Modelo de predicción de abandono de clientes en un marketplace mediante técnicas de machine learning
| dc.contributor.advisor | Restrepo Calle, Felipe | spa |
| dc.contributor.author | Baquero Pico, Cristian Adolfo | spa |
| dc.contributor.referee | León Guzmán, Elizabeth | spa |
| dc.contributor.researchgroup | Plas Programming languages And Systems | spa |
| dc.date.accessioned | 2025-12-15T21:40:05Z | |
| dc.date.available | 2025-12-15T21:40:05Z | |
| dc.date.issued | 2025-10-06 | |
| dc.description | ilustraciones, tablas | spa |
| dc.description.abstract | En el contexto competitivo de los marketplaces, la retención de clientes se ha convertido en un factor estratégico clave. Este trabajo presenta el desarrollo de un modelo predictivo de abandono de clientes (churn) aplicando técnicas de aprendizaje automático (machine learning), con el objetivo de identificar proactivamente a aquellos usuarios con mayor probabilidad de abandonar la plataforma. El estudio se estructura bajo la metodología CRISP-DM, abordando desde la selección y análisis de una base de datos —“theLook eCommerce”— hasta la preparación de características y la comparación de múltiples algoritmos. Se evaluaron diferentes configuraciones temporales para representar el con texto del cliente, y se identificaron las más efectivas en términos de desempeño predictivo. El modelo desarrollado, basado en Random Forest, alcanzó métricas superiores al 82 % en Accuracy y 78 % en F1-score, demostrando su utilidad para apoyar estrategias de retención en entornos reales. Este trabajo reafirma la necesidad de enfoques personalizados en la predicción del churn y sienta las bases para su implementación práctica. (Texto tomado de la fuente). | spa |
| dc.description.abstract | In the competitive landscape of marketplaces, customer retention has become a key strategic factor. This work presents the development of a predictive model for customer churn using machine learning techniques, aimed at proactively identifying users with a high probability of leaving the plat form. The study follows the CRISP-DM methodology, covering from the selection and analysis of a dataset—”theLook eCommerce”—to feature engineering and comparison of various algorithms. Different temporal configurations were evaluated to represent customer behavior, and the most effective setups in terms of predictive performance were identified. The final model, based on Random Forest techniques, achieved Accuracy and F1-scores above 82 % and 78 % respectively, demonstrating its po tential to support real-world customer retention strategies. This research highlights the importance of tailored approaches in churn prediction and lays the groundwork for practical implementation. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ingeniería de Sistemas y Computación | spa |
| dc.description.methods | La metodología utilizada corresponde al estándar CRISP-DM (Cross Industry Standard Process for Da ta Mining). Dado que los objetivos del proyecto, así como el contexto del problema, han sido defini }dos en las etapas preliminares del trabajo, se abordan exclusivamente las fases 2 (Comprensión de los datos), 3 (Preparación de los datos), 4 (Modelado) y 5 (Evaluación) del proceso CRISP-DM. Las fases mencionadas se desarrollan a través de actividades secuenciales que permiten: la selección y análisis de una base de datos representativa del comportamiento de los clientes; la limpieza, transformación y selección de características relevantes; la exploración de múltiples algoritmos de machine learning; y, finalmente, la evaluación comparativa de los modelos para seleccionar aquel con el mejor desempeño. | spa |
| dc.description.researcharea | Sistemas inteligentes | spa |
| dc.format.extent | xii, 49 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89211 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Ingeniería de Sistemas e Industrial | spa |
| dc.publisher.faculty | Facultad de Ingeniería | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | spa |
| dc.relation.references | Alshamsi, A. (2022). Customer Churn prediction in ECommerce Sector. https://repository.rit.edu/cgi/ viewcontent.cgi?article=12319&context=theses | |
| dc.relation.references | Aziz, A. (2017). Customer Segmentation basedon Behavioural Data in E-marketplace [Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330461] | |
| dc.relation.references | Ballings, M., y Van Den Poel, D. (2012). Customer event history for churn prediction: How long is long enough? Expert Systems With Applications, 39(18), 13517-13522. https://doi.org/10.1016/j. eswa.2012.07.006 | |
| dc.relation.references | Baquero, C. (2025). Modelo de predicción de abandono de clientes en un Marketplace mediante téc nicas de machine learning [Repositorio en GitHub, accedido el 10 de junio de 2025]. https: //github.com/crabaqueropi/modelo_prediccion_abandono_clientes_marketplace | |
| dc.relation.references | Churn prediction [No date. Available at https://aws.amazon.com/marketplace/solutions/telecom/ churn-prediction]. (s.f.). https://aws.amazon.com/marketplace/solutions/telecom/churn-prediction | |
| dc.relation.references | Customer Churn Prediction - Oracle - Oracle Cloud Marketplace [Accessed via Cloud.oracle.com/Marketplace]. (2024). https://cloudmarketplace.oracle.com/marketplace/es_ES/listing/143721037 | |
| dc.relation.references | Fridrich, M. (s.f.). User churn dataset — kaggle.com [[Accessed 15-01-2025]]. https://www.kaggle. com/datasets/fridrichmrtn/user-churn-dataset | |
| dc.relation.references | García, S., Luengo, J., y Herrera, F. (2015). Data preprocessing in data mining. Springer | |
| dc.relation.references | Google. (s.f.). theLook eCommerce [[Accessed 15-01-2025]]. https: / /console.cloud.google.com / marketplace/product/bigquery-public-data/thelook-ecommerce?hl=es-419 | |
| dc.relation.references | Gordini, N., y Veglio, V. (2017). Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry. Industrial Marketing Management, 62, 100-107. https://doi.org/10. 1016/j.indmarman.2016.08.003 | |
| dc.relation.references | Huda, I., Suhendra, A. A., y Bijaksana, M. A. (2023). Design of Prediction Model using Data Mining for Segmentation and Classification Customer Churn in E-Commerce Mall in Mall.JOIV: International Journal On Informatics Visualization, 7(4), 2280. https://doi.org/10.30630/joiv.7.4.02414 | |
| dc.relation.references | IBM. (s.f.). IBM notice: The page you requested cannot be displayed [Online] | |
| dc.relation.references | Kotler, P., y Keller, K. L. (2012). Marketing Management (14.a ed.). Prentice Hall | |
| dc.relation.references | Malikireddy, V. P., y Madhavi, K. (2021). Customer Churns Prediction Model Based on Machine Learning Techniques: A Systematic Review. Atlantis Highlights In Computer Sciences. https://doi.org/ 10.2991/ahis.k.210913.021 | |
| dc.relation.references | Maulana, M. E. Y. (2022, noviembre). E-commerce Customer Churn Analysis and Prediction. https: //medium.com/@merlanggayanm/e-commerce-customer-churn-analysis-and-prediction23d45ed9c7d | |
| dc.relation.references | Ngai, E. W., Xiu, L., y Chau, D. C. K. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert Systems with Applications, 36(2), 2592-2602. https://doi.org/10.1016/j.eswa.2008.02.021 | |
| dc.relation.references | Osmond, A. B. (2022). Indonesian Marketplace Product — ieee-dataport.org [[Accessed 15-01-2025]]. https://ieee-dataport.org/documents/indonesian-marketplace-product%5C#files | |
| dc.relation.references | Öztürk, M. E., Tunç, A. A., y Akay, M. F. (2023). Machine learning based churn analysis for sellers on the e-commerce marketplace. International Journal Of Mathematics And Computer In Engineering, 1(2), 171-176. https://doi.org/10.2478/ijmce-2023-0013 | |
| dc.relation.references | Pal, A. K. (s.f.). Brazilian e-commerce company: OLIST — kaggle.com [[Accessed 15-01-2025]]. https: //www.kaggle.com/datasets/erak1006/brazilian-e-commerce-company-olist?select=order_ payments_dataset.csv | |
| dc.relation.references | Pondel, M., Wuczyński, M., Gryncewicz, W., Łysik, Ł., Hernes, M., Rot, A., y Kozina, A. (2021). Deep Learning for Customer Churn Prediction in E-Commerce Decision Support. Business Information Systems, 3-12. https://doi.org/10.52825/bis.v1i.42 | |
| dc.relation.references | Raeisi, S., y Sajedi, H. (2020). E-Commerce Customer Churn Prediction By Gradient Boosted Trees. 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), 055-059. https://doi.org/10.1109/ICCKE50421.2020.9303661 | |
| dc.relation.references | Rahib, M. A. A. (s.f.). Customer data prediction and analysis in e-commerce using machine learning [[Accessed 15-01-2025]]. https://zenodo.org/records/13373284 | |
| dc.relation.references | Reichheld, F. F., y Sasser, W. E. (1990). Zero defections: Quality comes to services. Harvard Business Review, 68(5), 105-111 | |
| dc.relation.references | Shobana, J., Gangadhar, C., Arora, R. K., Renjith, P., Bamini, J., y Chincholkar, Y. D. (2023). E-commerce customer churn prevention using machine learning-based business intelligence strategy. Measurement: Sensors, 27, 100728. https://doi.org/10.1016/j.measen.2023.100728 | |
| dc.relation.references | Tang, H. Y., y Ya’acob, S. (2023). E-Commerce Customer Churn Prediction for the Marketplace in Malaysia. Open International Journal of Informatics, 11(2), 58-66. https://doi.org/10.11113/ oiji2023.11n2.273 | |
| dc.relation.references | Verma, A. (s.f.). Ecommerce Customer Churn Analysis and Prediction — kaggle.com [[Accessed 15-01- 2025]]. https://www.kaggle.com/datasets/ankitverma2010/ecommerce-customer-churn-analysis-and-prediction?sort=most-comment | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
| dc.subject.ddc | 330 - Economía::338 - Producción | spa |
| dc.subject.proposal | Abandono de clientes | spa |
| dc.subject.proposal | Marketplaces | spa |
| dc.subject.proposal | CRISP-DM | spa |
| dc.subject.proposal | Retención de clientes | spa |
| dc.subject.proposal | Retención de clientes | spa |
| dc.subject.proposal | Customer churn | eng |
| dc.subject.proposal | Customer retention | eng |
| dc.subject.proposal | Customer retention | eng |
| dc.subject.proposal | Customer churn | eng |
| dc.subject.proposal | Churn prediction | eng |
| dc.subject.unesco | Inteligencia artificial | spa |
| dc.subject.unesco | Artificial intelligence | eng |
| dc.subject.unesco | Modelo matemático | spa |
| dc.subject.unesco | Mathematical models | eng |
| dc.subject.unesco | Comercio electrónico | spa |
| dc.subject.unesco | Electronic commerce | eng |
| dc.subject.unesco | Análisis económico | spa |
| dc.subject.unesco | Economic analysis | eng |
| dc.title | Modelo de predicción de abandono de clientes en un marketplace mediante técnicas de machine learning | spa |
| dc.title.translated | Customer churn prediction model in a marketplace using machine learning techniques | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Modelo de predicción de abandono de clientes en un Marketplace mediante técnicas de machine learning.pdf
- Tamaño:
- 622.06 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

