En 6 día(s), 22 hora(s) y 43 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Tunelamiento en aproximación semiclásica de la radiación Hawking para Black Shells

dc.contributor.advisorArenas Salazar, José Robelspa
dc.contributor.authorCabezas Chacón, Pitter Javierspa
dc.contributor.researchgroupAstronomía, Astrofísica y Cosmologiaspa
dc.date.accessioned2020-07-17T16:12:03Zspa
dc.date.available2020-07-17T16:12:03Zspa
dc.date.issued2020-07-03spa
dc.description.abstractEl propósito de este trabajo es intentar determinar la existencia de tunelamiento cuántico en el proceso de radiación de Hawking para agujeros negros, considerando la búsqueda de un potencial proveniente de algún fenómeno de la fı́sica establecida, que proporcione una analogı́a al hipotético potencial que deberı́a estar presente en el horizonte de eventos, a través e cual las partículas tunelarían. El decaimiento alfa nuclear podrı́a ser un candidato ampliamente estudiado en las desintegraciones, ası́ como su comprensión experimental y teórica. Otra opción se refiere al proceso de conversión de pares ante un campo electromagnético en el interior del núcleo con las correspondientes probabilidades de emisión electrón positrón, que se asemeja al caso de interés. A partir del principio holográfico es posible establecer una zona en la cual los campos cuánticos están presentes en las vecindades de un agujero negro y por lo tanto las consideraciones termodinámicas sobre la entropı́a de Bekenstein-Hawking estarı́an restringidas a esta zona en particular representada por un cascarón negro (Black Shell) sin la necesidad de conocer el interior, pues investigar qué hay en el interior de un agujero negro es una pregunta que no es posible responder con la Relatividad General.spa
dc.description.abstractThe purpose of this work is trying to determinate the existence of quantum tunneling for the Hawking’s radiation process for black holes, considering to find a poten- tial coming from some established physics phenomena that provides an analogy with an hypothetical potential that should be on the event horizon, through which the particles would tunnel. Nuclear alpha decay could be a widely studied case on the desintegrations, for its experimental and theoretical unders- tanding. Another option refers to the pairs conversion process onto an electromagnetical field in the interior of nuclei with its probabilities of emision of electrons and positrons that resembles to the interest framework. Starting by holographic principle is possible to establish a particular zone what the quantum fields are present on the vicinity of a Black Hole and therefore, thermodynamical considerations through Bekenstein’s-Hawking entropy will be restricted to this zone in particular represented by a Black Shell, without the necessity of recognize its interior, but investigate what’s inside of a Black Hole is a question that is not possible to answer with General Relativity.spa
dc.description.additionalLínea de Investigación: Termodinámica de Agujeros Negrosspa
dc.description.degreelevelMaestríaspa
dc.format.extent115spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCabezas, P. (2020) Tunelamiento en aproximación semiclásica de la radiación Hawking para Black Shells. Universidad Nacional de Colombia. Departamento de Física. Bogotáspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77787
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesS. W. Hawking, “Particle creation by black holes,” Communications in mathematical physics, vol. 43, no. 3, pp. 199–220, 1975spa
dc.relation.referencesM. K. Parikh and F. Wilczek, “Hawking radiation as tunneling,” Physical Review Letters, vol. 85, no. 24, p. 5042, 2000spa
dc.relation.referencesM. Parikh, “A secret tunnel through the horizon,” General Relativity and Gravitation, vol. 36, no. 11, pp. 2419–2422, 2004spa
dc.relation.referencesB. D. Chowdhury, “Problems with tunneling of thin shells from black holes,” Pramana, vol. 70, no. 1, pp. 3–26, 2008spa
dc.relation.referencesB. D. Chowdhury, “Black holes versus firewalls and thermo-field dynamics,” International Journal of Modern Physics D, vol. 22, no. 12, p. 1342011, 2013.spa
dc.relation.referencesJ. D. Bjorken, S. D. Drell, and J. E. Mansfield, “Relativistic quantum mechanics,” Physics Today, vol. 18, pp. 81–82, mar 1965.spa
dc.relation.referencesV. Mukhanov and S. Winitzki, Introduction to quantum effects in gravity. Cambridge Uni- versity Press, 2007.spa
dc.relation.referencesN. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space. Cambridge University Press, 1982.spa
dc.relation.referencesS. Mukohyama and W. Israel, “Black holes, brick walls, and the boulware state,” Physical Review D, vol. 58, no. 10, p. 104005, 1998.spa
dc.relation.referencesV. Rubakov, Classical theory of gauge fields. Princeton University Press, 2009.spa
dc.relation.referencesE. Poisson, A relativist’s toolkit: the mathematics of black-hole mechanics. Cambridge uni- versity press, 2004.spa
dc.relation.referencesA. Fabbri and J. Navarro-Salas, Modeling black hole evaporation. World Scientific, 2005.spa
dc.relation.referencesR. Banerjee and B. R. Majhi, “Quantum tunneling beyond semiclassical approximation,” Journal of High Energy Physics, vol. 2008, no. 06, p. 095, 2008.spa
dc.relation.referencesA. Das, T. Ferbel, and N. Gauthier, “Introduction to nuclear and particle physics,” American Journal of Physics, vol. 62, pp. 477–478, 1994.spa
dc.relation.referencesG. Gamow, The Quantum Theory of the Atomic Nucleus. US Atomic Energy Commission, Division of Technical Information Extension, 1963spa
dc.relation.referencesL. De La Peña, Introducción a la mecánica cuántica. Fondo de Cultura económica, 2014.spa
dc.relation.referencesF. Kondev, “Nuclear data sheets for a= 206,” Nuclear Data Sheets, vol. 109, no. 6, pp. 1527–1654, 2008.spa
dc.relation.referencesA. Balantekin and N. Takigawa, “Quantum tunneling in nuclear fusion,” Reviews of Modern Physics, vol. 70, no. 1, p. 77, 1998.spa
dc.relation.referencesD. Brink and U. Smilansky, “Multiple reflections in the path-integral approach to barrier penetration,” Nuclear physics A, vol. 405, no. 2, pp. 301–312, 1983.spa
dc.relation.referencesD. L. Hill and J. A. Wheeler, “Nuclear constitution and the interpretation of fission phenomena,” Physical Review, vol. 89, no. 5, p. 1102, 1953.spa
dc.relation.referencesA. B. Balantekin, S. E. Koonin, and J. W. Negele, “Inversion formula for the internucleus potential using sub-barrier fusion cross sections,” Physical Review C, vol. 28, no. 4, p. 1565, 1983.spa
dc.relation.referencesA. Balantekin, A. DeWeerd, and S. Kuyucak, “Relations between fusion cross sections and average angular momenta,” Physical Review C, vol. 54, no. 4, p. 1853, 1996.spa
dc.relation.referencesA. Balantekin and P. Reimer, “Determination of an effective radius from the gamma-ray multiplicities in fusion reactions,” Physical Review C, vol. 33, no. 1, p. 379, 1986.spa
dc.relation.referencesJ. Pei, F. Xu, Z. Lin, and E. Zhao, “α-decay calculations of heavy and superheavy nuclei using effective mean-field potentials,” Physical Review C, vol. 76, no. 4, p. 044326, 2007.spa
dc.relation.referencesH. M. Taylor and N. F. Mott, “A theory of the internal conversion of γ-rays,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 138, no. 836, pp. 665–695, 1932.spa
dc.relation.referencesP. Schlüter, G. Soff, and W. Greiner, “Pair creation by internal conversion,” Physics Reports, vol. 75, no. 6, pp. 327–392, 1981.spa
dc.relation.referencesR. Bousso, “The holographic principle,” Reviews of Modern Physics, vol. 74, no. 3, p. 825, 2002.spa
dc.relation.referencesJ. D. Bekenstein, “Black holes and the second law,” Lettere Al Nuovo Cimento (1971–1985), vol. 4, no. 15, pp. 737–740, 1972.spa
dc.relation.referencesD. Marolf, “Unitarity and holography in gravitational physics,” Physical Review D, vol. 79, no. 4, p. 044010, 2009.spa
dc.relation.referencesS. D. Mathur, “The information paradox: a pedagogical introduction,” Classical and Quantum Gravity, vol. 26, no. 22, p. 224001, 2009.spa
dc.relation.referencesL. Susskind and J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution. WORLD SCIENTIFIC, 2004.spa
dc.relation.referencesD. Bigatti and L. Susskind, “TASI lectures on the holographic principle,” in Strings, branes and gravity. Proceedings, Theoretical Advanced Study Institute, TASI’99, Boulder, USA, May 31-June 25, 1999, pp. 883–933, 1999.spa
dc.relation.referencesA. V. Ramallo, “Introduction to the ads/cft correspondence,” in Lectures on Particle Physics, Astrophysics and Cosmology, pp. 411–474, Springer, 2015.spa
dc.relation.referencesR. M. Wald, “The thermodynamics of black holes,” Living reviews in relativity, vol. 4, no. 1, p. 6, 2001.spa
dc.relation.referencesJ. D. Bekenstein, “Entropy bounds and the second law for black holes,” Physical Review D, vol. 27, no. 10, p. 2262, 1983.spa
dc.relation.referencesM. Pelath and R. M. Wald, “Comment on entropy bounds and the generalized second law,” Physical Review D, vol. 60, no. 10, p. 104009, 1999.spa
dc.relation.referencesL. Susskind, “The world as a hologram,” Journal of Mathematical Physics, vol. 36, no. 11, pp. 6377–6396, 1995.spa
dc.relation.referencesG. Hooft, “The holographic principle,” in Basics and Highlights in Fundamental Physics, pp. 72–100, World Scientific, 2001.spa
dc.relation.referencesG. Hooft, “On the quantum structure of a black hole,” Nuclear Physics B, vol. 256, pp. 727–745, 1985.spa
dc.relation.referencesG. ’t Hooft, “Dimensional reduction in quantum gravity,” Conf. Proc., vol. C930308, pp. 284–296, 1993.spa
dc.relation.referencesL. Susskind, “Strings, black holes, and lorentz contraction,” Physical Review D, vol. 49, no. 12, p. 6606, 1994.spa
dc.relation.referencesR. Tavakol and G. Ellis, “Holography and cosmology,” Physics Letters B, vol. 469, no. 1-4, pp. 37–45, 1999.spa
dc.relation.referencesJ. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D, vol. 7, pp. 2333–2346, Apr 1973.spa
dc.relation.referencesS. W. Hawking, “Black holes and thermodynamics,” Phys. Rev. D, vol. 13, pp. 191–197, Jan 1976.spa
dc.relation.referencesS. W. Hawking, “Gravitational radiation from colliding black holes,” Phys. Rev. Lett., vol. 26, pp. 1344–1346, May 1971.spa
dc.relation.referencesS. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, vol. 1. Cambridge university press, 1973.spa
dc.relation.referencesG. Hooft, “The scattering matrix approach for the quantum black hole: An overview,” International Journal of Modern Physics A, vol. 11, no. 26, pp. 4623–4688, 1996.spa
dc.relation.referencesW. Israel, “Singular hypersurfaces and thin shells in general relativity,” Il Nuovo Cimento B (1965-1970), vol. 44, no. 1, pp. 1–14, 1966.spa
dc.relation.referencesS. M. Carroll, Spacetime and geometry. An introduction to general relativity. 2004.spa
dc.relation.referencesR. Di Criscienzo, Semi-classical aspect of black hole physics. PhD thesis, University of Trento, 2011.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalAgujeros negrosspa
dc.subject.proposalBlack holeseng
dc.subject.proposalHawking radiationeng
dc.subject.proposalRadiación de Hawkingspa
dc.subject.proposalQuantum tunnelingeng
dc.subject.proposalTunelamiento cuánticospa
dc.subject.proposalConversión internaspa
dc.subject.proposalInternal conversioneng
dc.subject.proposalPrincipio holográficospa
dc.subject.proposalHolographic principleeng
dc.subject.proposalBlack Shellsspa
dc.subject.proposalBlack Shellseng
dc.titleTunelamiento en aproximación semiclásica de la radiación Hawking para Black Shellsspa
dc.title.alternativeTunneling in semiclassical approximation to Hawking’s Radiation for Black Shellsspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis.pdf
Tamaño:
2.08 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: