Propuesta para la evaluación de amenaza por movimientos en masa inducidos por sismo

dc.contributor.advisorRodríguez Pineda, Carlos Eduardospa
dc.contributor.authorGuerra Ospino, Julio Césarspa
dc.date.accessioned2020-12-03T15:47:49Zspa
dc.date.available2020-12-03T15:47:49Zspa
dc.date.issued2020-11-30spa
dc.description.abstractSe presenta una metodología para la evaluación de la amenaza por movimientos en masa (tipo flujo y deslizamiento) inducidos por sismo, la cual busca compatibilizar el detonante sísmico como una cobertura temática, con un modelo de susceptibilidad generado a partir de la técnica de pesos de evidencia establecida en la Guía Metodológica para la Zonificación de la Amenaza por Movimientos en Masa a escala 1:25.000. Mediante el uso del paquete SPECFEM3D – Cartesian, el cual implementa el Método de Elementos Espectrales, se realiza la simulación de la propagación de una onda sísmica desde una fuente puntual, con un mecanismo de ruptura definido, considerando un modelo con topografía y otro con una superficie plana, para evaluar el efecto del relieve sobre la amplificación del movimiento sísmico. A través de un tendido regular de receptores, se almacenan los registros de aceleración calculados por el programa, de manera que estos puedan ser distribuidos equidistantemente entre las celdas o píxeles de análisis. La evaluación de la respuesta dinámica de la ladera se realiza por medio del método de desplazamientos permanentes, donde para cada píxel del área se le asocia un registro de aceleración y a partir de la aceleración crítica en ese punto se evalúa el desplazamiento acumulado luego del sismo. El mapa de desplazamientos generado puede ser combinado con la susceptibilidad para generar la zonificación de la amenaza, en función de la probabilidad (Modelo 1), o mediante una matriz de doble entrada (Modelo 2). Los resultados obtenidos muestran el notable efecto que tiene la topografía en la amplificación del movimiento sísmico, siendo necesario tener en cuenta este comportamiento dentro de los análisis de zonificación de amenaza y susceptibilidad por movimientos en masa inducidos por sismo.spa
dc.description.abstractA methodology is presented for the evaluation of the earthquake-induced mass movements hazard (flow and landslide), which seeks to make the seismic trigger compatible as a thematic coverage, with a susceptibility model generated from the technique of weights of evidence established in the Methodological Guide for Zoning the Mass Movements Hazard at a scale of 1: 25,000. Through the use of the SPECFEM3D - Cartesian package, which implements the Spectral Elements Method, the simulation of the propagation of a seismic wave from a point source is performed, with a defined rupture mechanism, considering a model with topography and another with a flat surface, to evaluate the effect of relief on the amplification of seismic movement. Through a regular array of receivers, the acceleration records calculated by the software are stored, so that they can be distributed equally between the cells or analysis pixels. The evaluation of the dynamic response of the slope is carried out through the method of permanent displacements, where for each cell or pixel in the area, an acceleration record is associated and from the critical acceleration at that point, the accumulated displacement is calculated. The generated displacement map can be combined with the susceptibility to generate the hazard zoning, as a function of probability (Model 1), or by means of a double-entry matrix (Model 2). The results obtained show the remarkable effect that topography has on the amplification of seismic movement, and it is necessary to take this behavior into account within the analysis of earthquake-induced mass movements hazard and susceptibility.spa
dc.description.additionalLínea de Investigación: Análisis de confiabilidad y riesgos asociados al entorno geotécnicospa
dc.description.degreelevelMaestríaspa
dc.format.extent176spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78666
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAnggraeni, D. (2010). Modeling the impact of topography on seismic amplification at regional scale. International Institute for Geo-information Science and Earth Observation.spa
dc.relation.referencesAsociación Colombiana de Ingeniería Sísmica. (2009). Estudio General de Amenaza Sísmic de Colombia 2009.spa
dc.relation.referencesAyalew, L., Kasahara, M., & Yamagishi, H. (2011). The spatial correlation between earthquakes and landslides in Hokkaido (Japan), a GIS-based analysis of the past and the future. Landslides, 8(4), 433-448. https://doi.org/10.1007/s10346-011-0262-zspa
dc.relation.referencesBommer, J. J., & Rodrı́guez, C. E. (2002). Earthquake-induced landslides in Central America. Engineering Geology, 63(3), 189-220. https://doi.org/10.1016/S0013-7952(01)00081-3spa
dc.relation.referencesBray, J. D., & Macedo, J. (2019). Procedure for Estimating Shear-Induced Seismic Slope Displacement for Shallow Crustal Earthquakes. Journal of Geotechnical and Geoenvironmental Engineering, 145(12), 04019106. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002143spa
dc.relation.referencesCatani, F., Segoni, S., & Falorni, G. (2010). An empirical geomorphology‐based approach to the spatial prediction of soil thickness at catchment scale. Water Resources Research. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR007450spa
dc.relation.referencesDas, H. O., Sonmez, H., Gokceoglu, C., & Nefeslioglu, H. A. (2013a). Influence of seismic acceleration on landslide susceptibility maps: A case study from NE Turkey (the Kelkit Valley). Landslides, 10(4), 433-454. https://doi.org/10.1007/s10346-012-0342-8spa
dc.relation.referencesDas, H. O., Sonmez, H., Gokceoglu, C., & Nefeslioglu, H. A. (2013b). Influence of seismic acceleration on landslide susceptibility maps: A case study from NE Turkey (the Kelkit Valley). Landslides, 10(4), 433-454. https://doi.org/10.1007/s10346-012-0342-8spa
dc.relation.referencesDel Gaudio, V., & Wasowski, J. (2011). Advances and problems in understanding the seismic response of potentially unstable slopes. Engineering Geology, 122(1), 73-83. https://doi.org/10.1016/j.enggeo.2010.09.007spa
dc.relation.referencesGeli, L., Bard, P.-Y., & Jullien, B. (1988). The effect of topography on earthquake ground motion: A review and new results. Bulletin of the Seismological Society of America, 78, 42-63.spa
dc.relation.referencesHess, D. M., Leshchinsky, B. A., Bunn, M., Benjamin Mason, H., & Olsen, M. J. (2017). A simplified three-dimensional shallow landslide susceptibility framework considering topography and seismicity. Landslides, 14(5), 1677-1697. https://doi.org/10.1007/s10346-017-0810-2spa
dc.relation.referencesHigaki, D., & Abe, S. (2013). Classification of the Geomorphology, Geology and Movement Types of Earthquake Landslides. En K. Ugai, H. Yagi, & A. Wakai (Eds.), Earthquake-Induced Landslides (pp. 37-44). Springer. https://doi.org/10.1007/978-3-642-32238-9_5spa
dc.relation.referencesIgel, H. (2017a). The Finite-Difference Method. En Computational Seismology. Oxford University Press. https://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198717409.001.0001/acprof-9780198717409-chapter-4spa
dc.relation.referencesIgel, H. (2017b). The Spectral-Element Method. En Computational Seismology. Oxford University Press. https://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198717409.001.0001/acprof-9780198717409-chapter-7spa
dc.relation.referencesINGEOMINAS. (1994). Geológia de la Plancha 189—La Palma, Escala 1:100.000.spa
dc.relation.referencesINGEOMINAS. (2010). Mapa Nacional de Amenaza Sísmica de Colombia.spa
dc.relation.referencesJafarzadeh, F., Shahrabi, M. M., & Farahi Jahromi, H. (2015). On the role of topographic amplification in seismic slope instabilities. Journal of Rock Mechanics and Geotechnical Engineering, 7(2), 163-170. https://doi.org/10.1016/j.jrmge.2015.02.009spa
dc.relation.referencesJibson, R. W. (1987). Summary of research on the effects of topographic amplification of earthquake shaking on slope stability. En Open-File Report (N.o 87-268). U.S. Geological Survey,. https://doi.org/10.3133/ofr87268spa
dc.relation.referencesJibson, Randall W. (2011). Methods for assessing the stability of slopes during earthquakes—A retrospective. Engineering Geology, 122(1), 43-50. https://doi.org/10.1016/j.enggeo.2010.09.017spa
dc.relation.referencesJibson, Randall W, Harp, E. L., & Michael, J. A. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58(3), 271-289. https://doi.org/10.1016/S0013-7952(00)00039-9spa
dc.relation.referencesJibson, R.W., & Keefer, D. K. (1993). Analysis of the seismic origin of landslides: Examples from the New Madrid seismic zone. En Geological Society of America Bulletin (Vol. 105, Número 4, p. 16).spa
dc.relation.referencesKeefer, D. K. (1984). Landslides caused by earthquakes. GSA Bulletin, 95(4), 406-421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2spa
dc.relation.referencesKeefer, D. K. (2000). Statistical analysis of an earthquake-induced landslide distribution—The 1989 Loma Prieta, California event. Engineering Geology, 58(3), 231-249. https://doi.org/10.1016/S0013-7952(00)00037-5spa
dc.relation.referencesKomatitsch, D., Vilotte, J.-P., Tromp, J., Ampuero, J.-P., Bai, K., Basini, P., Blitz, C., Bozdag, E., Casarotti, E., Charles, J., Chen, M., Galvez, P., Goddeke, D., Hjorleifsdottir, V., Labarta, J., Le Goff, N., Le Loher, P., Lefebvre, M., Liu, Q., … Zhu, H. (2012). SPECFEM3D Cartesian [software] (3.0) [Computer software]. Computational Infrastructure for Geodynamics. https://geodynamics.org/cig/software/specfem3d/spa
dc.relation.referencesKomatitsch, Dimitri, Liu, Q., Tromp, J., Süss, P., Stidham, C., & Shaw, J. H. (2004). Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method. Bulletin of the Seismological Society of America, 94(1), 187-206. https://doi.org/10.1785/0120030077spa
dc.relation.referencesKomatitsch, Dimitri, & Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation—I. Validation. Geophysical Journal International, 149(2), 390-412. https://doi.org/10.1046/j.1365-246X.2002.01653.xspa
dc.relation.referencesKomatitsch, Dimitri, & Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1), 303-318. https://doi.org/10.1046/j.1365-246X.2002.01716.xspa
dc.relation.referencesKomatitsch, Dimitri, & Vilotte, J.-P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2), 368-392.spa
dc.relation.referencesKonovalov, A., Gensiorovskiy, Y., Lobkina, V., Muzychenko, A., Stepnova, Y., Muzychenko, L., Stepnov, A., & Mikhalyov, M. (2019). Earthquake-Induced Landslide Risk Assessment: An Example from Sakhalin Island, Russia. Geosciences, 9(7), 305. https://doi.org/10.3390/geosciences9070305spa
dc.relation.referencesKramer, S. (1996). Geotechnical Earthquake Engineering. Prentice Hall.spa
dc.relation.referencesLari, S., Frattini, P., & Crosta, G. B. (2014). A probabilistic approach for landslide hazard analysis. Engineering Geology, 182, 3-14. https://doi.org/10.1016/j.enggeo.2014.07.015spa
dc.relation.referencesLee, C.-T., Huang, C.-C., Lee, J.-F., Pan, K.-L., Lin, M.-L., & Dong, J.-J. (2008). Statistical approach to earthquake-induced landslide susceptibility. Engineering Geology, 100(1), 43-58. https://doi.org/10.1016/j.enggeo.2008.03.004spa
dc.relation.referencesLee, S. T., Yu, T. T., Peng, W. F., & Wang, C. L. (2010). Incorporating the effects of topographic amplification in the analysis of earthquake-induced landslide hazards using logistic regression. Natural Hazards and Earth System Sciences, 10(12), 2475-2488. https://doi.org/10.5194/nhess-10-2475-2010spa
dc.relation.referencesLee, S.-J., Chan, Y.-C., Komatitsch, D., Huang, B.-S., & Tromp, J. (2009). Effects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based Upon the Spectral-Element Method and LiDAR DTMEffects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan. Bulletin of the Seismological Society of America, 99(2A), 681-693. https://doi.org/10.1785/0120080264spa
dc.relation.referencesLin, J.-S., & Whitman, R. (1986). Earthquake Induced Displacements of Sliding Blocks. Journal of Geotechnical Engineering, 112. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:1(44)spa
dc.relation.referencesMarui, H. (2017). Earthquake-induced landslides—An overview and mitigation measures of disasters caused by them. ZBORNIK RADOVA GEO-EXPO 2017, 27-36. https://doi.org/10.35123/GEO-EXPO_2017_4spa
dc.relation.referencesMassey, C., Della Pasqua, F., Holden, C., Kaiser, A., Richards, L., Wartman, J., McSaveney, M. J., Archibald, G., Yetton, M., & Janku, L. (2017). Rock slope response to strong earthquake shaking. Landslides, 14(1), 249-268. https://doi.org/10.1007/s10346-016-0684-8spa
dc.relation.referencesMeunier, P., Hovius, N., & Haines, J. A. (2008a). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232. https://doi.org/10.1016/j.epsl.2008.07.020spa
dc.relation.referencesMurphy, W., & Mankelow, J. (2004). Obtaining Probabilistic Estimates of Displacement on a Landslide During Future Earthquakes. Journal of Earthquake Engineering, 8(1), 133-157. https://doi.org/10.1080/13632460409350484spa
dc.relation.referencesNowicki, M. A., Wald, D. J., Hamburger, M. W., Hearne, M., & Thompson, E. M. (2014). Development of a globally applicable model for near real-time prediction of seismically induced landslides. En Engineering Geology (Vol. 173, p. 5465). https://doi.org/10.1016/j.enggeo.2014.02.002spa
dc.relation.referencesOhminato, T., & Chouet, B. A. (1997). A free-surface boundary condition for including 3D topography in the finite-difference method. Bulletin of the Seismological Society of America, 87(2), 494-515.spa
dc.relation.referencesPaolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earthquake Engineering & Structural Dynamics, 31(10), 1831-1853. https://doi.org/10.1002/eqe.192spa
dc.relation.referencesParker, R. N., Rosser, N. J., & Hales, T. C. (2017). Spatial prediction of earthquake-induced landslide probability [Preprint]. Earthquake Hazards. https://doi.org/10.5194/nhess-2017-193spa
dc.relation.referencesPeng, W.-F., Wang, C.-L., Chen, S.-T., & Lee, S.-T. (2009a). Incorporating the effects of topographic amplification and sliding areas in the modeling of earthquake-induced landslide hazards, using the cumulative displacement method. Computers & Geosciences, 35(5), 946-966. https://doi.org/10.1016/j.cageo.2008.09.007spa
dc.relation.referencesPeng, W.-F., Wang, C.-L., Chen, S.-T., & Lee, S.-T. (2009b). Incorporating the effects of topographic amplification and sliding areas in the modeling of earthquake-induced landslide hazards, using the cumulative displacement method. Computers & Geosciences, 35(5), 946-966. https://doi.org/10.1016/j.cageo.2008.09.007spa
dc.relation.referencesPradhan, B., Oh, H.-J., & Buchroithner, M. (2010). Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics, Natural Hazards and Risk, 1(3), 199-223. https://doi.org/10.1080/19475705.2010.498151spa
dc.relation.referencesRathje, E., & Saygili, G. (2009). Probabilistic assessment of earthquake-induced sliding displacements of natural slopes. Bulletin of the New Zealand Society for Earthquake Engineering, 42. https://doi.org/10.5459/bnzsee.42.1.18-27spa
dc.relation.referencesRefice, A., & Capolongo, D. (2002). Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Computers & Geosciences, 28(6), 735-749. https://doi.org/10.1016/S0098-3004(01)00104-2spa
dc.relation.referencesReichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001spa
dc.relation.referencesRodrı́guez, C. E., Bommer, J. J., & Chandler, R. J. (1999). Earthquake-induced landslides: 1980–1997. Soil Dynamics and Earthquake Engineering, 18(5), 325-346. https://doi.org/10.1016/S0267-7261(99)00012-3spa
dc.relation.referencesRomeo, R. W., Jibson, A. W., & Pugliese, A. (2007). A methodology for assessing earthquake-induced landslide risk. 23, 867-875.spa
dc.relation.referencesSassa, K., Fukuoka, H., Wang, F., & Wang, G. (2005). Dynamic properties of earthquake-induced large-scale rapid landslides within past landslide masses. Landslides, 2(2), 125-134. https://doi.org/10.1007/s10346-005-0055-3spa
dc.relation.referencesServicio Geológico Colombiano. (2017). Guía metodológica para la zonificación de amenaza por movimientos en masa. Servicio Geológico Colombiano, Dirección de Geoamenazas; Grupo de Evaluación de Amenaza por Movimientos en Masa.spa
dc.relation.referencesServicio Geológico Colombiano. (2018). Modelo Nacional de Amenaza Sísmica para Colombia.spa
dc.relation.referencesSrbulov, M. (2011). Practical soil dynamics. Springer Netherlands.spa
dc.relation.referencesTiwari, B., & Ajmera, B. (2017). Landslides Triggered by Earthquakes from 1920 to 2015. En M. Mikos, B. Tiwari, Y. Yin, & K. Sassa (Eds.), Advancing Culture of Living with Landslides (pp. 5-15). Springer International Publishing. https://doi.org/10.1007/978-3-319-53498-5_2spa
dc.relation.referencesTromp, J., & Komatitsch, D. (2015). SPECFEM 3D Cartesian—User Manual Version 3.0. Priceton University; CNRS; University of Marseille; Resultados de búsqueda Resultado web con enlaces de partes del sitio ETH Zürich.spa
dc.relation.referencesWang, G., Du, C., Huang, D., Jin, F., Koo, R. C. H., & Kwan, J. S. H. (2018). Parametric models for 3D topographic amplification of ground motions considering subsurface soils. Soil Dynamics and Earthquake Engineering, 115, 41-54. https://doi.org/10.1016/j.soildyn.2018.07.018spa
dc.relation.referencesWang, H., Wang, G., Wang, F., Sassa, K., & Chen, Y. (2008). Probabilistic modeling of seismically triggered landslides using Monte Carlo simulations. Landslides, 5(4), 387-395. https://doi.org/10.1007/s10346-008-0131-6spa
dc.relation.referencesWasowski, J., Keefer, D. K., & Lee, C.-T. (2011). Toward the next generation of research on earthquake-induced landslides: Current issues and future challenges. Engineering Geology, 122(1), 1-8. https://doi.org/10.1016/j.enggeo.2011.06.001spa
dc.relation.referencesZhang, J., Westen, C. J. van, Tanyas, H., Mavrouli, O., Ge, Y., Bajrachary, S., Gurung, D. R., Dhital, M. R., & Khanal, N. R. (2019). How size and trigger matter: Analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the Koshi River basin, central Himalaya. Natural Hazards and Earth System Sciences, 19(8), 1789-1805. https://doi.org/10.5194/nhess-19-1789-2019spa
dc.relation.referencesZhang, S., Zhang, L., Lacasse, S., & Nadim, F. (2016). Evolution of Mass Movements near Epicentre of Wenchuan Earthquake, the First Eight Years. Scientific Reports, 6(1), 36154. https://doi.org/10.1038/srep36154spa
dc.relation.referencesZhang, Y. (2015). Stability and Run-out Analysis of Earthquake-induced Landslides. Earthquake Engineering - From Engineering Seismology to Optimal Seismic Design of Engineering Structures. https://doi.org/10.5772/59439spa
dc.relation.referencesZhang, Z., Fleurisson, J.-A., & Pellet, F. (2018a). The effects of slope topography on acceleration amplification and interaction between slope topography and seismic input motion. Soil Dynamics and Earthquake Engineering, 113, 420-431. https://doi.org/10.1016/j.soildyn.2018.06.019spa
dc.relation.referencesZhang, Z., Fleurisson, J.-A., & Pellet, F. (2018b). The effects of slope topography on acceleration amplification and interaction between slope topography and seismic input motion. Soil Dynamics and Earthquake Engineering, 113, 420-431. https://doi.org/10.1016/j.soildyn.2018.06.019spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc690 - Construcción de edificiosspa
dc.subject.proposalMétodo de Elementos Espectralesspa
dc.subject.proposalEarthquake-induced mass movementseng
dc.subject.proposalAmplificación topográficaspa
dc.subject.proposalSpectral Element Methodeng
dc.subject.proposalMovimientos en masa inducidos por sismosspa
dc.subject.proposalTopographic amplificationeng
dc.subject.proposalMass movementseng
dc.subject.proposalAmenaza por movimientos en masaspa
dc.subject.proposalSPECFEM3Deng
dc.subject.proposalSPECFEM3Dspa
dc.titlePropuesta para la evaluación de amenaza por movimientos en masa inducidos por sismospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013634658.2020.pdf
Tamaño:
45.47 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: