Biomechanical factors associated with glaucomatous optic neuropathy

dc.contributor.advisorCortés Rodríguez, Carlos Juliospa
dc.contributor.advisorRodríguez Montaño, Óscar Libardospa
dc.contributor.authorMuñoz Sarmiento, Diana Marcelaspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001354493spa
dc.contributor.orcidMuñoz Sarmiento, Diana Marcela [0000000150620257]spa
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncbspa
dc.date.accessioned2024-10-16T13:31:06Z
dc.date.available2024-10-16T13:31:06Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractAntecedentes: El glaucoma se ha asociado a diversos factores biomecánicos, tales como la presión intraocular (PIO), la presión del líquido cefalorraquídeo (PLCR), los movimientos oculares horizontales, la rigidez de los tejidos, entre otras. Esta tesis tiene como objetivo analizar la influencia de estos factores en la cabeza del nervio óptico (CNO). Además, debido a la alta variabilidad en las reconstrucciones anatómicas propuestas históricamente, se evalúa el impacto de incluir y excluir diferentes regiones anatómicas. Métodos: Se desarrolló un modelo computacional tridimensional del ojo y la órbita usando el método de los elementos finitos, documentando las deformaciones promedio a lo largo de los ejes anatómicos y en las direcciones principales en la CNO. Asimismo, se creó un modelo axisimétrico del ojo, a partir del cual se generaron 17 casos anatómicos. Resultados: La inclusión y exclusión de las regiones anatómicas afectó significativamente las deformaciones obtenidas. Por otro lado, se obtuvo una alta dispersión de las deformaciones debida a los movimientos oculares laterales, que no se observó con la variación de la PIO y la PLCR. Desde una perspectiva anatómica, una PIO alta y una PLCR baja generaron un efecto mecánico sinérgico sobre la CNO. Finalmente, los factores más influyentes fueron la PIO, la PLCR, la rigidez del espacio subaracnoideo (ESA), y la rigidez del tejido adiposo (TA). Conclusión: Los factores biomecánicos más importantes para el desarrollo del glaucoma son una PIO alta, una PLCR baja, y una rigidez elevada del ESA y del TA (Texto tomado de la fuente).spa
dc.description.abstractBackground: Glaucoma has been associated with various biomechanical factors, such as intraocular pressure (IOP), cerebrospinal fluid pressure (CSFP), horizontal eye movements, and tissue stiffness, among others. This thesis aims to analyze the influence of these factors on the optic nerve head (ONH). Furthermore, due to the high variability in historically proposed anatomical reconstructions, the impact of including and excluding different anatomical regions is examined. Methods: A three-dimensional computational model of the eye and orbit was developed using the finite element method, and the mean strains along the anatomical axes and in the principal directions in the ONH were documented. Likewise, an axisymmetric model of the eye was created, from which 17 anatomical cases were generated. Results: The inclusion and exclusion of the anatomical regions significantly affected the obtained strains. On the other hand, there was a high strain dispersion due to lateral eye movements, which was not observed with IOP and CSFP variations. From an anatomical perspective, high IOP and low CSFP generated a synergistic mechanical effect on the ONH. Finally, the most influential factors were IOP, CSFP, the subarachnoid space (SAS) stiffness, and adipose tissue (ADT) stiffness. Conclusion: The most important biomechanical factors for the development of glaucoma are high IOP, low CSFP, high SAS stiffness, and high ADT stiffness.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.methodsSe desarrolló un modelo computacional tridimensional del ojo y la órbita usando el método de los elementos finitos, documentando las deformaciones promedio a lo largo de los ejes anatómicos y en las direcciones principales en la CNO. Asimismo, se creó un modelo axisimétrico del ojo, a partir del cual se generaron 17 casos anatómicos. A three-dimensional computational model of the eye and orbit was developed using the finite element method, and the mean strains along the anatomical axes and in the principal directions in the ONH were documented. Likewise, an axisymmetric model of the eye was created, from which 17 anatomical cases were generated.spa
dc.description.researchareaBiomecánica ocularspa
dc.format.extent210 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86971
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.references1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614–8.spa
dc.relation.references2. Nakazawa T, Fukuchi T. What is glaucomatous optic neuropathy? Jpn J Ophthalmol. 2020;64(3):243–9.spa
dc.relation.references3. Cesareo M, Ciuffoletti E, Ricci F, Missiroli F, Giuliano MA, Mancino R, et al. Visual disability and quality of life in glaucoma patients. Prog Brain Res. 2015;221:359–74.spa
dc.relation.references4. Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N. The diagnosis and treatment of glaucoma. Dtsch Arztebl Int. 2020 Mar 27;117(13):225–34.spa
dc.relation.references5. Lin Y, Jiang B, Cai Y, Luo W, Zhu X, Lin Q, et al. The Global Burden of Glaucoma: Findings from the Global Burden of Disease 2019 Study and Predictions by Bayesian Age–Period–Cohort Analysis. J Clin Med. 2023 Mar 1;12(5):1323. doi:10.3390/jcm12051323.spa
dc.relation.references6. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014 Nov 1;121(11):2081–90.spa
dc.relation.references7. McMonnies CW. Glaucoma history and risk factors. J Optom. 2017 Apr;10(2):71–8. doi: 10.1016/j.optom.2016.12.003.spa
dc.relation.references8. Arenas-Archila E, Arellano K, Muñoz-Sarmiento D. Intra-lesional injection of betamethasone for the treatment of symptomatic pinguecula. Arch Soc Esp Oftalmol. 2014;89(10):408–10. doi: 10.1016/j.oftal.2014.07.002.spa
dc.relation.references9. Arenas E, Muñoz D. A new surgical approach for the treatment of conjunctivochalasis: reduction of the conjunctival fold with bipolar electrocautery forceps. Sci World J. 2016;2016:1–6. doi:10.1155/2016/8435910.spa
dc.relation.references10. Arenas-Archila E, Alvizu F, Muñoz-Sarmiento D. Preauricular injection of betamethasone depot and acyclovir for the treatment of acute herpes zoster ophthalmicus. Arch Soc Esp Oftalmol. 2015;90(4):195–7. doi:10.1016/j.oftal.2014.10.011.spa
dc.relation.references11. Arenas E, Muñoz D, Matheus E, Morales D. Nasopupillary asymmetry. ScientificWorldJournal. 2014;2014:347826. doi:10.1155/2014/347826. Epub 2014 Dec 4. PMID: 25544953; PMCID: PMC4269086.spa
dc.relation.references12. Arenas E, Mieth A, Muñoz D. Combined intrastromal injection of ganciclovir and depot betamethasone for the management of nummular keratitis: Case series. Arch Soc Esp Oftalmol. 2019;94(1):45–9. doi: 10.1016/j.oftal.2018.09.009.spa
dc.relation.references13. Kim YW, Girard MJ, Mari JM, Jeoung JW. Anterior displacement of lamina cribrosa during Valsalva maneuver in young healthy eyes. PLoS One. 2016;11(7). doi:10.1371/journal.pone.0159663.spa
dc.relation.references14. Ma Y, Pavlatos E, Clayson K, Pan X, Kwok S, Sandwisch T, Liu J. Mechanical deformation of human optic nerve head and peripapillary tissue in response to acute IOP elevation. Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):913-920. doi:10.1167/iovs.18-26071. PMID: 30835783; PMCID: PMC6402264.spa
dc.relation.references15. Reis AS, O'Leary N, Stanfield MJ, Shuba LM, Nicolela MT, Chauhan BC. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(9):5819-5826. doi:10.1167/iovs.12-9924.spa
dc.relation.references16. Wang X, Rumpe H, Lim WEH, Baskaran M, Perera SA, Nongpiur ME, et al. Finite element analysis predicts large optic nerve head strains during horizontal eye movements. Invest Ophthalmol Vis Sci. 2016 May 1;57(6):2452–62.spa
dc.relation.references17. Uzun C, Atman ED, Ustuner E, Mirjalili SA, Oztuna D, Esmer TS. Surface anatomy and anatomical planes in the adult Turkish population. Clin Anat. 2016;29(2):183-190. doi:10.1002/ca.22634.spa
dc.relation.references18. Muñoz-Sarmiento DM, Rodríguez-Montaño ÓL, Alarcón-Castiblanco JD, Gamboa-Márquez MA, Corredor-Gómez JP, Cortés-Rodríguez CJ. A finite element study of posterior eye biomechanics: The influence of intraocular and cerebrospinal pressure on the optic nerve head, peripapillary region, subarachnoid space, and meninges. Inform Med Unlocked. 2019 Jan;15:100185. doi: 10.1016/j.imu.2018.100185.spa
dc.relation.references19. Issarti I, Koppen C, Rozema JJ. Influence of the eye globe design on biomechanical analysis. Comput Biol Med. 2021 Aug 1;135.spa
dc.relation.references20. Niemeyer F, Wilke HJ, Schmidt H. Geometry strongly influences the response of numerical models of the lumbar spine-A probabilistic finite element analysis. J Biomech. 2012 May 11;45(8):1414–23.spa
dc.relation.references21. Haider IT, Schneider P, Michalski A, Edwards WB. Influence of geometry on proximal femoral shaft strains: Implications for atypical femoral fracture. Bone. 2018;110:295-303. doi:10.1016/j.bone.2018.02.015.spa
dc.relation.references22. Shafique S, Rayi A. Anatomy, Head and Neck, Subarachnoid Space. StatPearls [Internet]. 2022 [cited 2022 Sep 30]; Available from: https://pubmed.ncbi.nlm.nih.gov/32491453/spa
dc.relation.references23. Muñoz Sarmiento DM, Rodríguez Montaño ÓL, Alarcón Castiblancoa JD, Cortés Rodríguez CJ. The impact of horizontal eye movements versus intraocular pressure on optic nerve head biomechanics: A tridimensional finite element analysis study. Heliyon. 2023;9(2). doi:10.1016/j.heliyon.2023.e13634.spa
dc.relation.references24. Chen K, Rowley AP, Weiland JD, Humayun MS. Elastic properties of human posterior eye. J Biomed Mater Res A. 2014;102(6):2001-2007. doi:10.1002/jbm.a.34858.spa
dc.relation.references25. MacManus DB, Pierrat B, Murphy JG, Gilchrist MD. Region and species dependent mechanical properties of adolescent and young adult brain tissue. Sci Rep. 2017;7(1):13729. doi:10.1038/s41598-017-13727-z.spa
dc.relation.references26. Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4189–99. doi: 10.1167/iovs.04-0700. 27.spa
dc.relation.references27. Hua Y, Voorhees AP, Sigal IA. Cerebrospinal fluid pressure: Revisiting factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):154–65.spa
dc.relation.references28. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2004;45(12):4378-4387. doi:10.1167/iovs.04-0133.spa
dc.relation.references29. Tripathi RC, Tripathi BJ, Haggerty C. Drug-Induced Glaucomas Mechanism and Management. Vol. 26, Drug Safety. 2003.spa
dc.relation.references30. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Vol. 390, The Lancet. Lancet Publishing Group; 2017. p. 2183–93.spa
dc.relation.references31. Wax MB, Tezel G, Edward PD. Clinical and ocular histopathological findings in a patient with normal-pressure glaucoma. Arch Ophthalmol. 1998;116(8):993-1001. doi:10.1001/archopht.116.8.993.spa
dc.relation.references32. Guo L, Normando EM, Nizari S, Lara D, Francesca Cordeiro M. Tracking longitudinal retinal changes in experimental ocular hypertension using the cSLO and spectral domain-OCT. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6504–13.spa
dc.relation.references33. Lei Y, Garrahan N, Hermann B, Becker DL, Hernandez MR, Boulton ME, et al. Quantification of retinal transneuronal degeneration in human glaucoma: A novel multiphoton-DAPI approach. Invest Ophthalmol Vis Sci. 2008 Apr;49(5):1940–5.spa
dc.relation.references34. Duncan RO, Sample PA, Weinreb RN, Bowd C, Zangwill LM. Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res. 2007;26(1):38-56. doi:10.1016/j.preteyeres.2006.10.001spa
dc.relation.references35. Michelson G, Wärntges S, Engelhorn T, El-Rafei A, Hornegger J, Dörfler A. Integrität/Demyelinisierung der Radiatio optica, Morphologie der Papille und Kontrastsensitivität bei Glaukompatienten. Klin Monbl Augenheilkd. 2012;229(2):143–8.spa
dc.relation.references36. Haykal S, Invernizzi A, Carvalho J, Jansonius NM, Cornelissen FW. Microstructural Visual Pathway White Matter Alterations in Primary Open-Angle Glaucoma: A Neurite Orientation Dispersion and Density Imaging Study. American Journal of Neuroradiology. 2022 May 1;43(5):756–63.spa
dc.relation.references37. Colbert MK, Ho LC, van der Merwe Y, Yang X, McLellan GJ, Hurley SA, et al. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models. Invest Ophthalmol Vis Sci. 2021;62(10):21. doi:10.1167/iovs.62.10.21.spa
dc.relation.references38. Flammer J, Ul SO, Costa VP, Orzalesi N, Unter G, Krieglstein K, et al. The impact of ocular blood flow in glaucoma. Vol. 21, Progress in Retinal and Eye Research. 2002.spa
dc.relation.references39. Fahy ET, Chrysostomou V, Crowston JG. Impaired axonal transport and glaucoma. Curr Eye Res. 2015;40(9):933–42. doi:10.3109/02713683.2015.1003082.spa
dc.relation.references40. Strouthidis NG, Girard MJA. Altering the way the optic nerve head responds to intraocular pressure - A potential approach to glaucoma therapy. Vol. 13, Current Opinion in Pharmacology. Elsevier Ltd; 2013. p. 83–9.spa
dc.relation.references41. McMonnies C. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J Optom. 2018 Jan;11(1):3–9. doi: 10.1016/j.optom.2017.10.002.spa
dc.relation.references42. Leske MC. Ocular perfusion pressure and glaucoma: Clinical trial and epidemiologic findings. Vol. 20, Current Opinion in Ophthalmology. 2009. p. 73–8.spa
dc.relation.references43. Portmann N, Gugleta K, Kochkorov A, Polunina A, Flammer J, Orgul S. Choroidal blood flow response to isometric exercise in glaucoma patients and patients with ocular hypertension. Invest Ophthalmol Vis Sci. 2011 Sep;52(10):7068–73.spa
dc.relation.references44. Fan N, Wang P, Tang L, Liu X. Ocular blood flow and normal tension glaucoma. Biomed Res Int. 2015;2015:508792. doi: 10.1155/2015/508792.spa
dc.relation.references45. Harris A, Sergott RC, Spaeth GL, Katz JL, Shoemaker JA, Martin BJ. Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol. 1994;118(5):642–9.spa
dc.relation.references46. Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16(2):79–83. doi:10.1097/01.icu.0000156134.38495.0b.spa
dc.relation.references47. Song X, Li P, Li Y, Yan X, Yuan L, Zhao C, et al. Strong association of glaucoma with atherosclerosis. Sci Rep. 2021 Dec 1;11(1).spa
dc.relation.references48. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107(7):1287-1293. doi:10.1016/s0161-6420(00)00138-x.spa
dc.relation.references49. Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. 2020 Nov 24;12(11):e11686. doi: 10.7759/cureus.11686. PMID: 33391921; PMCID: PMC7769798.spa
dc.relation.references50. Schuster AK, Wagner FM, Pfeiffer N, Hoffmann EM. Risk factors for open-angle glaucoma and recommendations for glaucoma screening. Vol. 118, Ophthalmologe. Springer Medizin; 2021. p. 145–52.spa
dc.relation.references51. Crabb DP, Smith ND, Glen FC, Burton R, Garway-Heath DF. How does glaucoma look?: Patient perception of visual field loss. Ophthalmology. 2013 Jun;120(6):1120–6.spa
dc.relation.references52. Hoste AM. New insights into the subjective perception of visual field defects. Bull Soc Belge Ophtalmol. 2003;(287):65-71.spa
dc.relation.references53. Bertaud S, Aragno V, Baudouin C, Labbé A. Primary open-angle glaucoma. Vol. 40, Revue de Medecine Interne. Elsevier Masson SAS; 2019. p. 445–52.spa
dc.relation.references54. Patel K, Patel S. Angle-closure glaucoma. Vol. 60, Disease-a-Month. Mosby Inc.; 2014. p. 254–62.spa
dc.relation.references55. Flores-Sánchez BC, Tatham AJ. Acute angle closure glaucoma. Br J Hosp Med (Lond). 2019;80(12):C174-C179. doi:10.12968/hmed.2019.80.12.C174spa
dc.relation.references56. Goldmann H, Graefe V. Albrecht yon Graefe und das Glaukom. Vol. 181, Graefes Arch. klin. exp. Ophthal. Springer Verlag; 1971.spa
dc.relation.references57. Esporcatte BLB, Tavares IM. Normal-tension glaucoma: An update. Vol. 79, Arquivos Brasileiros de Oftalmologia. Conselho Brasileiro De Oftalmologia; 2016. p. 270–6.spa
dc.relation.references58. Zhang HJ, Mi XS, So KF. Normal tension glaucoma: From the brain to the eye or the inverse? Vol. 14, Neural Regeneration Research. Wolters Kluwer Medknow Publications; 2019. p. 1845–50.spa
dc.relation.references59. Killer HE, Pircher A. Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. Eye (Basingstoke). 2018;32(6):924–30. doi: 10.1038/s41433-018-0049-y.spa
dc.relation.references60. Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, et al. Cerebrospinal Fluid Pressure in Glaucoma. A Prospective Study. Ophthalmology. 2010 Feb;117(2):259–66.spa
dc.relation.references61. Boye D, Montali M, Miller NR, Pircher A, Gruber P, Killer HE, et al. Flow dynamics of cerebrospinal fluid between the intracranial cavity and the subarachnoid space of the optic nerve measured with a diffusion magnetic resonance imaging sequence in patients with normal tension glaucoma. Clin Exp Ophthalmol. 2018 Jul 1;46(5):511–8.spa
dc.relation.references62. Wang N, Yang D, Jonas JB. Low cerebrospinal fluid pressure in the pathogenesis of primary open-angle glaucoma: epiphenomenon or causal relationship? The Beijing Intracranial and Intraocular Pressure (iCOP) study. J Glaucoma. 2013;22 Suppl 5. doi:10.1097/IJG.0b013e31829349a2.spa
dc.relation.references63. Shields MB. Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol. 2008;19(2):85-88. doi:10.1097/ICU.0b013e3282f3919b.spa
dc.relation.references64. Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126(4):498–505. doi:10.1016/S0002-9394(98)00272-4.spa
dc.relation.references65. Danias J, Podos SM, Anderson DR, Drance SM, Schulzer M, Leske MC, et al. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1999;127(5):623–5.spa
dc.relation.references66. McMonnies CW. History of glaucoma and risk factors. J Optom. 2017;10(2):71–8.spa
dc.relation.references67. Ocular Hypertension Treatment Study Group; European Glaucoma Prevention Study Group, Gordon MO, et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology. 2007;114(1):10-19. doi:10.1016/j.ophtha.2006.08.031.spa
dc.relation.references68. Song BJ, Aiello LP, Pasquale LR. Presence and risk factors for glaucoma in patients with diabetes. Curr Diab Rep. 2016;16(9):79.spa
dc.relation.references69. Musch DC, Gillespie BW, Niziol LM, Lichter PR, Varma R. Intraocular pressure control and long-term visual field loss in the collaborative initial glaucoma treatment study. Ophthalmology. 2011 Sep;118(9):1766–73.spa
dc.relation.references70. Guo ZZ, Chang K, Wei X. Intraocular pressure fluctuation and the risk of glaucomatous damage deterioration: A meta-analysis. Int J Ophthalmol. 2019 Jan 1;12(1):123–8.spa
dc.relation.references71. Caprioli J, Coleman AL. Intraocular Pressure Fluctuation. A Risk Factor for Visual Field Progression at Low Intraocular Pressures in the Advanced Glaucoma Intervention Study. Ophthalmology. 2008;115(7).spa
dc.relation.references72. Kim JH, Caprioli J. Intraocular pressure fluctuation: Is it important? Vol. 13, Journal of Ophthalmic and Vision Research. Wolters Kluwer Medknow Publications; 2018. p. 170–4.spa
dc.relation.references73. Crawford Downs J, Burgoyne CF, Seigfreid WP, Reynaud JF, Strouthidis NG, Sallee V. 24-hour IOP telemetry in the nonhuman primate: Implant system performance and initial characterization of IOP at multiple timescales. Invest Ophthalmol Vis Sci. 2011 Sep;52(10):7365–75.spa
dc.relation.references74. Burgoyne CF, Crawford Downs J, Bellezza AJ, Francis Suh JK, Hart RT. The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Vol. 24, Progress in Retinal and Eye Research. 2005. p. 39–73.spa
dc.relation.references75. Medical Advisory Secretariat. Diurnal tension curves for assessing the development or progression of glaucoma: an evidence-based analysis. Ont Health Technol Assess Ser. 2011;11(2):1-40. Epub 2011 Jun 1. PMID: 23074414; PMCID: PMC3377558.spa
dc.relation.references76. Tojo N, Abe S, Miyakoshi M, Hayashi A. Correlation between short-term and long-term intraocular pressure fluctuation in glaucoma patients. Clin Ophthalmol. 2016;10:1713–7.spa
dc.relation.references77. Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland D, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004 Sep;111(9):1627–35.spa
dc.relation.references78. Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK. Visual Field Progression in the Collaborative Initial Glaucoma Treatment Study. The Impact of Treatment and Other Baseline Factors. Ophthalmology. 2009;116(2).spa
dc.relation.references79. Musch DC, Gillespie BW, Palmberg PF, Spaeth G, Niziol LM, Lichter PR. Visual field improvement in the Collaborative Initial Glaucoma Treatment Study. Am J Ophthalmol. 2014;158(1):96-104.e2. doi:10.1016/j.ajo.2014.04.003.spa
dc.relation.references80. Knier CG, Fleischman D, Hodge DO, Berdahl JP, Fautsch MP. Three-Decade Evaluation of Cerebrospinal Fluid Pressure in Open-Angle Glaucoma at a Tertiary Care Center. J Ophthalmol. 2020;2020.spa
dc.relation.references81. Siaudvytyte L, Januleviciene I, Ragauskas A, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014;2014:937360. doi:10.1155/2014/937360.spa
dc.relation.references82. Fleischman D, Berdahl JP, Zaydlarova J, Stinnett S, Fautsch MP, Allingham RR. Cerebrospinal Fluid Pressure Decreases with Older Age. PLoS One. 2012 Dec 29;7(12).spa
dc.relation.references83. Jonas JB, Wang NL, Wang YX, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma: The Beijing Eye Study 2011. Acta Ophthalmol. 2015;93(1). doi:10.1111/aos.12480.spa
dc.relation.references84. Berdahl JP, Ferguson TJ, Samuelson TW. Periodic normalization of the translaminar pressure gradient prevents glaucomatous damage. Med Hypotheses. 2020;144:109935.spa
dc.relation.references85. Skrzypecki J, Ufnal M. The Upright Body Position Increases Translaminar Pressure Gradient in Normotensive and Hypertensive Rats. Curr Eye Res. 2017 Dec 2;42(12):1634–7.spa
dc.relation.references86. Jasien J V., Samuels BC, Johnston JM, Downs JC. Effect of body position on intraocular pressure (IOP), intracranial pressure (ICP), and translaminar pressure (TLP) via continuous wireless telemetry in nonhuman primates (NHPs). Invest Ophthalmol Vis Sci. 2020 Oct 1;61(12).spa
dc.relation.references87. Siaudvytyte L, Januleviciene I, Daveckaite A, Ragauskas A, Bartusis L, Kucinoviene J, et al. Literature review and meta-analysis of translaminar pressure difference in open-angle glaucoma. Eye (Basingstoke). 2015 Oct 1;29(10):1242–50.spa
dc.relation.references88. Jonas JB, Wang NL, Wang YX, You QS, Xie X Bin, Yang DY, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011. Acta Ophthalmol. 2015 Feb 1;93(1):e7–13.spa
dc.relation.references89. Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259-266. doi:10.1016/j.ophtha.2009.06.058.spa
dc.relation.references90. Jonas JB, Nangia V, Wang N, Bhate K, Nangia P, Nangia P, et al. Trans-lamina cribrosa pressure difference and open-angle glaucoma. The Central India Eye and Medical Study. PLoS One. 2013 Dec 6;8(12).spa
dc.relation.references91. Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021;105(3):493–510.spa
dc.relation.references92. Heijl A, Bengtsson B, Oskarsdottir SE. Prevalence and severity of undetected manifest glaucoma: Results from the early manifest glaucoma trial screening. Ophthalmology. 2013 Aug;120(8):1541–5.spa
dc.relation.references93. Boodhna T, Crabb DP. Disease severity in newly diagnosed glaucoma patients with visual field loss: Trends from more than a decade of data. Ophthalmic and Physiological Optics. 2015 Mar 1;35(2):225–30.spa
dc.relation.references94. Hu CX, Zangalli C, Hsieh M, Gupta L, Williams AL, Richman J, et al. What Do Patients With Glaucoma See? Visual Symptoms Reported by Patients With Glaucoma. Am J Med Sci. 2014;348(5):403-409. doi:10.1097/MAJ.0000000000000319.spa
dc.relation.references95. Niwa Y, Muraki S, Naito F, Minamikawa T, Ohji M. Evaluation of acquired color vision deficiency in glaucoma using the Rabin cone contrast test. Invest Ophthalmol Vis Sci. 2014;55(10):6686–90.spa
dc.relation.references96. Sample PA, Weinreb RN. Color perimetry for assessment of primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1990;31(9):1869–75.spa
dc.relation.references97. Hagiwara Y, Koh JEW, Tan JH, et al. Computer-aided diagnosis of glaucoma using fundus images: A review. Comput Methods Programs Biomed. 2018;165:1-12. doi:10.1016/j.cmpb.2018.07.012.spa
dc.relation.references98. Jayaram H. Intraocular pressure reduction in glaucoma: Does every mmHg count?. Taiwan J Ophthalmol. 2020;10(4):255-258. Published 2020 Oct 21. doi:10.4103/tjo.tjo_63_20.spa
dc.relation.references99. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429-440. doi:10.1016/s0002-9394(00)00538-9.spa
dc.relation.references100. Peeters A, Webers CA, Prins MH, Zeegers MP, Hendrikse F, Schouten JS. Quantifying the effect of intraocular pressure reduction on the occurrence of glaucoma. Acta Ophthalmol. 2010;88(1):5-11. doi:10.1111/j.1755-3768.2008.01452.x.spa
dc.relation.references101. Daugeliene L, Yamamoto T, Kitazawa Y. Effect of trabeculectomy on visual field in progressive normal-tension glaucoma. Jpn J Ophthalmol. 1998;42(4):286-292. doi:10.1016/s0021-5155(98)00013-6.spa
dc.relation.references102. Aoyama A, Ishida K, Sawada A, Yamamoto T. Target intraocular pressure for stability of visual field loss progression in normal-tension glaucoma. Jpn J Ophthalmol. 2010;54(2):117–23. doi:10.1007/s10384-010-0910-2.spa
dc.relation.references103. Chen PP, Cady RS, Mudumbai RC, Ngan R. Continued visual field progression in eyes with prior visual field progression in patients with open-angle glaucoma. J Glaucoma. 2010 Dec;19(9):598–603.spa
dc.relation.references104. Oliver JE, Hattenhauer MG, Herman D, et al. Blindness and glaucoma: a comparison of patients progressing to blindness from glaucoma with patients maintaining vision. Am J Ophthalmol. 2002;133(6):764-772. doi:10.1016/s0002-9394(02)01403-4.spa
dc.relation.references105. Beer F, Johnston R, Dewolf J. Mecánica de materiales. 3ma ed. México: McGraw-Hill;2018.spa
dc.relation.references106. Juan H. Cadavid R. Mecánica del medio continuo: una iniciación. Primera edición. Medellín: Universidad EAFIT; 2009.spa
dc.relation.references107. Carlos Humberto Galeano Urueña, Juan Miguel Mantilla, Juan Carlos Galvis. El método de los elementos finitos, Un enfoque teórico práctico. Primera edición. Bogotá: Universidad Nacional de Colombia; 2016.spa
dc.relation.references108. Shetty P, Hegde A, Rai K. Finite element method--an effective research tool for dentistry. J Clin Pediatr Dent. 2010;34(3):281–5. doi:10.17796/jcpd.34.3.87664h3005n66301.spa
dc.relation.references109. Begum MS, Dinesh MR, Tan KF, Jairaj V, Md Khalid K, Singh VP. Construction of a three-dimensional finite element model of maxillary first molar and its supporting structures. J Pharm Bioallied Sci. 2015 Aug;7(Suppl 2). doi:10.4103/0975-7406.163496.spa
dc.relation.references110. Vurgese S, Panda-Jonas S, Jonas JB. Scleral thickness in human eyes. PLoS One. 2012;7(1). doi:10.1371/journal.pone.0029692.spa
dc.relation.references111. Jonas JB, Holbach L. Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci. 2005;46(4):1275-1279. doi:10.1167/iovs.04-0851.spa
dc.relation.references112. Hayreh SS. Anterior Ischemic Optic Neuropathy. Berlin, Heidelberg: Springer; 1975. doi:10.1007/978-3-642-65957-7.spa
dc.relation.references113. Scott CEH, Simpson AHRW, Pankaj P. Distinguishing fact from fiction in finite element analysis. Bone Joint J. 2020;102-B(10):1271–3. doi:10.1302/0301-620X.102B10.BJJ-2020-0405.R1.spa
dc.relation.references114. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780-1785. doi:10.1016/s0886-3350(03)00407-3.spa
dc.relation.references115. Jafari S, Lu Y, Park J, Demer JL. Finite Element Model of Ocular Adduction by Active Extraocular Muscle Contraction. Invest Ophthalmol Vis Sci. 2021;62(1):7. doi:10.1167/iovs.62.1.7.spa
dc.relation.references116. Feola AJ, Myers JG, Raykin J, Mulugeta L, Nelson ES, Samuels BC, et al. Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure. Invest Ophthalmol Vis Sci. 2016;57(4):1901–11. doi:10.1167/iovs.15-18106.spa
dc.relation.references117. Spoerl E, Boehm AG, Pillunat LE. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera. Invest Ophthalmol Vis Sci. 2005;46(4):1286-1290. doi:10.1167/iovs.04-0978.spa
dc.relation.references118. MacManus DB, Murphy JG, Gilchrist MD. Mechanical characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus. J Mech Behav Biomed Mater. 2018 Nov 1;87:256–66.spa
dc.relation.references119. Du Z, Li Z, Wang P, Zhuang Z, Liu Z. Revealing the nonlinear mechanical behavior of white matter brain tissue by analyzing the asynchronous deformation and damage of matrix and axonal fibers. Int J Solids Struct. 2022 May 1;242.spa
dc.relation.references120. Zhang L, Beotra MR, Baskaran M, Tun TA, Wang X, Perera SA, et al. In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans. Invest Ophthalmol Vis Sci. 2020;61(3):27. doi:10.1167/iovs.61.3.27.spa
dc.relation.references121. Dechow PC, Nail GA, Schwartz-Dabney CL, Ashman RB. Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol. 1993;90(3):291-306. doi:10.1002/ajpa.1330900304.spa
dc.relation.references122. Zmuda Trzebiatowski MA, Kłosowski P, Skorek A, Żerdzicki K, Lemski P, Koberda M. Nonlinear dynamic analysis of the pure "buckling" mechanism during blow-out trauma of the human orbit. Sci Rep. 2020;10(1):15275. doi:10.1038/s41598-020-72186-1.spa
dc.relation.references123. Chen K, Weiland JD. Mechanical properties of orbital fat and its encapsulating connective tissue. J Biomech Eng. 2011;133(6):061009. doi:10.1115/1.4003390.spa
dc.relation.references124. Downs JC, Suh JKF, Thomas KA, Bellezza AJ, Burgoyne CF, Hart RT. Viscoelastic characterization of peripapillary sclera: Material properties by quadrant in rabbit and monkey eyes. J Biomech Eng. 2003 Feb;125(1):124–31.spa
dc.relation.references125. Saboori P, Sadegh A. On the properties of brain subarachnoid space and biomechanics of head impacts leading to traumatic brain injury. Advances in Biomechanics and Applications. 2014;1(4):253–67. doi:10.1515/9783110424004-036.spa
dc.relation.references126. Saboori P, Sadegh A. Material modeling of the head’s subarachnoid space. Scientia Iranica. 2011;18(6):1492–9.spa
dc.relation.references127. Karimi A, Grytz R, Rahmati SM, Girkin CA, Downs JC. Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole. Comput Methods Programs Biomed. 2021;198:105843. doi:10.1016/j.cmpb.2020.105843.spa
dc.relation.references128. Shin A, Yoo L, Park J, Demer JL. Finite element biomechanics of optic nerve sheath traction in adduction. J Biomech Eng. 2017;139(10):1010101-10101010. doi:10.1115/1.4037562.spa
dc.relation.references129. Woo SL, Kobayashi AS, Lawrence C, Schlegel WA. Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Ann Biomed Eng. 1972;1(1):87-98. doi:10.1007/BF02363420.spa
dc.relation.references130. Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci. 2000;41(10):2991-3000.spa
dc.relation.references131. Abe RY, Silva LNP, Silva DM, Vasconcellos JPC, Costa VP. Prevalence of depressive and anxiety disorders in patients with glaucoma: a cross-sectional study. Arq Bras Oftalmol. 2021;84(1):31-36. doi:10.5935/0004-2749.20210006.spa
dc.relation.references132. Zi Z. Sensitivity analysis approaches applied to systems biology models. IET Syst Biol. 2011 Nov;5(6):336–46.spa
dc.relation.references133. Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974;13(10):771-83.spa
dc.relation.references134. Quigley H, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol. 1976;15(8):606-16.spa
dc.relation.references135. Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16(5):426-41.spa
dc.relation.references136. Tong J, Ghate D, Kedar S, Gu L. Relative contributions of intracranial pressure and intraocular pressure on lamina cribrosa behavior. J Ophthalmol. 2019 Mar 17;2019:3064949. doi: 10.1155/2019/3064949. PMID: 31007950; PMCID: PMC6441528.spa
dc.relation.references137. Dai P, Zhao Y, Sheng H, Li L, Wu J, Han H. Simulating the effects of elevated intraocular pressure on ocular structures using a global finite element model of the human eye. J Mech Med Biol. 2017 Mar 1;17(2).spa
dc.relation.references138. Leidl MC, Choi CJ, Syed ZA, Melki SA. Intraocular pressure fluctuation and glaucoma progression: what do we know?. Br J Ophthalmol. 2014;98(10):1315-1319. doi:10.1136/bjophthalmol-2013-303980.spa
dc.relation.references139. Wang X, Beotra MR, Tun TA, et al. In vivo 3-dimensional strain mapping confirms large optic nerve head deformations following horizontal eye movements. Invest Ophthalmol Vis Sci. 2016;57(13):5825-5833. doi:10.1167/iovs.16-20560.spa
dc.relation.references140. Fortune B, Choe TE, Reynaud J, Hardin C, Cull GA, Burgoyne CF, et al. Deformation of the rodent optic nerve head and peripapillary structures during acute intraocular pressure elevation. Invest Ophthalmol Vis Sci. 2011 Aug;52(9):6651–61.spa
dc.relation.references141. Lee EJ, Kim TW, Weinreb RN. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology. 2012 Jul;119(7):1359–66.spa
dc.relation.references142. Fazio MA, Johnstone JK, Smith B, Wang L, Girkin CA. Displacement of the lamina cribrosa in response to acute intraocular pressure elevation in normal individuals of African and European descent. Invest Ophthalmol Vis Sci. 2016;57(7):3331-3339. doi:10.1167/iovs.15-17940.spa
dc.relation.references143. Agoumi Y, Sharpe GP, Hutchison DM, Nicolela MT, Artes PH, Chauhan BC. Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls. Ophthalmology. 2011;118(1):52-59. doi:10.1016/j.ophtha.2010.05.016.spa
dc.relation.references144. Wang L, Cull GA, Piper C, Burgoyne CF, Fortune B. Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method. Invest Ophthalmol Vis Sci. 2012;53(13):8303-9. doi:10.1167/iovs.12-10911.spa
dc.relation.references145. Beotra MR, Wang X, Tun TA, et al. In vivo three-dimensional lamina cribrosa strains in healthy, ocular hypertensive, and glaucoma eyes following acute intraocular pressure elevation. Invest Ophthalmol Vis Sci. 2018;59(1):260-272. doi:10.1167/iovs.17-21982.spa
dc.relation.references146. Midgett DE, Pease ME, Jefferys JL, Patel M, Franck C, Quigley HA, Nguyen TD. The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations. Acta Biomater. 2017 Apr 15;53:123-139. doi:10.1016/j.actbio.2016.12.054. Epub 2017 Jan 17. PMID: 28108378; PMCID: PMC6053916.spa
dc.relation.references147. Lee DS, Lee EJ, Kim TW, Park YH, Kim J, Lee JW, et al. Influence of translaminar pressure dynamics on the position of the anterior lamina cribrosa surface. Invest Ophthalmol Vis Sci. 2015;56(5):2833–41.spa
dc.relation.references148. Furlanetto RL, Park SC, Damle UJ, et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Invest Ophthalmol Vis Sci. 2013;54(7):4836-4842. Published 2013 Jul 18. doi:10.1167/iovs.12-11530.spa
dc.relation.references149. Marek B, Harris A, Kanakamedala P, Lee E, Amireskandari A, Carichino L, et al. Cerebrospinal fluid pressure and glaucoma: Regulation of trans-lamina cribrosa pressure. Br J Ophthalmol. 2014;98(5):721–5. doi:10.1136/bjophthalmol-2013-303354.spa
dc.relation.references150. Jonas JB, Ritch R, Panda-Jonas S. Cerebrospinal fluid pressure in the pathogenesis of glaucoma. In: Progress in Brain Research. Elsevier; 2015;221:33–47. doi:10.1016/bs.pbr.2015.06.001.spa
dc.relation.references151. Yang D, Fu J, Hou R, Liu K, Jonas JB, Wang H, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci. 2014 May 13;55(5):3067–73.spa
dc.relation.references152. García-Montesinos J, Muñoz-Negrete FJ, de Juan V, Rebolleda G. Relationship between lamina cribrosa displacement and trans-laminar pressure difference in papilledema. Graefes Arch Clin Exp Ophthalmol. 2017;255(6):1237-1243. doi:10.1007/s00417-017-3661-6.spa
dc.relation.references153. Xie JS, Donaldson L, Margolin E. Papilledema: A review of etiology, pathophysiology, diagnosis, and management. Surv Ophthalmol. 2022 Jul 1;67(4):1135–59.spa
dc.relation.references154. Greenfield DS, Wanichwecharungruang B, Liebmann JM, Ritch R. Pseudotumor cerebri appearing with unilateral papilledema after trabeculectomy. Arch Ophthalmol. 1997;115(3):423-426. doi:10.1001/archopht.1997.01100150425022.spa
dc.relation.references155. Faingold D, Francis CJ, Buys YM. Hypotony maculopathy and papilledema after trabeculectomy in a patient with pseudotumor cerebri. J Glaucoma. 2003;12(4):374-378. doi:10.1097/00061198-200308000-00014.spa
dc.relation.references156. Lee WJ, Kim YJ, Kim JH, Hwang S, Shin SH, Lim HW. Changes in the optic nerve head induced by horizontal eye movements. PLoS One. 2018;13(9). doi: 10.1371/journal.pone.0204069. Erratum in: PLoS One. 2019;14(5). PMID: 30226883; PMCID: PMC6143247.spa
dc.relation.references157. Sibony PA, Wei J, Sigal IA. Gaze-Evoked Deformations in Optic Nerve Head Drusen: Repetitive Shearing as a Potential Factor in the Visual and Vascular Complications. Ophthalmology. 2018 Jun 1;125(6):929–37.spa
dc.relation.references158. Shin YU, Lim HW, Kim JH. Changes of optic nerve head induced by eye movement. Neurology. 2016;87(23):2490–1.spa
dc.relation.references159. Demer JL. Optic nerve sheath as a novel mechanical load on the globe in ocular duction. Invest Ophthalmol Vis Sci. 2016;57(4):1826–38. doi:10.1167/iovs.15-18718.spa
dc.relation.references160. Suh SY, Le A, Shin A, Park J, Demer JL. Progressive deformation of the optic nerve head and peripapillary structures by graded horizontal duction. Invest Ophthalmol Vis Sci. 2017;58(12):5015-5021. doi:10.1167/iovs.17-22596.spa
dc.relation.references161. Schiller PH, Tehovnik EJ. Neural mechanisms underlying target selection with saccadic eye movements. Prog Brain Res. 2005;149:157-171. doi:10.1016/S0079-6123(05)49012-3.spa
dc.relation.references162. Chuangsuwanich T, Tun TA, Braeu FA, et al. Adduction induces large optic nerve head deformations in subjects with normal-tension glaucoma. Br J Ophthalmol. 2024;108(4):522-529. Published 2024 Mar 20. doi:10.1136/bjo-2022-322461.spa
dc.relation.references163. Hoang Q V, Chuangsuwanich T, Yu DJG, Tun TA, Wong CW, Wang X, et al. Differing Optic Nerve Head Strains Comparing Low, High and Pathologic Myopia Eyes. Invest Ophthalmol Vis Sci. 2020 Jun 10;61(7):2679–2679.spa
dc.relation.references164. Worley A, Grimmer-Somers K. Risk factors for glaucoma: what do they really mean? Aust J Prim Health. 2011;17(3):233-239. doi:10.1071/PY10042.spa
dc.relation.references165. McDonald MA, Stevenson CH, Kersten HM, Danesh-Meyer HV. Eye movement abnormalities in glaucoma patients: A review. Eye Brain. 2022;14:83-114. doi:10.2147/EB.S361946.spa
dc.relation.references166. Lee SSY, Black AA, Wood JM. Effect of glaucoma on eye movement patterns and laboratory-based hazard detection ability. PLoS One. 2017 Jun 1;12(6).spa
dc.relation.references167. Sibony PA. Gaze evoked deformations of the peripapillary retina in papilledema and ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4979–87.spa
dc.relation.references168. Liu H, Yang D, Ma T, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle glaucoma. Am J Ophthalmol. 2018;186:128-137. doi:10.1016/j.ajo.2017.11.024.spa
dc.relation.references169. Cennamo G, Montorio D, Breve MA, Brescia Morra V, Menna F, Cennamo G. Evaluation of optic nerve subarachnoid space in primary open angle glaucoma using ultrasound examination. PLoS One. 2018;13(11). doi:10.1371/journal.pone.0208064.spa
dc.relation.references170. Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study. Ophthalmology. 2012;119(10):2065-2073.e1. doi:10.1016/j.ophtha.2012.03.054.spa
dc.relation.references171. Nguyen BN, Cleary JO, Glarin R, et al. Ultra-High Field Magnetic Resonance Imaging of the Retrobulbar Optic Nerve, Subarachnoid Space, and Optic Nerve Sheath in Emmetropic and Myopic Eyes. Transl Vis Sci Technol. 2021;10(2):8. doi:10.1167/tvst.10.2.8.spa
dc.relation.references172. Stojanov O, Sad N, Stoki E, Šveljo O, Naumovi N. The influence of retrobulbar adipose tissue volume upon intraocular pressure in obesity Uticaj retrobulbarnog masnog tkiva na intraokularni pritisak kod gojaznih osoba. Vojnosanit Pregl. 2013;70(5):469–76.spa
dc.relation.references173. Mori K, Ando F, Nomura H, Sato Y, Shimokata H. Relationship between intraocular pressure and obesity in Japan. Int J Epidemiol. 2000;29:661–6.spa
dc.relation.references174. Coster D, Rafie A, Savion-Gaiger N, et al. The effect of body mass index reduction on intraocular pressure in a large prospective cohort of apparently healthy individuals in Israel. PLoS One. 2023;18(5). doi:10.1371/journal.pone.0285759.spa
dc.relation.references175. Lee GA, Ritch R, Liang SYW, Liebmann JM, Dubois P, Bastian-Jordan M, et al. Tight orbit syndrome: A previously unrecognized cause of open-angle glaucoma. Acta Ophthalmol. 2010 Feb;88(1):120–4.spa
dc.relation.references176. Liu B, McNally S, Kilpatrick JI, Jarvis SP, O'Brien CJ. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol. 2018;63(1):56-74. doi:10.1016/j.survophthal.2017.06.007.spa
dc.relation.references177. Selman M, Pardo A. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev. 2021 Sep 1;70:101393.spa
dc.relation.references178. Azuara-Blanco A, Harris A, Cantor LB, Abreu MM, Weinland M. Effects of short term increase of intraocular pressure on optic disc cupping. Br J Ophthalmol. 1998;82(8):880-883. doi:10.1136/bjo.82.8.880.spa
dc.relation.references179. Piette S, Liebmann JM, Ishikawa H, Gürses-Ozden R, Buxton D, Ritch R. Acute conformational changes in the optic nerve head with rapid intraocular pressure elevation: implications for LASIK surgery. Ophthalmic Surg Lasers Imaging. 2003;34(4):334-341.spa
dc.relation.references180. Chuangsuwanich T, Wang X, Tun TA, Devalla SK, Milea D, Hoang Q V, et al. Adduction Induces Abnormally Large Optic Nerve Head Strains in Normal Tension Glaucoma Subjects. Invest Ophthalmol Vis Sci. 2020 Jun 10;61(7):1005–1005.spa
dc.relation.references181. Liu H, Yang D, Ma T, et al. Measurement and associations of the optic nerve subarachnoid space in normal tension and primary open-angle glaucoma. Am J Ophthalmol. 2018;186:128-137. doi:10.1016/j.ajo.2017.11.024.spa
dc.relation.references182. Wang X, Rumpel H, Baskaran M, et al. Optic nerve tortuosity and globe proptosis in normal and glaucoma subjects. J Glaucoma. 2019;28(8):691-696. doi:10.1097/IJG.0000000000001270.spa
dc.relation.references183. Stojanov O, Stokić E, Sveljo O, Naumović N. The influence of retrobulbar adipose tissue volume upon intraocular pressure in obesity. Vojnosanit Pregl. 2013;70(5):469-476. doi:10.2298/vsp1305469s.spa
dc.relation.references184. Waspodo N, Giffari Makkaraka MA, Nislawati R, Ismail A, Taufik Fadillah Zainal A, Lolok GB. Role of excessive weight in intraocular pressure: a systematic review and meta-analysis. BMJ Open Ophthalmol. 2023 Nov;8(1). doi:10.1136/bmjophth-2023-001355.spa
dc.relation.references185. Trobe JD. Papilledema: the vexing issues. J Neuroophthalmol. 2011;31(2):175-186. doi:10.1097/WNO.0b013e31821a8b0b.spa
dc.relation.references186. Schirmer CM, Hedges TR. Mechanisms of visual loss in papilledema. Vol. 23, Neurosurgical focus. 2007.spa
dc.relation.references187. Lawlor M, Zhang MG, Virgo J, Plant GT. Asymmetrical intraocular pressures and asymmetrical papilloedema in pseudotumor cerebri syndrome. Neuroophthalmology. 2016;40(6):292-296. doi:10.1080/01658107.2016.1226344.spa
dc.relation.references188. Wang D, Xiao H, Lin S, et al. Comparison of the choroid in primary open angle and angle closure glaucoma using optical coherence tomography. J Glaucoma. 2023;32(11). doi:10.1097/IJG.0000000000002303.spa
dc.relation.references189. Wang YX, Jiang R, Ren XL, et al. Intraocular pressure elevation and choroidal thinning. Br J Ophthalmol. 2016;100(12):1676-1681. doi:10.1136/bjophthalmol-2015-308062.spa
dc.relation.references190. Fortune B, Yang H, Strouthidis NG, Cull GA, Grimm JL, Downs JC, Burgoyne CF. The effect of acute intraocular pressure elevation on peripapillary retinal thickness, retinal nerve fiber layer thickness, and retardance. Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4719-26. doi:10.1167/iovs.08-3289.spa
dc.relation.references191. Powell S, Irnaten M, O'Brien C. Glaucoma - 'A Stiff Eye in a Stiff Body'. Curr Eye Res. 2023;48(2):152-160. doi:10.1080/02713683.2022.2039204.spa
dc.relation.references192. Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus M V. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Vol. 27, Cell Metabolism. Cell Press; 2018. p. 68–83.spa
dc.relation.references193. Watts SW, Flood ED, Garver H, Fink GD, Roccabianca S. A New Function for Perivascular Adipose Tissue (PVAT): Assistance of Arterial Stress Relaxation. Sci Rep. 2020 Dec 1;10(1).spa
dc.relation.references194. Liu W, Ling J, Chen Y, Wu Y, Lu P. The Association between Adiposity and the Risk of Glaucoma: A Meta-Analysis. Vol. 2017, Journal of Ophthalmology. Hindawi Limited; 2017.spa
dc.relation.references195. Norris JH, Ross JJ, Kazim M, Selva D, Malhotra R. The effect of orbital decompression surgery on refraction and intraocular pressure in patients with thyroid orbitopathy. Vol. 26, Eye. Nature Publishing Group; 2012. p. 535–43.spa
dc.relation.references196. Lee GA, Ritch R, Liang SYW, Liebmann JM, Dubois P, Bastian-Jordan M, et al. Tight orbit syndrome: A previously unrecognized cause of open-angle glaucoma. Acta Ophthalmol. 2010 Feb;88(1):120–4.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiologíaspa
dc.subject.decsEnfermedades del Nervio Ópticospa
dc.subject.decsOptic Nerve Diseaseseng
dc.subject.decsHipertensión Ocularspa
dc.subject.decsOcular Hypertensioneng
dc.subject.decsPresión del Líquido Cefalorraquídeospa
dc.subject.decsCerebrospinal Fluid Pressureeng
dc.subject.decsMovimientos Ocularesspa
dc.subject.decsEye Movementseng
dc.subject.decsDisco Ópticospa
dc.subject.decsOptic Diskeng
dc.subject.proposalGlaucomaspa
dc.subject.proposalPresión intraocularspa
dc.subject.proposalPresión de líquido cefalorraquídeospa
dc.subject.proposalEspacio subaracnoideospa
dc.subject.proposalMovimientos oculares horizontalesspa
dc.subject.proposalCabeza del nervio ópticospa
dc.subject.proposalBiomecánicaspa
dc.subject.proposalGlaucomaeng
dc.subject.proposalIntraocular pressureeng
dc.subject.proposalCerebrospinal fluid pressureeng
dc.subject.proposalSubarachnoid spaceeng
dc.subject.proposalHorizontal eye movementseng
dc.subject.proposalOptic nerve headeng
dc.subject.proposalBiomechanicseng
dc.titleBiomechanical factors associated with glaucomatous optic neuropathyeng
dc.title.translatedFactores biomecánicos asociados a la neuropatía óptica glaucomatosaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020733165.2024.pdf
Tamaño:
7.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Biomecánica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: