabis and the endocannabinoid system. Dialogues in Clinical Neuroscience, 22:223--228, 9 2020. ISSN 12948322. doi: 10.31887/DCNS.2020.22.3/MCROCQ
dc.relation.referencesHui Chen Lu and Ken Mackie. Review of the endocannabinoid system, 6 2021. ISSN 24519030.
dc.relation.referencesDaniel Ribeiro Grijó, Ignacio Alberto Vieitez Osorio, and Lúcio Cardozo-Filho. Supercritical extraction strategies using co2 and ethanol to obtain cannabinoid compounds from cannabis hybrid flowers. Journal of CO2 Utilization, 2019. ISSN 22129820. doi: 10.1016/j.jcou.2018.12.014.
dc.relation.referencesTeresa Moreno, Fernando Montanes, Stephen J. Tallon, Tina Fenton, and Jerry W. King. Extraction of cannabinoids from hemp (cannabis sativa l.) using high pressure solvents: An overview of different processing options. Journal of Supercritical Fluids, 161: 104850, 2020. ISSN 08968446. doi: 10.1016/j.supflu.2020.104850.
dc.relation.referencesJuste Baranauskaite, Mindaugas Marksa, Liudas Ivanauskas, Konradas Vitkevicius, Mindaugas Liaudanskas, Vaidas Skyrius, and Algirdas Baranauskas. Development of extraction technique and gc/fid method for the analysis of cannabinoids in cannabis sativa l. spp. santicha (hemp). Phytochemical Analysis, 31:516--521, 2020. ISSN 10991565. doi: 10.1002/pca.2915.
dc.relation.referencesCoquitlam ( CA ) ; Ryan Delmoral Ko, Port Coquitlam ( CA ) ; Brock Hughes, Burnaby ( CA ) ; Krupal Pal, Vancouver Alexzander Samuelsson, and ( CA ). Cannabinoid extraction process using brine, 2019.
dc.relation.referencesJerry W. King. The relationship between cannabis/hemp use in foods and processing methodology. Current Opinion in Food Science, 28:32--40, 2019. ISSN 22147993. doi: 10.1016/j.cofs.2019.04.007. URL https://doi.org/10.1016/j.cofs.2019.04.007.
dc.relation.referencesWorld Health Organization. Letter to the United Nations Secretary-General: Recommendations of the 41st WHO Expert Committee on Drug Dependence---Cannabis and cannabis-related substances, January 2019. URL https://cdn.who.int/media/ docs/default-source/controlled-substances/unsg-letter-ecdd41-recommendations-cannabis-24jan19.pdf. [PDF].
dc.relation.referencesNaciones Unidas. Convención Única de estupefacientes de 1961. Technical report, 1972.
dc.relation.referencesOAS-CICAD. Cannabis with a high concentration of tetrahydrocannabinol (thc) and synthetic cannabinoids in latin america and the caribbean. Technical report, 2023.
dc.relation.referencesDie Bundesregierung Deutschland. Drogen politik: Faq zur legalisierung von cannabis, 2024.
dc.relation.referencesLe Sénat de la république française. La dépénalisation et la légalisation du cannabis, 2022
dc.relation.referencesU.S. Department of Health, Human Services Food, Drug Administration Center for Drug Evaluation, and Research (CDER). Cannabis and cannabis-derived compounds: Quality considerations for clinical research | fda guidance for industry. Technical report, 2023. URL https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs.
dc.relation.referencesFedlex: La plateforme de publication du droit fédéral. Loi fédérale sur les stupéfiants et les substances psychotropes, 2023.
dc.relation.referencesGobierno de Peru Ministerio de Desarrollo Agrario y Riego. Decreto supremo n° 0005-2019-sa, 2 2019.
dc.relation.referencesCentro de Información Oficial Gobierno de Uruguay. Decreto n° 298/017: Autorizacion de "venta bajo receta profesional"para las especialidades farmaceuticas con cannabidiol como principio activo. pages 1--1, 10 2017.
dc.relation.referencesMinisterio de Salud y Protección Social. Decreto 613 de 2017 que reglamenta el acceso seguro e informado al uso médico y científico del cannabis. page 35, 2017. URL https://www.minsalud.gov.co/Normatividad_Nuevo/Decreto613de2017.pdf.
dc.relation.referencesGobierno de Colombia. Decreto-2467-de-2015, por el cual se reglamentan los aspectos de que tratan los artículos 3, 5, 6 y 8 de la ley 30 de 1986, 2015.
dc.relation.referencesMinisterio de Salud y Protección Social. Decreto 811 de 2021, 2021.
dc.relation.referencesMinisterio de Justicia y del Derecho, Ministerio de Agricultura y Desarrollo Rural, and Ministerio de Salud y Protección Social. Resolución 227 de 2022. Technical report, 2022.
dc.relation.referencesArno Hazekamp, Ruud Simons, Anja Peltenburg-Looman, Melvin Sengers, Rianne Van Zweden, and Robert Verpoorte. Preparative isolation of cannabinoids from cannabis sativa by centrifugal partition chromatography. Journal of Liquid Chromatography and Related Technologies, 27:2421--2439, 2004. ISSN 10826076. doi: 10.1081/JLC-200028170.
dc.relation.referencesJohannes R. Popp, Eleftherios A. Petrakis, Apostolis Angelis, Maria Halabalaki, Günther K. Bonn, Hermann Stuppner, and Leandros A. Skaltsounis. Rapid isolation of acidic cannabinoids from cannabis sativa l. using ph-zone-refining centrifugal partition chromatography. Journal of Chromatography A, 1599:196--202, 2019. ISSN 18733778. doi: 10.1016/j.chroma.2019.04.048. URL https://doi.org/10.1016/j.chroma.2019.04.048.
dc.relation.referencesTan Xin, Zhang Ke, Gao Weibo, and Chang Tanran. Method for extracting cannabidiol from cannabis, 2019.
dc.relation.referencesStefania Marzorati, Danilo Friscione, Enrico Picchi, and Luisella Verotta. Cannabidiol from inflorescences of cannabis sativa l.: Green extraction and purification processes. Industrial Crops and Products, 155, 2020. ISSN 09266690. doi: 10.1016/j.indcrop.2020.112816.
dc.relation.referencesMartinenghi Laura Daniela, Jønsson Rie, Lund Torben, and Jenssen Håvard. Isolation, purification, and antimicrobial 2020. Biomolecules, 10, 2020.
dc.relation.referencesSimon Vlad Luca, Simon Roehrer, Karin Kleigrewe, and Mirjana Minceva. Approach for simultaneous cannabidiol isolation and pesticide removal from hemp extracts with liquid-liquid chromatography. Industrial Crops and Products, 155, 11 2020. ISSN 09266690. doi: 10.1016/j.indcrop.2020.112726.
dc.relation.referencesSimon Vlad Luca, Lukas Braumann, Melanie Gerigk, Oliver Frank, and Mirjana Minceva. Separation of minor cannabinoids from hemp extract with trapping multiple dual mode liquid-liquid chromatography. Journal of Chromatography A, 1658, 11 2021. ISSN 18733778. doi: 10.1016/j.chroma.2021.462608.
dc.relation.referencesFameera Madaka, Natawat Chankana, Nanthaphong Khamthong, Athip Maha, and Thanapat Songsak. Extraction and isolation of high quantities of cannabidiol, cannabinol, and delta-9- tetrahydrocannabinol from cannabis sativa l. Malaysian Journal of Analytical Sciences, 25:867 -- 881, 10 2021.
dc.relation.referencesSimon Vlad Luca, Marco Bruesewitz, and Mirjana Minceva. Evaluation of advanced liquid–liquid chromatography operating modes for the tetrahydrocannabinol-remediation of hemp extracts. Chemical Engineering Science, 282, 12 2023. ISSN 00092509. doi: 10.1016/j.ces.2023.119279.
dc.relation.referencesMatej Maly, Frantisek Benes, Zuzana Binova, Marie Zlechovcova, Petr Kastanek, and Jana Hajslova. Effective isolation of cannabidiol and cannabidiolic acid free of psychotropic phytocannabinoids from hemp extract by fast centrifugal partition chromatography. Analytical and Bioanalytical Chemistry, 415:4827--4837, 8 2023. ISSN 16182650. doi: 10.1007/s00216-023-04782-9.
dc.relation.referencesRoberto Calmanti, Maurizio Selva, and Alvise Perosa. From hemp to cbd crystals: A scaled-up procedure for the selective extraction, isolation, and purification of cannabidiol. ACS Agricultural Science and Technology, 3 2025. ISSN 26921952. doi: 10.1021/acsagscitech.4c00462.
dc.relation.referencesLihong Zhang and Shihua Wu. Hydrophobic and hydrophilic interactions in countercurrent chromatography. Journal of Chromatography A, 2020. ISSN 18733778. doi: 10.1016/j.chroma.2019.460576.
dc.relation.referencesAlain Berthod and Karine Faure. Separations with a Liquid Stationary Phase: Countercurrent Chromatography or Centrifugal Partition Chromatography. 2015. doi: 10.1002/9783527678129.assep046.
dc.relation.referencesJean Hugues Renault, Philippe Thépenier, Monique Zèches-Hanrot, Louisette Le Men-Olivier, André Durand, Alain Foucault, and Rodolphe Margraff. Preparative separation of anthocyanins by gradient elution centrifugal partition chromatograghy. Journal of Chromatography A, 763:345--352, 1997. ISSN 00219673. doi: 10.1016/S0021-9673(96)00880-1.
dc.relation.referencesJean Claude Delaunay, Chantal Castagnino, Catherine Chèze, and Joseph Vercauteren. Preparative isolation of polyphenolic compounds from vitis vinifera by centrifugal partition chromatography. Journal of Chromatography A, 964:123--128, 2002. ISSN 00219673. doi: 10.1016/S0021-9673(02)00355-2.
dc.relation.referencesJ. Brent Friesen, James B. McAlpine, Shao Nong Chen, and Guido F. Pauli. Countercurrent separation of natural products: An update, 2015. ISSN 15206025.
dc.relation.referencesZhi Yang, Peipei Guo, Rui Han, Dingfang Wu, Jin Ming Gao, and Shihua Wu. Methanol linear gradient counter-current chromatography for the separation of natural products: Sinopodophyllum hexandrum as samples. Journal of Chromatography A, 1603:251--261, 2019. ISSN 18733778. doi: 10.1016/j.chroma.2019.06.055. URL https://doi.org/10.1016/j.chroma.2019.06.055.
dc.relation.referencesAda C. Gallo-Molina, César A. Sánchez-Correa, and Iván D. Gil-Chaves. Tetrahydrocannabinol separation from cannabis extracts using centrifugal partition chromatography. Journal of Chromatography A, 1757, 8 2025. ISSN 18733778. doi: 10.1016/j.chroma.2025.466173.
dc.relation.referencesAlain Berthod. Countercurrent chromatography: from the milligram to the kilogram, pages 324--351. 2009. ISBN 9781420060379.
dc.relation.referencesWataru Murayama, Tetsuya Kobayashi, Yasutaka Kosuge, Hideki Yano, Yoshiaki Nunogaki, and Kanichi Nunogaki. A new centrifugal counter-current chromatograph and its application. Journal of Chromatography A, 239:643--649, 1982. ISSN 00219673. doi: 10.1016/S0021-9673(00)82022-1.
dc.relation.referencesM. C. Menet and D. Thiebaut. Preparative purification of antibiotics for comparing hydrostatic and hydrodynamic mode counter-current chromatography and preparative high-performance liquid chromatography. Journal of Chromatography A, 831: 203--216, 1999. ISSN 00219673. doi: 10.1016/S0021-9673(98)00795-X.
dc.relation.referencesKarine Faure, Nazim Mekaoui, Jeremy Meucci, and Alain Berthod. Solvent selection in countercurrent chromatography using small-volume hydrostatic columns. LCGC North America, 2013. ISSN 15275949.
dc.relation.referencesMałgorzata Bojczuk, Dorota Żyżelewicz, and Paweł Hodurek. Centrifugal partition chromatography – a review of recent applications and some classic references, 2017. ISSN 16159314.
dc.relation.referencesLaureano Oliveros, Cristina Minguillón, Pilar Franco, and Alain P. Foucault. Countercurrent Chromatography - The Support-Free Liquid Stationary Phase. 2002. ISBN 9780444507372. doi: 10.1016/S0166-526X(02)80014-9.
dc.relation.referencesIan J. Garrard. Simple approach to the development of a ccc solvent selection protocol suitable for automation. Journal of Liquid Chromatography and Related Technologies, 28:1923--1935, 2005. ISSN 10826076. doi: 10.1081/JLC-200063571.
dc.relation.referencesHisao Oka, Yoshitomo Ikai, Norihisa Kawamura, Masuo Yamada, Junko Hayakawa, Ken-Ichi -I Harada, Kazuko Nagase, Hideaki Murata, Makoto Suzuki, and Yoichiro Ito. Optimization of a high speed countercurrent chromatograph for analytical separations. Journal of High Resolution Chromatography, 14:306--311, 1991. ISSN 15214168. doi: 10.1002/jhrc.1240140503.
dc.relation.referencesThomas P. Abbott and Robert Kleiman. Solvent selection guide for counter-current chromatography. Journal of Chromatography A, 538:109--118, 1991. ISSN 00219673. doi: 10.1016/S0021-9673(01)91627-9.
dc.relation.referencesA. Berthod, M. Hassoun, and M. J. Ruiz-Angel. Alkane effect in the arizona liquid systems used in countercurrent chromatography. Analytical and Bioanalytical Chemistry, 383:327--340, 2005. ISSN 16182642. doi: 10.1007/s00216-005-0016-7.
dc.relation.referencesYanbin Lu, Alain Berthod, Ruilin Hu, Wenyan Ma, and Yuanjiang Pan. Screening of complex natural extracts by countercurrent chromatography using a parallel protocol. Analytical Chemistry, 81:4048--4059, 2009. ISSN 00032700. doi: 10.1021/ac9002547.
dc.relation.referencesJ. Brent Friesen and Guido F. Pauli. G.u.e.s.s. - a generally useful estimate of solvent systems in ccc. Journal of Liquid Chromatography and Related Technologies, 28:2777--2806, 2005. ISSN 10826076. doi: 10.1080/10826070500225234.
dc.relation.referencesYang Liu, J. Brent Friesen, Larry L. Klein, James B. McAlpine, David C. Lankin, Guido F. Pauli, and Shao Nong Chen. The generally useful estimate of solvent systems (guess) method enables the rapid purification of methylpyridoxine regioisomers by countercurrent chromatography. Journal of Chromatography A, 1426:248--251, 2015. ISSN 18733778. doi: 10.1016/j.chroma.2015.11.046. URL http://dx.doi.org/10.1016/j.chroma.2015.11.046.
dc.relation.referencesJunling Liang, Jie Meng, Dingfang Wu, Mengzhe Guo, and Shihua Wu. A novel 9×9 map-based solvent selection strategy for targeted counter-current chromatography isolation of natural products. Journal of Chromatography A, 1400:27--39, 2015. ISSN 18733778. doi: 10.1016/j.chroma.2015.04.043. URL http://dx.doi.org/10.1016/j.chroma.2015.04.043
dc.relation.referencesRodolphe Margraff. Preparative centrifugal partition chromatography. In Alain P. Foucault, editor, Centrifugal Partition Chromatography, volume 68 of Chromatographic Science Serie xs, pages 331--350. Marcel Dekker, New York, 1994.
dc.relation.referencesConsejo Nacional de Estupefacientes (Colombia). Resolución no. 0001 de 2015 (8 de enero): Por la cual se unifica y actualiza la normatividad sobre el control de sustancias y productos químicos, 2015. URL https://sidn.ramajudicial.gov.co/SIDN/NORMATIVA/ TEXTOS_COMPLETOS/8_RESOLUCIONES/RESOLUCIONES%202015/CNE%20Resoluci%C3%B3n%2001%20de%202015%20%28Unifica%20y%20actualiza% 20la%20normatividad%20sobre%20el%20control%20de%20sustancias%20y%20productos%29.pdf. Diario Oficial No. 49.406 (26 de enero de 2015).
dc.relation.referencesAshurst Juan and Schaffer David. Toxicidad del metanol. Technical report, National Center for Biotechnology Information, 2 2025.
dc.relation.referencesQizhen Du, Caijuan Wu, Guojun Qian, Pingdong Wu, and Yoichiro Ito. Relationship between the flow-rate of the mobile phase and retention of the stationary phase in counter-current chromatography. Journal of Chromatography A, 835:231--235, 1999. ISSN 00219673. doi: 10.1016/S0021-9673(98)01066-8.
dc.relation.referencesA. Berthod and Carda-Broch. Determination of liquid-liquid partition coefficients by separation methods. Journal of Chromatography A, 1037:3--14, 2004. ISSN 00219673. doi: 10.1016/j.chroma.2004.01.001.
dc.relation.referencesWalter Vetter, Marco Müller, Michael Englert, and Simon Hammann. Countercurrent chromatography-when liquid-liquid extraction meets chromatography. 2019. ISBN 9780128169117. doi: 10.1016/B978-0-12-816911-7.00010-4.
dc.relation.referencesAlain Berthod, J Brent Friesen, Taichi Inui, and Guido F Pauli. Chromatography : Theory and concepts in metabolic analysis. Chemical Analysis, 79:3371--3382, 2007.
dc.relation.referencesYoichiro Ito. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. Journal of Chromatography A, 1065:145--168, 2005. ISSN 00219673. doi: 10.1016/j.chroma.2004.12.044.
dc.relation.referencesDavid P. Ward, Max Cárdenas-Fernández, Peter Hewitson, Svetlana Ignatova, and Gary J. Lye. Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp. Journal of Chromatography A, 2015. ISSN 18733778. doi: 10.1016/j.chroma.2015.08.006.
dc.relation.referencesJ. D. Seader, Ernest J. Henley, and D. Keith Roper. Separation Process Principles. 2011. ISBN 9780470481837.
dc.relation.referencesInstituto Federal para Medicinas y Dispositivos Medicos (Bundesinstitut für Arzneimittel und Medizinprodukte o "BfArM"). Ley federal del narcóticos (betäubungsmittelgesetz or “btmg”). URL https://www.bfarm.de/SharedDocs/FAQs/DE/BtmGrundstoffeAMVV/ Cannabis/cannabis-faq14.html.
dc.relation.referencesAlain Berthod. Countercurrent chromatography: from the milligram to the kilogram, pages 324--351. 2009. ISBN 9781420060379
dc.relation.referencesArno Hazekamp, Ruud Simons, Anja Peltenburg-Looman, Melvin Sengers, Rianne Van Zweden, and Robert Verpoorte. Preparative isolation of cannabinoids from cannabis sativa by centrifugal partition chromatography. Journal of Liquid Chromatography and Related Technologies, 27:2421--2439, 2004. ISSN 10826076. doi: 10.1081/JLC-200028170.
dc.relation.referencesJohannes R. Popp, Eleftherios A. Petrakis, Apostolis Angelis, Maria Halabalaki, Günther K. Bonn, Hermann Stuppner, and Leandros A. Skaltsounis. Rapid isolation of acidic cannabinoids from cannabis sativa l. using ph-zone-refining centrifugal partition chromatography. Journal of Chromatography A, 1599:196--202, 2019. ISSN 18733778. doi: 10.1016/j.chroma.2019.04.048. URL https://doi.org/10.1016/j.chroma.2019.04.048.
dc.relation.referencesSimon Vlad Luca, Simon Roehrer, Karin Kleigrewe, and Mirjana Minceva. Approach for simultaneous cannabidiol isolation and pesticide removal from hemp extracts with liquid-liquid chromatography. Industrial Crops and Products, 155, 11 2020. ISSN 09266690. doi: 10.1016/j.indcrop.2020.112726.
dc.relation.referencesSimon Vlad Luca, Lukas Braumann, Melanie Gerigk, Oliver Frank, and Mirjana Minceva. Separation of minor cannabinoids from hemp extract with trapping multiple dual mode liquid-liquid chromatography. Journal of Chromatography A, 1658, 11 2021. ISSN 18733778. doi: 10.1016/j.chroma.2021.462608.
dc.relation.referencesSimon Vlad Luca, Marco Bruesewitz, and Mirjana Minceva. Evaluation of advanced liquid–liquid chromatography operating modes for the tetrahydrocannabinol-remediation of hemp extracts. Chemical Engineering Science, 282, 12 2023. ISSN 00092509. doi: 10.1016/j.ces.2023.119279.
dc.relation.referencesMatej Maly, Frantisek Benes, Zuzana Binova, Marie Zlechovcova, Petr Kastanek, and Jana Hajslova. Effective isolation of cannabidiol and cannabidiolic acid free of psychotropic phytocannabinoids from hemp extract by fast centrifugal partition chromatography. Analytical and Bioanalytical Chemistry, 415:4827--4837, 8 2023. ISSN 16182650. doi: 10.1007/s00216-023-04782-9.
dc.relation.referencesJ. D Seader, E. J .Henley, and D. K Roper. Separation process principles. John wiley sons. edition, 2016.
dc.relation.referencesHenri Renon and J M Prausnitz. Local compositions in thermodynamic excess functions for liquid mixtures. AlChE Journal, 14: 135--144, 1968.
dc.relation.referencesFredenslund Aage, Jones Russell L., and Prausnitz John M. Group-contri bution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 21, 11 1975.
dc.relation.referencesPhilip T. Eubank, Brad G. Lamonte, and J. F.Javier Alvarado. Consistency tests for binary vle data. Journal of Chemical and Engineering Data, 45:1040--1048, 11 2000. ISSN 00219568. doi: 10.1021/je9902692.
dc.relation.referencesJaime Wisniak. A new test for the thermodynamic consistency of vapor-liquid equilibrium. Ind. Eng. Chem. Res, 32:1531--1533, 1993.
dc.relation.referencesA. FREDENSLUND. A group contribution method. Vapor-Liquid Equilibria using UNIFAC, 380, 1977. URL https://cir.nii. ac.jp/crid/1570291224185782144.bib?lang=ja.
dc.relation.referencesJaime Wisniak. The herington test for thermodynamic consistency. Technical report, 1994.
dc.relation.referencesHERINGTON E. F. G. Tests for the consistency of experimental isobaric vapor-liquid equilibrium data. J. Inst. Petrol., 37: 457--470, 1965. URL https://cir.nii.ac.jp/crid/1572543023997404416.bib?lang=ja.
dc.relation.referencesREDLICH O and A. T KISTER. Algebraic representation of thermodynamic properties and the classification of solutions. I N D U S T R I A L A N D E N G I N E E R I N G CHEMISTRY, 40:345--348, 2 1948.
dc.relation.referencesA. Marcilla, J. A. Reyes-Labarta, and M. M. Olaya. Should we trust all the published lle correlation parameters in phase equilibria? necessity of their assessment prior to publication. Fluid Phase Equilibria, 433:243--252, 2 2017. ISSN 03783812. doi: 10.1016/j.fluid.2016.11.009.
dc.relation.referencesPrausnitz J.M., Lichtenthaler R.N., and De Azevedo E.G. Molecular thermodynamics of fluid-phase equilibria. PrenticeHall, 3rd ed. edition, 1999.
dc.relation.referencesSandler S.I. Chemical and Engineering Thermodynamics. John Wiley & Sons, 3rd ed edition, 1999.
dc.relation.referencesJ. M. Smith, H. van Ness, and M. Abbott. Introduction to Chemical Engineering Thermodynamics. McGraw Hill, 6th edition, 2006.
dc.relation.referencesAlberto Arce, Alberto Jr Arce, and Oscar Rodriguez. Revising concepts on liquid–liquid extraction: Data treatment and data reliability, 1 2022. ISSN 15205134.
dc.relation.referencesOthmer Donal and Tobias Philip. Partial pressures of ternary liquid systems and the prediction of tie lines. Industrial and engineering chemistry, 34:696--700, 1942.
dc.relation.referencesJaime Wisniak, Juan Ortega, and Luis Fernández. A fresh look at the thermodynamic consistency of vapour-liquid equilibria data, 2 2017. ISSN 10963626.
dc.relation.referencesPaolo Carniti. A critical analysis of the hand and othmer-tobias correlations. Technical report, 1978.
dc.relation.referencesLuís Fernández, Juan Ortega, and Jaime Wisniak. Assessment of liquid–liquid equilibrium data by solving the gibbs-duhem equation. AIChE Journal, 68, 5 2022. ISSN 15475905. doi: 10.1002/aic.17630.
dc.relation.referencesAntonio Marcilla, María Martínez-Rodríguez, and María del Mar Olaya. The reliability of published lle correlation parameters in phase equilibria: A continuing challenge, 7 2025. ISSN 15205134.
dc.relation.referencesR Okuno, R T Johns, and K Sepehrnoori. A new algorithm for rachford-rice for multiphase compositional simulation. Technical report, 2010.
dc.relation.referencesUrszula Domańska and Kamil Paduszyński. (solid + liquid) and (liquid + liquid) phase equilibria measurements and correlation of the binary systems {tri-iso-butyl(methyl)phosphonium tosylate + alcohol, or +hydrocarbon}. Fluid Phase Equilibria, 278:90--96, 4 2009. ISSN 03783812. doi: 10.1016/j.fluid.2009.01.012.
dc.relation.referencesR F Turk, J E Manno, N C Jain, and R B Forney. The identification, isolation, and preservation of delta-9-tetrahydrocannabinol (delta-9-thc). The Journal of pharmacy and pharmacology, 23:190--195, 1971. ISSN 0022-3573 (Print).
dc.relation.referencesErnest Small. Evolution and classification of cannabis sativa (marijuana, hemp) in relation to human utilization. Botanical Review, 81:189--294, 2015. ISSN 00068101. doi: 10.1007/s12229-015-9157-3.
dc.relation.referencesLabarta J.A., Olaya M.M., and Marcilla A. Gmcal tielinesll - graphical user interface (gui) for the topological analysis of calculated gm surfaces and curves, including tie-lines, hessian matrix, spinodal curve, plait point location, etc. for binary and ternary liquid-liquid equilibrium (lle) data, 2015.
dc.relation.referencesYoichiro Ito. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. Journal of Chromatography A, 1065:145--168, 2005. ISSN 00219673. doi: 10.1016/j.chroma.2004.12.044.
dc.relation.referencesDa Bing Ren, Zhao Hui Yang, Yi Zeng Liang, Qiong Ding, Chen Chen, and Mei Lan Ouyang. Correlation and prediction of partition coefficient using nonrandom two-liquid segment activity coefficient model for solvent system selection in counter-current chromatography separation. Journal of Chromatography A, 1301:10--18, 8 2013. ISSN 00219673. doi: 10.1016/j.chroma.2013.05.029.
dc.relation.referencesKlamt Andreas. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry, 99:2224--2335, 1995.
dc.relation.referencesChau-Chyun Chen and Yuhua Song. Solubility modeling wint nonrandon two-liquid segment activity model. Industrial & Engineering Chemistry Research, 43, 12 2004
dc.relation.referencesSérgio M. Vilas-Boas, Isabella W. Cordova, Kiki A. Kurnia, Heloísa H.S. Almeida, Priscilla S. Gaschi, João A.P. Coutinho, Simão P. Pinho, and Olga Ferreira. Comparison of two computational methods for solvent screening in countercurrent and centrifugal partition chromatography. Journal of Chromatography A, 1666, 3 2022. ISSN 18733778. doi: 10.1016/j.chroma.2022.462859.
dc.relation.referencesAlain Berthod, Maria Jose Ruiz-Angel, and Samuel Carda-Broch. Elution-extrusion countercurrent chromatography. use of the liquid nature of the stationary phase to extend the hydrophobicity window. Analytical Chemistry, 75:5886--5894, 11 2003. ISSN 00032700. doi: 10.1021/ac030208d.
dc.relation.referencesAlain Berthod. Countercurrent chromatography: from the milligram to the kilogram, pages 324--351. 2009. ISBN 9781420060379
dc.relation.referencesA. Berthod and Carda-Broch. Determination of liquid-liquid partition coefficients by separation methods. Journal of Chromatography A, 1037:3--14, 2004. ISSN 00219673. doi: 10.1016/j.chroma.2004.01.001.
dc.relation.referencesAngela M. Idárraga-Vélez, Iván Dario Gil Chaves, and Gustavo A. Orozco. Densities and viscosities of cannabis extracts and distillates, and densities, viscosities, fusion enthalpy, and melting point of cannabidiol. Journal of Chemical and Engineering Data, 68:2982--2988, 12 2023. ISSN 15205134. doi: 10.1021/acs.jced.3c00105.
dc.relation.referencesMałgorzata Bojczuk, Dorota Żyżelewicz, and Paweł Hodurek. Centrifugal partition chromatography – a review of recent applications and some classic references, 2017. ISSN 16159314.
dc.relation.referencesTreybal R. Liquid Extraction. McGraw-Hill, 2nd edition, 1963.
dc.relation.referencesA. Fromme, C. Fischer, D. Klump, and G. Schembecker. Correlating the phase settling behavior of aqueous-organic solvent systems in a centrifugal partition chromatograph. Journal of Chromatography A, 1620, 6 2020. ISSN 18733778. doi: 10.1016/j. chroma.2020.461005.
dc.relation.referencesA. Berthod, M. Hassoun, and M. J. Ruiz-Angel. Alkane effect in the arizona liquid systems used in countercurrent chromatography. Analytical and Bioanalytical Chemistry, pages 327--340, 9 2005.
dc.relation.referencesElisabeth Hopmann, Wolfgang Arlt, and Mirjana Minceva. Solvent system selection in counter-current chromatography using conductor-like screening model for real solvents. Journal of Chromatography A, 1218:242--250, 1 2011. ISSN 00219673. doi: 10.1016/j.chroma.2010.11.018.
dc.relation.referencesJ. Brent Friesen and Guido F. Pauli. G.u.e.s.s. - a generally useful estimate of solvent systems in ccc. Journal of Liquid Chromatography and Related Technologies, 28:2777--2806, 2005. ISSN 10826076. doi: 10.1080/10826070500225234.
dc.relation.referencesAlain Foucault, Centre National de la Recherche Lboratoire de. Bioorganique et Biotechnologies, and Scientifque. Centrifugal Partition Chromatography, volume 68. 1994. ISBN 0824792572. doi: 10.1201/noe0824727857.ch61.
dc.relation.referencesHidrolab Colombia Limitada. Procedure of determination of terpenes in cannabis and derivates product by cg-ms woth headspace. Technical report, 2024.
dc.relation.referencesChiara De Luca, Alessandro Buratti, Yannick Krauke, Svea Stephan, Kate Monks, Virginia Brighenti, Federica Pellati, Alberto Cavazzini, Martina Catani, and Simona Felletti. Investigating the effect of polarity of stationary and mobile phases on retention of cannabinoids in normal phase liquid chromatography. Analytical and Bioanalytical Chemistry, 414:5385--5395, 7 2022. ISSN 16182650. doi: 10.1007/s00216-021-03862-y.
dc.relation.referencesAlain Berthod, Maria Jose Ruiz-Angel, and Samuel Carda-Broch. Elution-extrusion countercurrent chromatography. use of the liquid nature of the stationary phase to extend the hydrophobicity window. Analytical Chemistry, 75:5886--5894, 11 2003. ISSN 00032700. doi: 10.1021/ac030208d.
dc.relation.referencesEuropean Union Drugs Agency. Cannabis -- the current situation in europe (european drug report 2024), 2024. Report.
dc.relation.referencesA. I. Fraguas-Sánchez, A. M. Fernández-Carballido, and A. I. Torres-Suárez. Cannabinoides: Una prometedora herramienta para el desarrollo de nuevas terapias. Anales de la Real Academia Nacional de Farmacia, 2014.
dc.relation.referencesRaphael Mechoulam and Linda A Parker. The endocannabinoid system and the brain. The Annual Review of Psychology, 64: 21--47, 2013. doi: 10.1146/annurev-psych-113011-143739.
dc.relation.referencesR. Mechoulam and L. Hanuš. The cannabinoids: An overview. therapeutic implications in vomiting and nausea after cancer chemotherapy, in appetite promotion, in multiple sclerosis and in neuroprotection. Pain Research and Management, 6:67--73, 2001. ISSN 12036765. doi: 10.1155/2001/183057
dc.relation.referencesJayesh R. Parmar, Benjamin D. Forrest, and Robert A. Freeman. Medical marijuana patient counseling points for health care professionals based on trends in the medical uses, efficacy, and adverse effects of cannabis-based pharmaceutical drugs, 2016. ISSN 15517411.
dc.relation.referencesEric Groce. The health effects of cannabis and cannabinoids: The current state of evidence and recommendations for research. Journal of Medical Regulation, 2018. ISSN 2572-1801. doi: 10.30770/2572-1852-104.4.32.
dc.relation.referencesLihong Zhang and Shihua Wu. Hydrophobic and hydrophilic interactions in countercurrent chromatography. Journal of Chromatography A, 2020. ISSN 18733778. doi: 10.1016/j.chroma.2019.460576.
dc.relation.referencesMałgorzata Bojczuk, Dorota Żyżelewicz, and Paweł Hodurek. Centrifugal partition chromatography – a review of recent applications and some classic references, 2017. ISSN 16159314.
dc.relation.referencesQizhen Du, Caijuan Wu, Guojun Qian, Pingdong Wu, and Yoichiro Ito. Relationship between the flow-rate of the mobile phase and retention of the stationary phase in counter-current chromatography. Journal of Chromatography A, 835:231--235, 1999. ISSN 00219673. doi: 10.1016/S0021-9673(98)01066-8.
dc.relation.referencesYoichiro Ito. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. Journal of Chromatography A, 1065:145--168, 2005. ISSN 00219673. doi: 10.1016/j.chroma.2004.12.044.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
dc.subject.lembBOTANICA MEDICAspa
dc.subject.lembMedicine, botaniceng
dc.subject.lembPLANTAS ALUCINOGENASspa
dc.subject.lembHallucinogenic plantseng
dc.subject.lembEQUILIBRIO TERMODINAMICOspa
dc.subject.lembThermodynamic equilibriumeng
dc.subject.lembEQUILIBRIO QUIMICOspa
dc.subject.lembChemical equilibriumeng
dc.subject.lembPLANTAS MEDICINALESspa
dc.subject.lembMedicinal planteng
dc.subject.proposalCromatografía de partición centrífugaspa
dc.subject.proposalEquilibrio líquido--líquidospa
dc.subject.proposalNRTLspa
dc.subject.proposalDelta9-THCspa
dc.subject.proposalCBDspa
dc.subject.proposalHEtWat (heptano/etanol/agua)spa
dc.subject.proposalConsistencia termodinámicaspa
dc.subject.proposalCentrifugal partition chromatographyeng
dc.subject.proposalLiquid--liquid equilibriumeng
dc.subject.proposalHEtWat (heptane/ethanol/water)eng
dc.subject.proposalThermodynamic consistencyeng
dc.titleSeparación de Delta 9-Tetrahidrocannabinol de extractos de Cannabis sativa L. por cromatografía de partición centrífugal a escala industrialspa
dc.title.translatedSeparation of Delta-9-tetrahydrocannabinol from Cannabis sativa L. extracts by centrifugal partition chromatography at industrial scaleeng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_doctorado_Ingeniería_Química_Ada_Gallo 02-2026.pdf
Tamaño:
11.81 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: