Alteraciones en los flujos de humedad asociadas al cambio climático en el complejo orográfico Magdalena - Cauca, y sus efectos en la precipitación

dc.contributor.advisorCarvajal Serna, Luis Fernando
dc.contributor.advisorVélez Upegui, Jaime Ignacio
dc.contributor.authorBonilla Rodríguez, Mónica Andrea
dc.contributor.orcid0000-0002-7220-6521spa
dc.contributor.researchgroupPosgrado en Aprovechamiento de Recursos Hidráulicosspa
dc.date.accessioned2024-01-15T21:22:28Z
dc.date.available2024-01-15T21:22:28Z
dc.date.issued2023-09-27
dc.descriptionIlustraciones, diagramas, mapasspa
dc.description.abstractLa complejidad orográfica de Colombia condiciona la circulación atmosférica que transporta humedad al interior del país. Dado que la convergencia de flujos de humedad y su interacción con la topografía influyen en las variables del ciclo hidrológico, resulta relevante comprender su comportamiento histórico y sus tendencias a futuro en un contexto de cambio climático. Utilizando los datos del reanálisis ERA5, se estima la convergencia de flujos de humedad de las cuencas del río Magdalena (MAG) y Cauca (CAU), delimitadas aguas arriba de su confluencia, donde prevalece la orografía de las cordilleras. Teniendo en cuenta la variabilidad del relieve y la forma de las cuencas a la resolución delimitada, se propone una metodología que discretiza el análisis por columna atmosférica de cada pixel, considerando su respectiva elevación del terreno. Los resultados se contrastan con la información de los caudales de salida de las cuencas, mediante la ecuación de balance hídrico de largo plazo en la columna atmósfera - suelo. Se analiza la representatividad de cuatro modelos del reciente CMIP6 en el escenario más extremo de cambio climático, a partir de interpolación espacial para una resolución equivalente con los datos de ERA5, estimando las correlaciones entre los datos históricos y sus diferencias con las proyecciones al escenario 2050 a 2100. Los resultados evidenciaron que la barrera orográfica ejerce disminución en el influjo de humedad atmosférica en los niveles superficiales (> 700 hPa), y asociado a esta interacción se presenta mayor precipitación media en la ladera occidental de las cuencas. Se observó que la convergencia de flujos de humedad está condicionada por una correcta representación del terreno en zonas de alta variabilidad para obtener resultados coherentes con el balance hídrico de largo plazo. Para los datos históricos, los modelos del CMIP6 utilizados presentaron buenas correlaciones de flujo de humedad meridional en los niveles medios y superficiales de la atmósfera, a diferencia de los flujos zonales, pero su baja resolución espacial implicó sobrestimaciones de influjo neto al aplicar ajustes lineales. El campo tridimensional de velocidad de los modelos del CMIP6 reflejó un comportamiento similar entre históricos y proyecciones, con pequeños cambios porcentuales en los promedios de la columna atmosférica, esto motivó a un planteamiento de conservación de la circulación atmosférica en el futuro, y condujo a explorar un empalme con los datos del campo de velocidad de ERA5. Bajo las hipótesis consideradas, se encontraron aumentos en la convergencia de humedad futura en tres de los cuatro modelos. En el caso de la precipitación, los modelos más aproximados a los datos históricos de CHIRPS, presentaron un aumento de casi el 40% para MAG y menos del 6% para CAU en el escenario futuro. Pese a las limitaciones, el modelo GFDL-ESM4 mostró el mejor desempeño para representar la convergencia de humedad y la precipitación en las cuencas, contrario al modelo FGOALS-g3 que tuvo el desempeño más deficiente. (Texto tomado de la fuente)spa
dc.description.abstractColombian orographic complex constrains the atmospheric circulation that carries moisture to the inland. The interaction between moisture flux convergence and topography influences the water cycle variables such as rainfall, runoff, and evaporation, according to that it turns out pertinent to understand its historical behavior and its tendency for the future in a climate change context. Moisture flux convergence in Magdalena Basin (MAG) and Cauca Basin (CAU) is estimated using ERA5 data in the portion of the basins that are shaped by the mountain ranges. Considering topography and basin shape, the methodology proposes to analyze the atmosphere column as a discretization of every pixel column with its specific altitude. The results are compared with runoff data through the atmospheric and land water balance equations. The performance of four CMIP6 models is analyzed in the most extreme scenario of climate change by spatial interpolation to the ERA5 resolution, the correlation between models and reanalysis data for the historical period is calculated, and the gaps with 2050 to 2100 data. The results suggested that the topographic wall wields a decrease in atmospheric moisture inflow at lower levels (> 700 hPa). Related to this, rainfall has shown greater median values in the western hillside within basins. It was noted that a correct terrain representation conditions moisture flux convergence for high variability zones on the way to get consistent results for water balance. For historical data, CMIP6 models have shown good correlations for meridional flux in the middle and bottom atmosphere layers, in contrast to zonal flux. Also, their low resolution overestimated the inflow through linear adjustment. The 3D velocity field by CMIP6 models has shown a similar behavior between past and future, with minor changes in the median of the atmospheric column. For this reason, an approach to atmospheric circulation maintenance in the future is posed, so it led to exploring a joining with ERA5 velocity data. Under the assumptions, increments were found in the future moisture flux convergence according to three models. For rainfall, the accurate models indicate an increase of almost 40% in MAG and less than 6% in CAU for the future. Despite limitations, GFDL-ESM4 has shown the best performance in moisture flux convergence and rainfall, unlike FGOALS-g3 had a weak performance.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaHidrometeorologíaspa
dc.format.extent121 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85309
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesÁlvarez-Villa, O. D., Vélez, J. I., and Poveda, G. (2011). Improved long-term mean annual rainfall fields for Colombia. International Journal of Climatology, 31(14):2194–2212.spa
dc.relation.referencesAmador, J. A. (2008). The Intra-Americas Sea low-level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146:153–188.spa
dc.relation.referencesAmador, J. A., Alfaro, E. J., Lizano, O. G., and Magaña, V. O. (2006). Atmospheric forcing of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4):101–142.spa
dc.relation.referencesArias, P. A., Martínez, J. A., and Vieira, S. C. (2015). Moisture sources to the 2010–2012 anomalous wet season in northern South America. Climate Dynamics, 45(9-10):2861–2884.spa
dc.relation.referencesArias, P. A., Ortega, G., Villegas, L. D., and Martínez, J. A. (2021). Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Revista Facultad de Ingeniería, (100):75–96.spa
dc.relation.referencesBarco, J., Cuartas, A., Mesa, O., Poveda, G., Vélez, J. I., Mantilla, R., Hoyos, C., Mejía, J. F., Botero, B., and Montoya, M. (2000). ESTIMACIÓN DE LA EVAPORACIÓN EN COLOMBIA. AVANCES EN RECURSOS HIDRAULICOS, 7:43–51.spa
dc.relation.referencesBarros, A. P., Kim, G., Williams, E., and Nesbitt, S. W. (2004). Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Natural Hazards and Earth System Sciences, 4.spa
dc.relation.referencesBaumgartner, A. and Reichel, E. (1975). World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Run-Off. Amsterdam.spa
dc.relation.referencesBhushan, S. and Barros, A. P. (2007). A Numerical Study to Investigate the Relationship between Moisture Convergence Patterns and Orography in Central Mexico*.spa
dc.relation.referencesBonilla Ovallos, C. A. and Mesa, O. J. (2017). Validación de la precipitación estimada por modelos climáticos acoplados del proyecto de intercomparación CMIP5 en Colombia. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat, 41(158):107–118.spa
dc.relation.referencesBudyko, M. I. (1974). Climate and Life, volume 18. 1 edition.spa
dc.relation.referencesBuiles-Jaramillo, A. and Poveda, G. (2018). Conjoint Analysis of Surface and Atmospheric Water Balances in the Andes-Amazon System. Water Resources Research, 54(5):3472–3489.spa
dc.relation.referencesCadavid Valencia, S. (2015). Methodology for estimating average and extreme flows in climate change scenarios. Universidad Nacional de Colombia, Medellín.spa
dc.relation.referencesCalvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., and Wise, M. (2017). The SSP4: A world of deepening inequality. Global Environmental Change, 42:284–296.spa
dc.relation.referencesCao, J., Wang, B., Yang, Y. M., Ma, L., Li, J., Sun, B., Bao, Y., He, J., Zhou, X., and Wu, L. (2018). The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geoscientific Model Development, 11(7):2975–2993.spa
dc.relation.referencesChen, F., Liu, Y., Liu, Q., and Li, X. (2014). Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. International Journal of Remote Sensing, 35(9):3074–3093.spa
dc.relation.referencesChow, V. T., Maidment, D. R., and Mays, L. M. (1994). Hidrología aplicada.spa
dc.relation.referencesCochran, W. T., Cooley, J. w., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., Maling Jr, G. C., Nelson, D. E., Rader, C. M., and Welch, P. D. (1967). What Is the Fast Fourier Transform? Proceedings of the IEEE, 55(10):1664–1674.spa
dc.relation.referencesCooney, C. M. (2012). Downscaling Climate Models Sharpening the Focus on Local-Level Changes. Environmental Health Perspectives, 120(1):22–28.spa
dc.relation.referencesCORDEX-SAT (2022). Information on CORDEX CMIP6 simulation plans and status is available!! – Cordex.spa
dc.relation.referencesCORDEX-SAT (2023). FOD of the CORDEX-CMIP6 archiving specifications open for comments! – Cordex.spa
dc.relation.referencesCosta Posada, C. (2007). La adaptación al cambio climático en Colombia. Revista de Ingeniería. Universidad de los Andes, 26(0121-4993):74–80.spa
dc.relation.referencesCuartas, A., and Poveda, G. (2002). BALANCE ATMOSFÉRICO DE HUMEDAD Y ESTIMACIÓN DE LA PRECIPITACIÓN RECICLADA EN COLOMBIA SEG´UN EL REAN´ALISIS NCEP/NCAR. Meteorología Colombiana, 9:49–57.spa
dc.relation.referencesDibike, Y. B. and Coulibaly, P. (2005). Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. Journal of Hydrology.spa
dc.relation.referencesDunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, R., Gauthier, P. P., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., Milly, P. C., Nikonov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, Y., and Zhao, M. (2020). The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 12(11).spa
dc.relation.referencesDurán-Quesada, A., Reboita, M., and Gimeno, L. (2012). Precipitation in tropical America and the associated sources of moisture: a short review. Hydrological Sciences Journal, 57(4):612–624.spa
dc.relation.referencesECMWF (2023). CMIP6: Global climate projections - Copernicus Knowledge Base - ECMWF Confluence Wiki.spa
dc.relation.referencesEnfield, D. B. and Alfaro, E. J. (1999). The Dependence of Caribbean Rainfall on the Interaction of the Tropical Atlantic and Pacific Oceans. Technical report.spa
dc.relation.referencesEyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5):1937–1958.spa
dc.relation.referencesFowler, H. J., Blenkinsop, S., and Tebaldi, C. (2007). Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling.spa
dc.relation.referencesFunk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J. (2015). The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Scientific Data, 2.spa
dc.relation.referencesGarcía, N. O. (1994). South American climatology. Quaternary International.spa
dc.relation.referencesGómez Mogollón, L. A. (2017). Dinámica espacio temporal del almacenamiento de agua en el suelo en el Norte de Suramérica. Universidad Nacional de Colombia.spa
dc.relation.referencesGomez-Rios, S., Zuluaga, M. D., and Hoyos, C. D. (2023). Orographic Controls over Convection in an Inter-Andean Valley in Northern South America. Monthly Weather Review, 151(1):145–162.spa
dc.relation.referencesHastenrath, S. (1991). Climate dynamics of the tropics / by Stefan Hastenrath. Kluwer; Atmospheric Sciences Library, 8.spa
dc.relation.referencesHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor´anyi, A., Mu˜noz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., H´olm, E., Janiskov´a, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Th´epaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049.spa
dc.relation.referencesHidalgo, H. G., Durán-Quesada, A. M., Amador, J. A., and Alfaro, E. J. (2015). The caribbean low-level jet, the inter-tropical convergence zone and precipitation patterns in the intra-americas sea: a proposed dynamical mechanism. Geografiska Annaler: Series A, Physical Geography, 97(1):41–59.spa
dc.relation.referencesHill, K. J., Taschetto, A. S., and England, M. H. (2009). South American rainfall impacts associated with inter-El Ni˜no variations. Geophysical Research Letters.spa
dc.relation.referencesHorowitz, L. W., Naik, V., Paulot, F., Ginoux, P. A., Dunne, J. P., Mao, J., Schnell, J., Chen, X., He, J., John, J. G., Lin, M., Lin, P., Malyshev, S., Paynter, D., Shevliakova, E., and Zhao, M. (2020). The GFDL Global Atmospheric Chemistry-Climate Model AM4.1: Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 12(10).spa
dc.relation.referencesHoyos, C. D. (1999). Algunas aplicaciones de la transformada de Fourier y la descomposición en onditas a señales hidrológicas y sísmicas. Universidad Nacional de Colombia, Medellín.spa
dc.relation.referencesHoyos, I., Dominguez, F., Cañón-Barriga, J., Martínez, J. A., Nieto, R., Gimeno, L., and Dirmeyer, P. A. (2018). Moisture origin and transport processes in Colombia, northern South America. Climate Dynamics.spa
dc.relation.referencesHurtado-Montoya, A. F. and Mesa-Sánchez, J. (2014). Reanalysis of monthly precipitation fields in Colombian territory. DYNA, 81(186):251–258.spa
dc.relation.referencesInsel, N., Poulsen, C. J., and Ehlers, T. A. (2010). Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Climate Dynamics, 35(7):1477–1492.spa
dc.relation.referencesIPCC (2023). SYNTHESIS REPORT OF THE IPCC SIXTH ASSESSMENT REPORT (AR6). Technical report.spa
dc.relation.referencesJaramillo-Robledo, A. (1989). Relación entre la evapotranspiración y los elementos climáticos. Cenicafé, 40(3):86–94.spa
dc.relation.referencesJoubert, A. M. and Hewitson, B. C. (1997). Simulating present and future climates of southern Africa using general circulation models. Progress in Physical Geography.spa
dc.relation.referencesKirshbaum, D. J., Adler, B., Kalthoff, N., Barthlott, C., and Serafin, S. (2018). Moist orographic convection: Physical mechanisms and links to surface-exchange processes.spa
dc.relation.referencesKirshbaum, D. J. and Smith, R. B. (2009). Orographic Precipitation in the Tropics: Large-Eddy Simulations and Theory. Journal of the Atmospheric Sciences, 66(9):2559–2578.spa
dc.relation.referencesKreienkamp, F., Lorenz, P., and Geiger, T. (2020). Statistically Downscaled CMIP6 Projections Show Stronger Warming for Germany. Atmosphere 2020, Vol. 11, Page 1245, 11(11):1245.spa
dc.relation.referencesKriegler, E., Bauer, N., Popp, A., Humpen¨oder, F., Leimbach, M., Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D., Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J. P., Luderer, G., Pehl, M., Pietzcker, R., Piontek, F., Lotze-Campen, H., Biewald, A., Bonsch, M., Giannousakis, A., Kreidenweis, U., M¨uller, C., Rolinski, S., Schultes, A., Schwanitz, J., Stevanovic, M., Calvin, K., Emmerling, J., Fujimori, S., and Edenhofer, O. (2017). Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, 42:297–315.spa
dc.relation.referencesLabar, R. J., Douglas, M. M., and Mejia, J. F. (2005). The Llanos Low-Level Jet and its Association with Venezuelan Convective Precipitation.spa
dc.relation.referencesLenters, J. D. and Cook, K. H. (1995). Simulation and Diagnosis of the Regional Summertime Precipitation Climatology of South America. Journal of Climate, 8(12):2988–3005.spa
dc.relation.referencesLeon Aristizabal, G. E., Zea Mazo, J. A., and Eslava Ramirez, J. A. (2000). CIRCULACION GENERAL DEL TROPICO Y LA ZONA DE CONFLUENCIA INTERTROPICAL EN COLOMBIA.spa
dc.relation.referencesLeung, L. R. and Qian, Y. (2003). The Sensitivity of Precipitation and Snowpack Simulations to Model Resolution via Nesting in Regions of Complex Terrain. Journal of Hydrometeorology, 4(6):1025–1043.spa
dc.relation.referencesLi, L., Yu, Y., Tang, Y., Lin, P., Xie, J., Song, M., Dong, L., Zhou, T., Liu, L., Wang, L., Pu, Y., Chen, X., Chen, L., Xie, Z., Liu, H., Zhang, L., Huang, X., Feng, T., Zheng, W., Xia, K., Liu, H., Liu, J., Wang, Y., Wang, L., Jia, B., Xie, F., Wang, B., Zhao, S., Yu, Z., Zhao, B., and Wei, J. (2020). The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3): Description and Evaluation. Journal of Advances in Modeling Earth Systems, 12(9).spa
dc.relation.referencesLin, J. L. (2007). The Double-ITCZ Problem in IPCC AR4 Coupled GCMs: Ocean–Atmosphere Feedback Analysis. Journal of Climate, 20(18):4497–4525.spa
dc.relation.referencesLópez, M. E. and Howell, W. E. (1967). Katabatic Winds in the Equatorial Andes. Journal of the Atmospheric Sciences, 24(1):29–35.spa
dc.relation.referencesLópez López, P., Immerzeel, W. W., Rodríguez Sandoval, E. A., Sterk, G., and Schellekens, J. (2018). Spatial downscaling of satellite-based precipitation and its impact on discharge simulations in the magdalena river basin in Colombia. Frontiers in Earth Science, 6.spa
dc.relation.referencesLott, F. (1999). Alleviation of Stationary Biases in a GCM through a Mountain Drag Parameterization Scheme and a Simple Representation of Mountain Lift Forces. Monthly Weather Review, 127(5):788–801.spa
dc.relation.referencesMapes, B. E., Warner, T. T., Xu, M., and Negri, A. J. (2003). Diurnal Patterns of Rainfall in Northwestern South America. Part I: Observations and Context. Monthly Weather Review, 131(5):799–812.spa
dc.relation.referencesMarengo, J. A., Soares, W. R., Saulo, C., and Nicolini, M. (2004). Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP-NCAR Reanalyses: Characteristics and Temporal Variability. Journal of Climate, 17(12):2261–2280.spa
dc.relation.referencesMarin, S. and Ramírez, J. A. (2006). The response of precipitation and surface hydrology to tropical macro-climate forcing in Colombia. Hydrol. Process, 20:3759–3789.spa
dc.relation.referencesMauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fl¨aschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimen´ez-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., M¨obis, B., M¨uller, W. A., Nabel, J. E., Nam, C. C., Notz, D., Nyawira, S. S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J. S., Tian, F., Voigt, A., Vrese, P., Wieners, K. H., Wilkenskjeld, S., Winkler, A., and Roeckner, E. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. Journal of Advances in Modeling Earth Systems, 11(4):998–1038.spa
dc.relation.referencesMeng, J., Li, L., Hao, Z., Wang, J., and Shao, Q. (2014). Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. Journal of Hydrology, 509:320–332.spa
dc.relation.referencesMesa-Sánchez, J. and Rojo-Hernández, J. D. (2020). On the general circulation of the atmosphere around Colombia.spa
dc.relation.referencesMontaldo, N. and Oren, R. (2018). Changing Seasonal Rainfall Distribution With Climate Directs Contrasting Impacts at Evapotranspiration and Water Yield in the Western Mediterranean Region. Earth’s Future, 6(6):841–856.spa
dc.relation.referencesMontoya G., G. d. J., Pelkowski, J., and Eslava R., J. A. (2001). Sobre los alisios del nordeste y la existencia de una corriente en el piedemonte oriental andino. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 25(96):363–371.spa
dc.relation.referencesMoraes Arraut, J., Nobre, C., Barbosa, H. M., Obregon, G., and Marengo, J. (2012). Aerial Rivers and Lakes: Looking at Large-Scale Moisture Transport and Its Relation to Amazonia and to Subtropical Rainfall in South America. Journal of Climate, 25(2):543–556.spa
dc.relation.referencesMuhammad Tahir, K., Yin, Y., Wang, Y., Babar, Z. A., and Yan, D. (2015). Impact assessment of orography on the extreme precipitation event of july 2010 over Pakistan: A numerical study.spa
dc.relation.referencesMüller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F., and Marotzke, J. (2018). A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems, 10(7):1383–1413.spa
dc.relation.referencesNewell, R. E., Newell, N. E., Zhu, Y., and Scott, C. (1992). Tropospheric rivers? – A pilot study. Geophysical Research Letters, 19(24):2401–2404.spa
dc.relation.referencesOki, T., Musiake, K., Matsuyama, H., and Masuda, K. (1995). Global atmospheric water balance and runoff from large river basins. Hydrological Processes, 9(5-6):655–678.spa
dc.relation.referencesO’neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev, 9:3461–3482.spa
dc.relation.referencesOster, R. (1979). Las precipitaciones de Colombia. Technical report, Instituto Geográfico Agustín Codazzi.spa
dc.relation.referencesPachauri, R. K., Meyer, L., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Jiang, K., Jiménez Cisneros México, B., Kattsov, V., Lee, H., Minx, J., Mulugetta, Y., Brinkman, S., van Kesteren, L., Leprince-Ringuet, N., and van Boxmeer, F. (2014). Cambio climático 2014 Informe de síntesis. Technical report.spa
dc.relation.referencesPeixóto, J. P. and Oort, A. H. (1983). “The atmosferic branch of the hydrological cycle and climate¨ın M. Beran and K. Ratcliffe, A. S. P. Variations in the Global Water Budget, pages 5–55.spa
dc.relation.referencesPosada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., and Villegas, J. C. (2019). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52(5-6):3609–3629.spa
dc.relation.referencesPoveda, G. (2004). La hidroclimatología de Colombia: Una síntesis desde la escala interdecadal hasta la escala diurna. Rev. Acad. Col. Ciencias de la Tierra, 28(107):201–222.spa
dc.relation.referencesPoveda, G., Jaramillo, L., and Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1):98–118.spa
dc.relation.referencesPoveda, G. and Mesa, O. (2000). On the Existence of Lloró (the Rainest Locality on the Earth): Enhanced Ocean-Land-Atmosphere Interaction by a Low-Level Jet. Geophysical Research Letters, 27(11).spa
dc.relation.referencesPoveda, G. and Mesa, O. J. (1997). Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. Journal of Climate, 10(10):2690–2702.spa
dc.relation.referencesPoveda, G. and Mesa, O. J. (1999). La corriente de chorro superficial del oeste, del Chocó, y otras dos corrientes de chorro en Colombia : climatología y variabilidad durante las fases del ENSO. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23(89):517–528.spa
dc.relation.referencesPoveda, G., Vélez, J. I., Mesa, O. J., Cuartas, A., Barco, J., Mantilla, R. I., Mejía, J. F., Hoyos, C. D., Ramírez, J. M., Ceballos, L. I., Zuluaga, M. D., Arias, P. A., Botero, B. A., Montoya, M. I., Giraldo, J. D., and Quevedo, D. I. (2007). Linking Long-Term Water Balances and Statistical Scaling to Estimate River Flows along the Drainage Network of Colombia. Journal of Hidrology Engineering, 12:4–13.spa
dc.relation.referencesPoveda, G., Waylen, P. R., and Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology.spa
dc.relation.referencesPoveda Jaramillo, G. (2006). El Clima de Antioquia. Technical report, Medellín. Pu, Y., Liu, H., Yan, R., Yang, H., Xia, K., Li, Y., Dong, L., Li, L., Wang, H., Nie, Y., Song, M., Xie, J., Zhao, S., Chen, K., Wang, B., Li, J., and Zuo, L. (2020). CAS FGOALS-g3 Model Datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Advances in Atmospheric Sciences, 37(10):1081–1092.spa
dc.relation.referencesRasmusson, E. M. (1968). ATMOSPHERIC WATER VAPOR TRANSPORT AND THE WATER BALANCE OF NORTH AMERICA II. LARGE-SCALE WATER BALANCE INVESTIGATIONS. MONTHLY WEATHER REVIEW, 96(10):720–734.spa
dc.relation.referencesRemenieras, G. (1974). Tratado de hidrología aplicada. Barcelona, España, 2 edition.spa
dc.relation.referencesRodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A.,Werner, M., Garc´ıa, C., and Burke, S. (2020). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia. Water Resources Management, 34(7):2179–2199.spa
dc.relation.referencesRodriguez, E. A., Werner, M., Sanchez-Rodriguez, I., Zamora, D., Duque, N., and Arboleda, P. (2016). EL PROYECTO EARTH2OBSERVE Y SU CASO DE ESTUDIO EN LA MACROCUENCA MAGDALENA-CAUCA. COLOMBIA. In XXVII CONGRESO LATIONAMERICANO DE HIDRAULICA, Lima, Perú.spa
dc.relation.referencesRoe, G. H. (2004). OROGRAPHIC PRECIPITATION. https://doi.org/10.1146/annurev.earth.33.092203.122541, 33:645–671.spa
dc.relation.referencesSakamoto, M. S., Ambrizzi, T., and Poveda, G. (2011). Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Advances in Meteorology, 2011:1–11.spa
dc.relation.referencesSaurral, R. I., Camilloni, I. A., and Ambrizzi, T. (2015). Links between topography, moisture fluxes pathways and precipitation over South America. Climate Dynamics, 45(3-4):777–789.spa
dc.relation.referencesSiew, J. H., Tangang, F. T., and Juneng, L. (2014). Evaluation of CMIP5 coupled atmosphere–ocean general circulation models and projection of the Southeast Asian winter monsoon in the 21st century. International Journal of Climatology, 34(9):2872–2884.spa
dc.relation.referencesSoares, P. M., Cardoso, R. M., Miranda, P. M., de Medeiros, J., Belo-Pereira, M., and Espirito-Santo, F. (2012). WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Climate Dynamics, 39(9-10):2497–2522.spa
dc.relation.referencesThornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1):55–94.spa
dc.relation.referencesTorrealba, E. R. and Amador, J. A. (2010). La corriente en chorro de bajo nivel sobre los Llanos Venezolanos de Sur América. Revista de climatología, 10.spa
dc.relation.referencesTrenberth, K. E. (1998). Atmospheric Moisture Residence Times and Cycling: Implications for Rainfall Rates and Climate Change. Climatic Change, 39(4):667–694.spa
dc.relation.referencesTrenberth, K. E. (1999). CONCEPTUAL FRAMEWORK FOR CHANGES OF EXTREMES OF THE HYDROLOGICAL CYCLE WITH CLIMATE CHANGE. Climate Change, 42:327–339.spa
dc.relation.referencesTrenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B. (2003). THE CHANGING CHARACTER OF PRECIPITATION. Bulletin of the American Meteorological Society, 84(9):1205–1218.spa
dc.relation.referencesValencia, S., Marín, D. E., Gómez, D., Hoyos, N., Salazar, J. F., and Villegas, J. C. (2023). Spatio-temporal assessment of Gridded precipitation products across topographic and climatic gradients of Colombia. Atmospheric Research, page 106643.spa
dc.relation.referencesVallejo Giraldo, L. F. (2014). DINÁMICA ESPACIO-TEMPORAL DE LOS RÍOS AÉREOS EN EL NORTE DE SUR AMÉRICA Y POSIBLES EFECTOS DEL CAMBIO CLIMÁTICO. Universidad Nacional de Colombia, Medellín.spa
dc.relation.referencesvan Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., and Winkler, H. (2014). A new scenario framework for Climate Change Research: Scenario matrix architecture. Climatic Change, 122(3):373–386.spa
dc.relation.referencesVelasco, I. and Fritsch, J. M. (1987). Mesoscale convective complexes in the Americas. Journal of Geophysical Research, 92(D8):9591.spa
dc.relation.referencesWalsh, K. (1994). On the Influence of the Andes on the General Circulation of the Southern Hemisphere. Journal of Climate, 7(6):1019–1025.spa
dc.relation.referencesWang, C. (2002). Atlantic Climate Variability and Its Associated Atmospheric Circulation Cells. Journal of Climate, 15(13):1516–1536.spa
dc.relation.referencesWang, C. (2004). ENSO, Atlantic Climate Variability, and the Walker and Hadley Circulations. pages 173–202.spa
dc.relation.referencesWang, C. (2007). Variability of the Caribbean Low-Level Jet and its relations to climate. Climate Dynamics, 29(4):411–422.spa
dc.relation.referencesWang, Y., Leung, L. R., McGregor, J. L., Lee, D. K., Wang, W. C., Ding, Y., and Kimura, F. (2004). Regional Climate Modeling: Progress, Challenges, and Prospects. Journal of the Meteorological Society of Japan. Ser. II, 82(6):1599–1628.spa
dc.relation.referencesYepes, J. and Poveda, G. (2013). DIAGN´OSTICO Y PREDICTIBILIDAD DE LA LLUVIA EN COLOMBIA A ESCALA INTRAESTACIONAL. Revista Colombia Amazónica, 6:17–29.spa
dc.relation.referencesYepes, J., Poveda, G., Mejía, J. F., Moreno, L., and Rueda, C. (2019). Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bulletin of the American Meteorological Society, 100(5):779–796.spa
dc.relation.referencesYoshikane Id, T. and Yoshimura, K. (2022). A bias correction method for precipitation through recognizing mesoscale precipitation systems corresponding to weather conditions. PLOS Water, 1(5).spa
dc.relation.referencesZeng, N., Dickinson, R. E., and Zeng, X. (1996). Climatic Impact of Amazon Deforestation - A Mechanistic Model Study. Journal of Climate, 9(4):859–883.spa
dc.relation.referencesZuluaga, M. D. and Houze, R. A. (2015). Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Monthly Weather Review, 143(1):298–316.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.proposalFlujos de humedad atmosféricaspa
dc.subject.proposalBalance hídricospa
dc.subject.proposalOrografíaspa
dc.subject.proposalPrecipitaciónspa
dc.subject.proposalCambio climáticospa
dc.subject.proposalCMIP6spa
dc.subject.proposalERA5spa
dc.subject.proposalMoisture flux convergenceeng
dc.subject.proposalWater balanceeng
dc.subject.proposalTerraineng
dc.subject.proposalRainfalleng
dc.subject.proposalClimate Changeeng
dc.subject.wikidataBalance hídrico
dc.titleAlteraciones en los flujos de humedad asociadas al cambio climático en el complejo orográfico Magdalena - Cauca, y sus efectos en la precipitaciónspa
dc.title.translatedMoisture flux alterations associated with Climate Change in the Magdalena – Cauca orographic complex and its effects on rainfalleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1039459675.2023.pdf
Tamaño:
36.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Mestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: