Tunelamiento en aproximación semiclásica de la radiación Hawking para Black Shells
| dc.contributor.advisor | Arenas Salazar, José Robel | spa |
| dc.contributor.author | Cabezas Chacón, Pitter Javier | spa |
| dc.contributor.researchgroup | Astronomía, Astrofísica y Cosmologia | spa |
| dc.date.accessioned | 2020-07-17T16:12:03Z | spa |
| dc.date.available | 2020-07-17T16:12:03Z | spa |
| dc.date.issued | 2020-07-03 | spa |
| dc.description.abstract | El propósito de este trabajo es intentar determinar la existencia de tunelamiento cuántico en el proceso de radiación de Hawking para agujeros negros, considerando la búsqueda de un potencial proveniente de algún fenómeno de la fı́sica establecida, que proporcione una analogı́a al hipotético potencial que deberı́a estar presente en el horizonte de eventos, a través e cual las partículas tunelarían. El decaimiento alfa nuclear podrı́a ser un candidato ampliamente estudiado en las desintegraciones, ası́ como su comprensión experimental y teórica. Otra opción se refiere al proceso de conversión de pares ante un campo electromagnético en el interior del núcleo con las correspondientes probabilidades de emisión electrón positrón, que se asemeja al caso de interés. A partir del principio holográfico es posible establecer una zona en la cual los campos cuánticos están presentes en las vecindades de un agujero negro y por lo tanto las consideraciones termodinámicas sobre la entropı́a de Bekenstein-Hawking estarı́an restringidas a esta zona en particular representada por un cascarón negro (Black Shell) sin la necesidad de conocer el interior, pues investigar qué hay en el interior de un agujero negro es una pregunta que no es posible responder con la Relatividad General. | spa |
| dc.description.abstract | The purpose of this work is trying to determinate the existence of quantum tunneling for the Hawking’s radiation process for black holes, considering to find a poten- tial coming from some established physics phenomena that provides an analogy with an hypothetical potential that should be on the event horizon, through which the particles would tunnel. Nuclear alpha decay could be a widely studied case on the desintegrations, for its experimental and theoretical unders- tanding. Another option refers to the pairs conversion process onto an electromagnetical field in the interior of nuclei with its probabilities of emision of electrons and positrons that resembles to the interest framework. Starting by holographic principle is possible to establish a particular zone what the quantum fields are present on the vicinity of a Black Hole and therefore, thermodynamical considerations through Bekenstein’s-Hawking entropy will be restricted to this zone in particular represented by a Black Shell, without the necessity of recognize its interior, but investigate what’s inside of a Black Hole is a question that is not possible to answer with General Relativity. | spa |
| dc.description.additional | Línea de Investigación: Termodinámica de Agujeros Negros | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 115 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Cabezas, P. (2020) Tunelamiento en aproximación semiclásica de la radiación Hawking para Black Shells. Universidad Nacional de Colombia. Departamento de Física. Bogotá | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77787 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Física | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
| dc.relation.references | S. W. Hawking, “Particle creation by black holes,” Communications in mathematical physics, vol. 43, no. 3, pp. 199–220, 1975 | spa |
| dc.relation.references | M. K. Parikh and F. Wilczek, “Hawking radiation as tunneling,” Physical Review Letters, vol. 85, no. 24, p. 5042, 2000 | spa |
| dc.relation.references | M. Parikh, “A secret tunnel through the horizon,” General Relativity and Gravitation, vol. 36, no. 11, pp. 2419–2422, 2004 | spa |
| dc.relation.references | B. D. Chowdhury, “Problems with tunneling of thin shells from black holes,” Pramana, vol. 70, no. 1, pp. 3–26, 2008 | spa |
| dc.relation.references | B. D. Chowdhury, “Black holes versus firewalls and thermo-field dynamics,” International Journal of Modern Physics D, vol. 22, no. 12, p. 1342011, 2013. | spa |
| dc.relation.references | J. D. Bjorken, S. D. Drell, and J. E. Mansfield, “Relativistic quantum mechanics,” Physics Today, vol. 18, pp. 81–82, mar 1965. | spa |
| dc.relation.references | V. Mukhanov and S. Winitzki, Introduction to quantum effects in gravity. Cambridge Uni- versity Press, 2007. | spa |
| dc.relation.references | N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space. Cambridge University Press, 1982. | spa |
| dc.relation.references | S. Mukohyama and W. Israel, “Black holes, brick walls, and the boulware state,” Physical Review D, vol. 58, no. 10, p. 104005, 1998. | spa |
| dc.relation.references | V. Rubakov, Classical theory of gauge fields. Princeton University Press, 2009. | spa |
| dc.relation.references | E. Poisson, A relativist’s toolkit: the mathematics of black-hole mechanics. Cambridge uni- versity press, 2004. | spa |
| dc.relation.references | A. Fabbri and J. Navarro-Salas, Modeling black hole evaporation. World Scientific, 2005. | spa |
| dc.relation.references | R. Banerjee and B. R. Majhi, “Quantum tunneling beyond semiclassical approximation,” Journal of High Energy Physics, vol. 2008, no. 06, p. 095, 2008. | spa |
| dc.relation.references | A. Das, T. Ferbel, and N. Gauthier, “Introduction to nuclear and particle physics,” American Journal of Physics, vol. 62, pp. 477–478, 1994. | spa |
| dc.relation.references | G. Gamow, The Quantum Theory of the Atomic Nucleus. US Atomic Energy Commission, Division of Technical Information Extension, 1963 | spa |
| dc.relation.references | L. De La Peña, Introducción a la mecánica cuántica. Fondo de Cultura económica, 2014. | spa |
| dc.relation.references | F. Kondev, “Nuclear data sheets for a= 206,” Nuclear Data Sheets, vol. 109, no. 6, pp. 1527–1654, 2008. | spa |
| dc.relation.references | A. Balantekin and N. Takigawa, “Quantum tunneling in nuclear fusion,” Reviews of Modern Physics, vol. 70, no. 1, p. 77, 1998. | spa |
| dc.relation.references | D. Brink and U. Smilansky, “Multiple reflections in the path-integral approach to barrier penetration,” Nuclear physics A, vol. 405, no. 2, pp. 301–312, 1983. | spa |
| dc.relation.references | D. L. Hill and J. A. Wheeler, “Nuclear constitution and the interpretation of fission phenomena,” Physical Review, vol. 89, no. 5, p. 1102, 1953. | spa |
| dc.relation.references | A. B. Balantekin, S. E. Koonin, and J. W. Negele, “Inversion formula for the internucleus potential using sub-barrier fusion cross sections,” Physical Review C, vol. 28, no. 4, p. 1565, 1983. | spa |
| dc.relation.references | A. Balantekin, A. DeWeerd, and S. Kuyucak, “Relations between fusion cross sections and average angular momenta,” Physical Review C, vol. 54, no. 4, p. 1853, 1996. | spa |
| dc.relation.references | A. Balantekin and P. Reimer, “Determination of an effective radius from the gamma-ray multiplicities in fusion reactions,” Physical Review C, vol. 33, no. 1, p. 379, 1986. | spa |
| dc.relation.references | J. Pei, F. Xu, Z. Lin, and E. Zhao, “α-decay calculations of heavy and superheavy nuclei using effective mean-field potentials,” Physical Review C, vol. 76, no. 4, p. 044326, 2007. | spa |
| dc.relation.references | H. M. Taylor and N. F. Mott, “A theory of the internal conversion of γ-rays,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 138, no. 836, pp. 665–695, 1932. | spa |
| dc.relation.references | P. Schlüter, G. Soff, and W. Greiner, “Pair creation by internal conversion,” Physics Reports, vol. 75, no. 6, pp. 327–392, 1981. | spa |
| dc.relation.references | R. Bousso, “The holographic principle,” Reviews of Modern Physics, vol. 74, no. 3, p. 825, 2002. | spa |
| dc.relation.references | J. D. Bekenstein, “Black holes and the second law,” Lettere Al Nuovo Cimento (1971–1985), vol. 4, no. 15, pp. 737–740, 1972. | spa |
| dc.relation.references | D. Marolf, “Unitarity and holography in gravitational physics,” Physical Review D, vol. 79, no. 4, p. 044010, 2009. | spa |
| dc.relation.references | S. D. Mathur, “The information paradox: a pedagogical introduction,” Classical and Quantum Gravity, vol. 26, no. 22, p. 224001, 2009. | spa |
| dc.relation.references | L. Susskind and J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution. WORLD SCIENTIFIC, 2004. | spa |
| dc.relation.references | D. Bigatti and L. Susskind, “TASI lectures on the holographic principle,” in Strings, branes and gravity. Proceedings, Theoretical Advanced Study Institute, TASI’99, Boulder, USA, May 31-June 25, 1999, pp. 883–933, 1999. | spa |
| dc.relation.references | A. V. Ramallo, “Introduction to the ads/cft correspondence,” in Lectures on Particle Physics, Astrophysics and Cosmology, pp. 411–474, Springer, 2015. | spa |
| dc.relation.references | R. M. Wald, “The thermodynamics of black holes,” Living reviews in relativity, vol. 4, no. 1, p. 6, 2001. | spa |
| dc.relation.references | J. D. Bekenstein, “Entropy bounds and the second law for black holes,” Physical Review D, vol. 27, no. 10, p. 2262, 1983. | spa |
| dc.relation.references | M. Pelath and R. M. Wald, “Comment on entropy bounds and the generalized second law,” Physical Review D, vol. 60, no. 10, p. 104009, 1999. | spa |
| dc.relation.references | L. Susskind, “The world as a hologram,” Journal of Mathematical Physics, vol. 36, no. 11, pp. 6377–6396, 1995. | spa |
| dc.relation.references | G. Hooft, “The holographic principle,” in Basics and Highlights in Fundamental Physics, pp. 72–100, World Scientific, 2001. | spa |
| dc.relation.references | G. Hooft, “On the quantum structure of a black hole,” Nuclear Physics B, vol. 256, pp. 727–745, 1985. | spa |
| dc.relation.references | G. ’t Hooft, “Dimensional reduction in quantum gravity,” Conf. Proc., vol. C930308, pp. 284–296, 1993. | spa |
| dc.relation.references | L. Susskind, “Strings, black holes, and lorentz contraction,” Physical Review D, vol. 49, no. 12, p. 6606, 1994. | spa |
| dc.relation.references | R. Tavakol and G. Ellis, “Holography and cosmology,” Physics Letters B, vol. 469, no. 1-4, pp. 37–45, 1999. | spa |
| dc.relation.references | J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D, vol. 7, pp. 2333–2346, Apr 1973. | spa |
| dc.relation.references | S. W. Hawking, “Black holes and thermodynamics,” Phys. Rev. D, vol. 13, pp. 191–197, Jan 1976. | spa |
| dc.relation.references | S. W. Hawking, “Gravitational radiation from colliding black holes,” Phys. Rev. Lett., vol. 26, pp. 1344–1346, May 1971. | spa |
| dc.relation.references | S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, vol. 1. Cambridge university press, 1973. | spa |
| dc.relation.references | G. Hooft, “The scattering matrix approach for the quantum black hole: An overview,” International Journal of Modern Physics A, vol. 11, no. 26, pp. 4623–4688, 1996. | spa |
| dc.relation.references | W. Israel, “Singular hypersurfaces and thin shells in general relativity,” Il Nuovo Cimento B (1965-1970), vol. 44, no. 1, pp. 1–14, 1966. | spa |
| dc.relation.references | S. M. Carroll, Spacetime and geometry. An introduction to general relativity. 2004. | spa |
| dc.relation.references | R. Di Criscienzo, Semi-classical aspect of black hole physics. PhD thesis, University of Trento, 2011. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.ddc | 530 - Física | spa |
| dc.subject.proposal | Agujeros negros | spa |
| dc.subject.proposal | Black holes | eng |
| dc.subject.proposal | Hawking radiation | eng |
| dc.subject.proposal | Radiación de Hawking | spa |
| dc.subject.proposal | Quantum tunneling | eng |
| dc.subject.proposal | Tunelamiento cuántico | spa |
| dc.subject.proposal | Conversión interna | spa |
| dc.subject.proposal | Internal conversion | eng |
| dc.subject.proposal | Principio holográfico | spa |
| dc.subject.proposal | Holographic principle | eng |
| dc.subject.proposal | Black Shells | spa |
| dc.subject.proposal | Black Shells | eng |
| dc.title | Tunelamiento en aproximación semiclásica de la radiación Hawking para Black Shells | spa |
| dc.title.alternative | Tunneling in semiclassical approximation to Hawking’s Radiation for Black Shells | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

