Development of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitation

dc.contributor.advisorGonzalez, Doris
dc.contributor.advisorHoyos Madrigal, Bibian Alonso
dc.contributor.authorCañas Marín, Wilson Antonio
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.date.accessioned2021-05-11T13:56:41Z
dc.date.available2021-05-11T13:56:41Z
dc.date.issued2021-01-05
dc.description.abstractWe use the molecular theory of liquids to review the Perturbed Chain-Statistical Association Fluid Theory Equation of State (PC-SAFT EoS) and formulate new dispersive and repulsive terms for this model. As a well-known fact in the literature, the original PC-SAFT normally predicts accelerated asphaltene onset pressures (AOPs) in petroleum reservoir fluids and cloud points (CPs) in polymeric systems at low temperatures. This phenomenon was studied in this thesis. Thermodynamic perturbation theories (TPTs) and integral equation theory (IET) are central. By combining these theories, we formulate several effective diameter expressions dependent upon temperature and density to replace the original effective diameter of PC-SAFT, which depends on temperature only. Barker and Henderson´s second-order dispersion term based upon a concept of correlated shells of fluids was introduced into PC-SAFT and its effect was studied, especially at low temperatures. Both the new effective diameters formulated, and the modified second-order dispersion term produce less accelerated AOPs and CPs curves at low temperatures. The original universal constants (called here as GSUCs) in the attractive part PC-SAFT were also analyzed in this work. The main conclusion is that GSUCs should not be used at all, and the set of these constants presented by Liang and Kontogeorgies (LKUCs) are preferred instead. In fact, LKUCs not only correct the defect of PC-SAFT of predicting multiple density roots at low temperatures but also reduces the tendency of PC-SAFT of predicting accelerated AOP and CP curves at low temperatures. The PC-SAFT predictions of HAOP loci at very high pressures were also studied. New phase diagrams at low temperatures are presented in this work. HAOPs are displaced at very low temperatures when the modified second-order dispersion term is used or when the LKUCs are combined with the temperature- and density-dependent effective diameters presented in this thesis. Unfortunately, these HAOPs are not possible of being experimentally tested. Nonetheless, the high densities at which these HAOPs are predicted by the original PC-SAFT represent non-isotropic conditions. Under those conditions, the TPTs for fluids lose validity. The combination of the LKUCs and the temperature-and density-dependent effective diameters presented in this thesis substantially increases the isotropic range, allowing a most robust use of the TPTs, and then of PC-SAFT. The failure of the original PC-SAFT to predict coherent Amagat curves is also amply studied. As a result, the failure was found to be directly related to the soft-core repulsion included in PC-SAFT by the effective diameter. Intermolecular potentials as the square well square shoulder (SWSS) are not “soft” enough to correctly predict these curves. Then, we demonstrate in this dissertation that intermolecular potentials soft enough, like Lennard-Jones one, need to be introduced.eng
dc.description.abstractEn esta tesis usamos la teoría molecular de los líquidos para revisar la Ecuación de Estado de la Teoría de Fluidos de Asociación Estadística de Cadena Perturbada (PC-SAFT EoS) y formulamos nuevos términos dispersivos y repulsivos para este modelo. Como es bien sabido en la literatura, la PC-SAFT original normalmente predice curvas de presión de inicio de precipitación de asfaltenos (AOP) en fluidos de yacimientos de petróleo, así como puntos de nube (CP) en sistemas poliméricos, muy aceleradas a bajas temperaturas. Este fenómeno se estudió en esta tesis con la ayuda de las teorías de perturbación termodinámica (TPT) y la teoría de ecuaciones integrales (IET). Al combinar estas teorías, formulamos varias expresiones de diámetro efectivo que dependen de la temperatura y la densidad, con el objetivo de reemplazar el diámetro efectivo original de PC-SAFT, que sólo es función de la temperatura. Además, se introdujo en PC-SAFT una modificación para el término de dispersión de segundo orden de Barker y Henderson, la cual está basada en un concepto de capas correlacionadas de fluido, estududiándese su efecto especialmente a bajas temperaturas. Los nuevos diámetros efectivos formulados y el término de dispersión de segundo orden modificado producen curvas AOP y CPs menos aceleradas a bajas temperaturas. De igual manera, las constantes universales originales (denominadas aquí como GSUC) en la parte atractiva of PC-SAFT también se analizaron en este trabajo. La conclusión principal es que las GSUCs no deben usarse, y en su lugar es preferible utilizar el conjunto de estas constantes presentado por Liang y Kontogeorgies (LKUC). De hecho, estas últimas no sólo corrigen el defecto de PC-SAFT de predecir múltiples raíces de densidad a temperaturas bajas, sino que reducen la tendencia de PC-SAFT de predecir curvas AOP y CP aceleradas a tales condiciones. También se estudiaron las predicciones de PCSAFT de hiper presiones de inicio de precipitación de asfaltenos (HAOPs), reportándose nuevos diagramas de fase a bajas temperaturas para fluidos de yacimiento propensos a la precipitación de asfaltenos. Las HAOPs se desplazan a temperaturas muy bajas cuando se usa la versión modifcada del término de dispersión de segundo orden de Barker y Henderson o cuando los LKUC se combinan con los diámetros efectivos dependientes de la temperatura y densidad desarrollados en esta tesis. Desafortunadamente, la existencia de estas HAOPs no se puede comprobar experimentalmente. Sin embargo, las altas densidades a las que la PC-SAFT original predice estas HAOPs claramente representan condiciones no isotrópicas. En esas condiciones, las TPTs para fluidos pierden validez. No obstante, el efecto de utilizar la combinación de las LKUC y los diámetros efectivos dependientes de la temperatura y la densidad, presentados en esta tesis, aumenta sustancialmente el rango isotrópico, permitiendo así un uso más sólido de las TPT, y por tanto de PC-SAFT. El fracaso de la PC-SAFT original para predecir curvas Amagat coherentes también se estudió en profundidad en esta tesis. Como resultado, se encontró que la falla de PC-SAFT está directamente relacionada con la repulsión de núcleo blando incluida a través de su diámetro efectivo original. Los potenciales intermoleculares como el pozo cuadrado con hombro cuadrado (SWSS), usado en PC-SAFT, no son lo suficientemente "suaves" para predecir correctamente estas curvas. Luego, es entonces necesario introducir potenciales intermoleculares lo suficientemente suaves, como el Lennard-Jones, tal y como se demuestra en esta disertación.spa
dc.description.degreelevelDoctoradospa
dc.description.researchareaHidrocarburosspa
dc.format.extent227 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79496
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.references[1] J. D. van der Waals, Thermodynamic theory of capillarity in the assumption of continuous density change. Verh K Akad Wet Amsterdam. 1-8, 1893.spa
dc.relation.references[2] J. C. Dyre, Simple liquids quasiuniversality and the hard-sphere paradigm, J. Phys.: Condens. Matter, 28, 323001, 2016.spa
dc.relation.references[3] D. Henderson, M. Holovko, I. Nezbeda, A. Trokhymchuk, What is Liquid?, Condens Matter Phys. 18(1), 10101: 1-4, 2015.spa
dc.relation.references[4] T. S. Ingebrigtsen, T. B. Schrøder, J. C. Dyre, What Is a Simple Liquid?, Phys. Review X, 2, 011011, 2012.spa
dc.relation.references[5] G. A. Baker, P. Graves-Morris, P. A. Carruthers, Padé Approximants, Vols. I and II, Addison-Wesley, Reading (1981).spa
dc.relation.references[6] M. Baus, J. L. Colot, Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions, Phys. A, 36, 3912, 1987.spa
dc.relation.references[7] J. L. Largo, Teoría y simulación de las propiedades de Equilibrio de Fluidos de Pozo Cuadrado. Tesis Doctoral. Departamento de física aplicada, Universidad de Cantabria, 2003.spa
dc.relation.references[8] T. Young, III. An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95, 65, 1805.spa
dc.relation.references[9] P. S. Laplace, Traité de Mécanique Céleste; Supplément au Dixième Livre, sur LAction Capillaire, Courcier, Paris, 1806.spa
dc.relation.references[10] O. F. Mosotti, On the Forces that Govern the Internal Constitution of the Body, Insight to Serve to Determine the Cause of the Laws of the Body Action Moléculaire (Turin, 1836) [English translation in Taylors Scientific Memoirs, Vol. 1, 448-469, 1836].spa
dc.relation.references[11] H. Yukawa, On the Interaction of Elementary Particles. I, Phys. Math. Soc. Jpn., 17, 48, 1935.spa
dc.relation.references[12] R. Clausius, XI. On the nature of the motion which we call heat, Ann. Phys. (Berlin), 176, 353, 1857.spa
dc.relation.references[13] J. C. Maxwell, Iv. on the dynamical theory of gases, Philos. Trans. R. Soc. London, 157, 49, 1867.spa
dc.relation.references[14] L. Boltzmann, Sitz. Akad. Naturwiss. Kaiser Akad Class. Wissen Wien 66, 275, 1872.spa
dc.relation.references[15] W. Sutherland, XI. The law of attraction amongst the molecules of a gas, Philos. Mag., 22, 81, 1886.spa
dc.relation.references[16] W. Sutherland, XXXVI. On the law of molecular force, Philos. Mag., 27, 305, 1889.spa
dc.relation.references[17] W. Sutherland, LII. The viscosity of gases and molecular force, Philos. Mag., 36, 507, 1893.spa
dc.relation.references[18] G. Mie, Ann. Phys. (Berlin), 316, 657, 1903.spa
dc.relation.references[19] W. H. Keesom, Commun. Phys. Lab. Leiden University 32(Suppl. 24B), 6, 1912.spa
dc.relation.references[20] J. E. Jones, On the determination of molecular fields. —I. From the variation of the viscosity of a gas with temperature, Proc. R. Soc. London, Ser. A, 106, 441, 1924.spa
dc.relation.references[21] J. E. Jones, On the determination of molecular fields. —II. From the equation of state of a gas, Proc. R. Soc. London, Ser. A, 106, 463, 1924.spa
dc.relation.references[22] J. E. Lennard-Jones, Cohesion, Proc. R. Soc. London, 43, 461, 1931.spa
dc.relation.references[23] J. C. Slater, The Normal State of Helium, Phys. Rev., 32, 349, 1928.spa
dc.relation.references[24] J. C. Slater, J. G. Kirkwood, The Van Der Waals Forces in Gases, Phys. 37, 682, 1931.spa
dc.relation.references[25] S. C. Wang, The mutual energy of two hydrogen atoms, Phys. Z., 28, 663, 1927.spa
dc.relation.references[26] R. Eisenschitz and F. London, On the ratio of the van der Waals forces and the homo-polar binding forces, Z. Phys., 60, 491, 1930.spa
dc.relation.references[27] T. Kihara, Nippon Sugaku-Buturegakukaisi, 17, 11, 1943.spa
dc.relation.references[28] T. Kihara, Virial Coefficients and Models of Molecules in Gases, Rev. Mod. Phys. 25, 831, 1953.spa
dc.relation.references[29] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954.spa
dc.relation.references[30] G. C. Maitland, M. Rigby, E. B. Smith, W. A. Wakeham, Intermolecular Forces: Their Origin and Determination, International Series of Monographs on Chemistry No. 3, Clarendon Press, Oxford, 1981.spa
dc.relation.references[31] D. Chandler, Liquids: Condensed, disordered, and sometimes complex, PNAS, 106, 15111-15112, 2009.spa
dc.relation.references[32] R. W. Zwanzig, High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases, J. Chem. Phys., 22, 1420, 1954.spa
dc.relation.references[33] J.A. Barker, D. Henderson, Perturbation Theory and Equation of State for Fluids: The Square-Well Potential, J. Chem. Phys. 47 (1967) 2856-2861.spa
dc.relation.references[34] J.A. Barker, D. Henderson, Perturbation theory and equation of state for fluids. II. A successful theory of liquids, J. Chem. Phys. 47 (1967) 4714-4721.spa
dc.relation.references[35] J. A. Barker, D. Henderson, Theories of Liquids, Ann. Rev. Phys. Chem. 23, 439, 1972.spa
dc.relation.references[36] J. D. Weeks, D. Chandler, H. C. Andersen, Perturbation Theory of the Thermodynamic Properties of Simple Liquids, J. Chem. Phys., 55, 5422, 1971.spa
dc.relation.references[37] J. S. Rowlinson, The statistical mechanics of systems with steep intermolecular potentials Mol. Phys. 8, 107, 1964.spa
dc.relation.references[38] J. S. Rowlinson, An equation of state of gases at high temperatures and densities, Mol. Phys. 7, 349, 1964.spa
dc.relation.references[39] J. S. Rowlinson, Molecular theory of liquids and liquid mixtures, Ber. Bunsenges Phys. Chem. 85, 970, 1981.spa
dc.relation.references[40] L. S. Ornstein, F. Zernike, Accidental deviations of density and opalescence at the critical point of a single substance, Proc. Acad. Sci., Amsterdam, 17 (1914) 793-806.spa
dc.relation.references[41] J. K. Percus, G. J. Yevick, J. K. Percus, G. J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev., 110 (1) (1958) 1-13.spa
dc.relation.references[42] J.A. Barker, D. Henderson, what is "liquid"? Understanding the states of matter, Rev. mod. Phys., 48, 587, 1976.spa
dc.relation.references[43] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700.spa
dc.relation.references[44] L. Benavides, A. Gil-Villegas, The thermodynamics of molecules with discrete potentials, Molecular Physics, 97, 12, 1225, 1999.spa
dc.relation.references[45] A. Lang, G. Kahl, C. N. Likos, H. Lowen, M. Watzlawek, Structure and thermodynamics of square-well and square-shoulder fluids, J. Phys.: Condens. Matter, 11, 10143, 1999.spa
dc.relation.references[46] C. Rascón, E. Velasco, L. Mederos, G. Nevascués, Phase diagrams of systems of particles interacting via repulsive potentials, J. Chem. Phys. 106,16, 6689, 1997.spa
dc.relation.references[47] A. Vidales, L. Benavides, A. Gil-Villegas, Perturbation theory for mixtures of discrete potential fluids, Molecular Physics, 99, 9, 703, 2001spa
dc.relation.references[48] L. A. Cervantes, G. Jaime-Muñoz, A. L. Benavides, J. Torres-Arenas, F. Sartre, Discrete perturbation theory for continuous soft-core potential fluids, J. Chem. Phys., 142, 114501, 2015.spa
dc.relation.references[49] J. Gross, G. Sadowski, Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, Fluid. Phase. Equilib. 168, 183, 2000.spa
dc.relation.references[50] J. Gross, G. Sadowski, Ind. Eng. Chem. Res., Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, 40, 1244, 2001.spa
dc.relation.references[51] J. A. Barker, D. Henderson, in proceeding of the fourth symposium on thermophycical properties, edited by J.R. Moszynski (ASTM, New York), page 30.spa
dc.relation.references[52] J. P. Hansen, I. R. McDonald, Theory of simple liquids, Ed. Academic Press, London, 1976.spa
dc.relation.references[53] L. Berthier, G. Tarjus, Nonperturbative Effect of Attractive Forces in Viscous Liquids, Phys. Lett. 103, 170601, 2009.spa
dc.relation.references[54] L. Berthier, G. Tarjus, The role of attractive forces in viscous liquids, J. Chem. Phys., 134, 214503, 2011.spa
dc.relation.references[55] S. Toxvaerd, J. C. Dyre, Communication: Shifted forces in molecular dynamics, J. Chem. Phys., 134, 081102, 2011.spa
dc.relation.references[56] S. Toxvaerd and J. C. Dyre, Role of the first coordination shell in determining the equilibrium structure and dynamics of simple liquids, J. Chem. Phys., 135, 134501, 2011.spa
dc.relation.references[57] H. Touba, G. A. Mansoori, Subcritical and Supercritical Water Radial Distribution Function, Inter. J. Journal of Thermophys., 18, 5, 1217, 1997.spa
dc.relation.references[58] Y.S. Wei, R. J. Sadus, Equations of state for the calculation of fluid‐phase equilibria, AIChE Journal, 46, 1, 2000.spa
dc.relation.references[59] J. Reščič, Y. V. Kalyuzhnyi, P. T. Cummings, Shielded attractive shell model again: resummed thermodynamic perturbation theory for central force potential, J. Phys. Condens. Matter, 28 (41), 414011, 2016.spa
dc.relation.references[60] R. Elliot, Lessons learned from theory and simulation of step potentials, Fluid Phase Equilib. 416, 27-41, 2016spa
dc.relation.references[61] K. E. Gubbins, Perturbation theories of the thermodynamics of polar and associating liquids: A historical perspective, Fluid Phase Equilib., 416, 3-17, 2016spa
dc.relation.references[62] W. Zmpitas, J. Gross, A new equation of state for linear hard chains: Analysis of a third-order expansion of Wertheims Thermodynamic Perturbation Theory, Fluid Phase Equilib. 416, 18-26, 2016.spa
dc.relation.references[63] T. H. Westen, An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility, J. Chem. Phys., 142, 244903, 2015.spa
dc.relation.references[64] A. S. V. Ramana, Generalized coupling parameter expansion: Application to square well and Lennard-Jones fluids, J. Chem. Phys., 139, 044106, 2013.spa
dc.relation.references[65] D. Pini, A. Parola, J. Colombo, L. Reatto, An investigation of the SCOZA for narrow square-well potentials and in the sticky limit, Mol. Phys. 109, 1343, 2011.spa
dc.relation.references[66] Y. Duda, C. Lira-Galena, Thermodynamics of asphaltene structure and aggregation, Fluid Phase Equilib. 241, 257-267, 2006.spa
dc.relation.references[67] O. Redlich, J. N. S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev., 44, 233, 1949.spa
dc.relation.references[68] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci., 27, 1197, 1972.spa
dc.relation.references[69] D. Y. Peng, D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59, 1976.spa
dc.relation.references[70] N. F. Carnahan, K. E. Starling, Equation of State for Nonattracting Rigid Spheres, J. Chem. Phys., 51, 635, 1969.spa
dc.relation.references[71] M. Khanpour, G. A. Parsafar, A simple method of generating equations of state for hard sphere fluid, Chem. Phys., 333, 208, 2007.spa
dc.relation.references[72] A. C. Mulero, C. Galán, F. Cuadros, Equations of state for hard spheres. A review of accuracy and applications, Phys.Chem. Phys., 3, 4991-4999, 2001.spa
dc.relation.references[73] M. du Rand, I. Nieuwoudt, C. E. Schwarz, j. h. Knoetze, A practical equation of state for non‐spherical and asymmetric systems for application at high pressures. Part 1: Development of the pure component model, The Canadian Journal of Chemical Engineering, 90, 584-596, 2012.spa
dc.relation.references[74] J. Wu, J.M. Prausnitz, Phase equilibria for systems containing hydrocarbons, water, and salt: An extended Peng− Robinson equation of state, Ind. Eng. Chem. Res., 37, 1634, 1998.spa
dc.relation.references[75] S.B. Kiselev, Cubic crossover equation of state, Fluid Phase Equilib., 147, 7, 1998.spa
dc.relation.references[76] A. Bakhshandeh, H. Behnejad, Crossover parametric equation of state for asymmetric fluids, Chem. Phys., 409, 32, 2012.spa
dc.relation.references[77] L. Yelash, M. Müller, W. Paul, K. Binder, A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach, J. Chem. Phys., 123, 014908, 2005.spa
dc.relation.references[78] U. K. Deiters, Private Communication, 2009.spa
dc.relation.references[79] M. A. Van Schilt, R. M. Wering, W. J. van Meerendonk, M. F. Kemmere, J. T. F. Keurentjes, High-Pressure Phase Behavior of the System PCHC−CHO−CO2 for the Development of a Solvent-Free Alternative toward Polycarbonate Production, Ind. Eng. Chem. Res., 44, 3363, 2005.spa
dc.relation.references[80] S. Mohebbinia, K. Sepehrnoori, R. T. Johns, A. Kazemi-Nia-Korrani, Simulation of Asphaltene Precipitation During Gas Injection Using PC-SAFT EOS, SPE Annual Technical Conference and Exhibition, Amsterdam, Netherlands, 2014.spa
dc.relation.references[81] T. Laffite, A. Apostolakau, C. Avendaño, A. Galindo, C. S. Adjiman, E. Muller, G. Jackson, Accurate statistical associating fluid theory for chain molecules formed from Mie segments, J. Chem. Phys., 139, 154504, 2013.spa
dc.relation.references[82] S. Dufal, T. Lafitte, A. Galingo, G. Jackson, A. J. Haslam, Developing intermolecular‐potential models for use with the SAFT‐VR Mie equation of state, AIChE J., 61(9), 2891-2912, 2015.spa
dc.relation.references[83] V. Szewczyk, E. Béhar, Compositional model for predicting asphaltenes flocculation, Fluid Phase Equilib. 158-160, 459, 1999.spa
dc.relation.references[84] S. Ashoori, M. Sharifi, M. Masoumi, The relationship between SARA fractions and crude oil stability, Egyptian J. Petrol. 26, 209, 2017.spa
dc.relation.references[85] K. J. Leontaritis, G. A. Mansoori, Asphaltene flocculation during oil production and processing: A thermodynamic collodial model, SPE International Symposium on Oilfield Chemistry, 4-6 february, 1987.spa
dc.relation.references[86] A. I. Victorov, A. Firoozabadi, Thermodynamic micellizatin model of asphaltene precipitation from petroleum fluids, AIChE J., 42 (6), 1753, 1996.spa
dc.relation.references[87] H. Pan, A. Firoozabadi, H. Pan, A. Firoozabadi, AIChE J., 46 (2), 416, 2000, AIChE J., 46 (2), 416, 2000.spa
dc.relation.references[88] A. K. Gupta, A model for asphaltene flocculation using an equation of state. MSc. thesis, University of Calgary, 1986. [89] L. X. Nghiem, M. S. Hassam, R. Nutakki, A. E. D. George, Efficient Modelling of Asphaltene Precipitation, 3-6 October; Houston, TX: Society of Petroleum Engineers, 1993.spa
dc.relation.references[90] L. X. Nghiem, D. A. Coombe, Modelling asphaltene precipitation during primary depletion, SPE J., 2 (2), 170, 1997.spa
dc.relation.references[91] B. F. Kohse, L. X. Nghiem, H. Maeda, K. Ohno, Modelling Phase Behavior Includingthe Effect of Pressure and Temperature on Asphaltene Precipitation, SPE Asia Pacific Oil and Gas Conference and Exhibition, 16-18 October; Brisbane, Australia: Society of Petroleum Engineers, 2000.spa
dc.relation.references[92] N. Lindeloff, R. H. Heidemann, S. I. Andersen, E. H. Stenby, A thermodynamic mixedsolid asphaltene precipitation model, Pet. Sci. Technol. 16 (3-4), 307, 1998.spa
dc.relation.references[93] J. L. Du, D. Zhang, A Thermodynamic Model for the Prediction of Asphaltene Precipitation, Pet. Sci. Technol. 22 (7-8), 1023, 2004.spa
dc.relation.references[94] O. Sabbagh, K. Akbarzadeh, A. Badamchi-Zadeh, W. Y. Svrcek, H. Y. Yarranton, Applying the PR-EoS to Asphaltene Precipitation from n-Alkane Diluted Heavy Oils and Bitumens, Energy & Fuels, 20 (2): 625, 2006.spa
dc.relation.references[95] G.M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, D. P. Tassios, Ind. Eng. Chem. Res., An equation of state for associating fluids, 35 (11), 4310, 1996.spa
dc.relation.references[96] Z. Li, A. Firoozabadi, Modeling Asphaltene Precipitation by n-Alkanes from Heavy Oils and Bitumens Using Cubic-Plus-Association Equation of State, Energy & Fuels, 24 (2): 1106, 2010.spa
dc.relation.references[97] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548, 2012.spa
dc.relation.references[98] X. Zhang, N. Pedrosa, T. Moorwood, Modeling asphaltene phase behavior: comparison of methods for flow assurance studies, Energy & Fuels, 26(5), 2611-2620, 2012.spa
dc.relation.references[99] M. S. Wertheim, Fluids with highly directional attractive forces. IV. Equilibrium polymerization, J. Stat. Phys. 42 (3-4), 477, 1986.spa
dc.relation.references[100] M.S. Wertheim, Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations, J. Stat. Phys. 35 (1-2), 35, 1984.spa
dc.relation.references[101] M. S. Wertheim, Fluids with highly directional attractive forces. I. Statistical thermodynamics, J. Stat. Phys. 35 (1-2), 19, 1984.spa
dc.relation.references[102] M. S. Wertheim, Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres, J. Chem. Phys., 85 (5), 2929, 1986.spa
dc.relation.references[103] M. S. Wertheim, Thermodynamic perturbation theory of polymerization, J. Chem. Phys. 87 (12), 7323, 1987.spa
dc.relation.references[104] M. S. Wertheim, Fluids with highly directional attractive forces. III. Multiple attraction sites, J. Stat. Phys. 42 (3-4), 459, 1986.spa
dc.relation.references[105] W.G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, SAFT: Equation-of-state solution model for associating fluids, Fluid Phase Equilib., 52, 31, 1989.spa
dc.relation.references[106] W. G. Chapman, G. Jackson, K. E. Gubbins, Phase equilibria of associating fluids: chain molecules with multiple bonding sites, Mol. Phys. 65 (5), 1079, 1988.spa
dc.relation.references[107] S. H. Huang, M. Radosz, Equation of state for small, large, polydisperse, and associating molecules, Ind. Eng. Chem. Res., 29 (11), 2294, 1990.spa
dc.relation.references[108] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 1. Pure Alkanes, Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4737, 1996.spa
dc.relation.references[109] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 2. Binary Mixtures of n-Alkanes, 1-Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4746, 1996.spa
dc.relation.references[110] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, Statistical associating fluid theory for chain molecules with attractive potentials of variable range, J. Chem. Phys., 106 (10), 4168, 1997.spa
dc.relation.references[111] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular‐thermodynamic framework for asphaltene‐oil equilibria, AIChE J., 44 (5), 1188, 1998.spa
dc.relation.references[112] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular thermodynamics of asphaltene precipitation in reservoir fluids, AIChE J., 46 (1), 197, 2000.spa
dc.relation.references[113] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gil-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J., 50 (10), 2552, 2004.spa
dc.relation.references[114] A. A. Alhammadi, F. M. Vargas, W. G. Chapman, Comparison of Cubic-Plus-Association and Perturbed-Chain Statistical Associating Fluid Theory Methods for Modeling Asphaltene Phase Behavior and Pressure–Volume–Temperature Properties, Energy & Fuels, 29, 2864, 2015.spa
dc.relation.references[115] A. Arya, X. Liang, N. von Solms, G. M. Kontogeorgis, Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State, Energy & Fuels, 30(8), 6835, 2016.spa
dc.relation.references[116] D. P. Ting, G. J. Hirasaki, W. G. Chapman, Modeling of asphaltene phase behavior with the SAFT equation of state, Pet. Sci. Technol. 21 (3-4), 647, 2003.spa
dc.relation.references[117] D. L. Gonzalez, D. P. Ting, G. J. Hirasaki, W. G. Chapman, Prediction of asphaltene instability under gas injection with the PC-SAFT equation of state, Energy & Fuels, 19 (4), 1230, 2005.spa
dc.relation.references[118] D. L. Gonzalez, G. J. Hirasaki, J. Creek, W. G. Chapman, Modeling of Asphaltene Precipitation Due to Changes in Composition Using the Perturbed Chain Statistical Associating Fluid Theory Equation of State, Energy & Fuels, 21 (3), 1231, 2007.spa
dc.relation.references[119] S. R. Panuganti, F. M. Vargas, D. L. Gonzalez, A. S. Kurup, W. G. Chapman, PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior, Fuel, 93, 658, 2012.spa
dc.relation.references[120] S. Punnapala, F. M. Vargas, Revisiting the PC-SAFT characterization procedure for an improved asphaltene precipitation prediction, Fuel, 108, 417, 2013.spa
dc.relation.references[121] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib., 12, 235-251, 1983.spa
dc.relation.references[122] S. S. Chen, A. Kreglewski, Ver. Bunsen-Ges., A. Kreglewski, Applications of the augmented van der Waals theory of fluids. I. pure fluids, 81 (10), 1048, 1977.spa
dc.relation.references[123] D. Gonzalez, M. García, O. Diaz, Unusual asphaltene phase behavior of fluids from lake of Maracaibo, Venezuela, SPE 153602-PP, 2012.spa
dc.relation.references[124] O. L. Boshkova, U. K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int J Thermophys, 31, 227-252, 2010.spa
dc.relation.references[125] L. Verlet, J. Weis, Perturbation theory for the thermodynamic properties of simple liquids, Phys. A, 5, 939, 1972.spa
dc.relation.references[126] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988spa
dc.relation.references[127] J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).spa
dc.relation.references[128] Y. Tang, J. Chem. Phys., Direct correlation function for the square-well potential, 127, 164504, 2007.spa
dc.relation.references[129] Y. Tang, Erratum: “Direct correlation function for the square-well potential” [J. Chem. Phys. 127, 164504 (2007)], J. Chem. Phys., 133, 119903, 2010.spa
dc.relation.references[130] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A parametrisation of the direct correlation function for the square-shoulder fluid, Physica A, 108 (2), 141-150, 2010.spa
dc.relation.references[131] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A modified soft-core fluid model for the direct correlation function of the square-shoulder and square-well fluidsPhysica A, 390, 3637-3644, 2011.spa
dc.relation.references[132] S. P. Hlushak, P.A. Hlushak, A. Trokhymchuk, An improved first-order mean spherical approximation theory for the square-shoulder fluid, J. Chem. Phys., 138, 164107, 2013.spa
dc.relation.references[133] M. Khnpour, R. Hashim, Phys. Chem. of Liquids, Pair correlation function from the Barker–Henderson perturbation theory of fluids: the structure of square-well and square-shoulder potentials, 51 (2), 203-217, 2013.spa
dc.relation.references[134] S. B. Yuste, A. Santos, M. López de Haro, Structure of the square-shoulder fluid, Mol. Phys. 109 (6), 987-995, 2011.spa
dc.relation.references[135] W.A. Cañas-Marín, D.L. Gonzalez, B.A. Hoyos, Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5743, 2019.spa
dc.relation.references[136] J. Gross, G. Sadowski, Reply to Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5744, 2019.spa
dc.relation.references[137] M. Sabeti, A. Rahimbakhsh, M. Nikookar, A.H. Mohammadi, Estimation of asphaltene precipitation and equilibrium properties of hydrocarbon fluid phases using the PC-SAFT equation of state, Journal of Molecular Liquids. 209 (2015) 447-460. DOI: 10.1016/j.fluid.2019.04.037.spa
dc.relation.references[138] W. A. Cañas-Marín, D. L. Gonzalez, B. A. Hoyos, A theoretically modified PC- SAFT equation of state for predicting asphaltene onset pressures at low temperatures, Fluid Phase Equilib. 495 (2019) 1-11. DOI: 10.1016/j.fluid.2019.04.037.spa
dc.relation.references[139] B-J. Zhang, Calculating thermodynamic properties from perturbation theory: I. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilib. 1, 154, 1999.spa
dc.relation.references[140] X. Zhou, F.B. Thomas, R.G. Moore, Modelling of Solid Precipitation from Reservoir Fluid, J. Can. Petrol. Tech. 35 (1996) 37-45. DOI:10.2118/96-10-03.spa
dc.relation.references[141] C. Browarzik, D. Browarzik, Modeling the Onset of Asphaltene Flocculation at High Pressure by an Association Model, Petrol. Sci. Tech. 27 (2005) 795-810. DOI:10.1081/LFT-200033121.spa
dc.relation.references[142] P.D. Ting, Thermodynamic Stability and Phase Behavior of Asphaltenes in Oil and of other Highly Asymmetric Mixtures, PhD Thesis, Rice University, 2003.spa
dc.relation.references[143] D.L. Gonzalez, F. M. Vargas, G. J Hirasaki, W. G. Chapman, Modeling Study of CO2-Induced Asphaltene Precipitation. Energy Fuels 22 (2) (2008) 757–762. DOI:10.1021/ef700369u.spa
dc.relation.references[144] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548-1561, 2012. DOI: 10.1080/10916466.2010.506465.spa
dc.relation.references[145] M. I. L. Abutaqiya, C. J. Sisco, F. M. Vargas, A Linear Extrapolation of Normalized Cohesive Energy (LENCE) for Fast and Accurate Prediction of the Asphaltene Onset Pressure, Fluid Phase Equilibria 483 (2019) 52–69. DOI: 10.1016/j.fluid.2018.10.025.spa
dc.relation.references[146] X. Liang, G. M. Kontogeorgis, New Variant of the Universal Constants in the Perturbed Chain-Statistical Associating Fluid Theory Equation of State. Ind. Eng. Chem. Res. 54 (4) (2015) 1373–1384. DOI: 10.1021/ie503925h.spa
dc.relation.references[147] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700. DOI: 10.1063/1.1461360.spa
dc.relation.references[148] B. Saager, R. Hennenberg, J. Fischer, Construction and application of physically based equations of state: Part I. Modification of the BACK equation, Fluid Phase Equilibria 72 (1992) 41-66. DOI: 10.1016/0378-3812(92)85018-4.spa
dc.relation.references[149] B-J, Zhang, S. Liang, Y. Lu, Calculating thermodynamic properties from perturbation theory II. An analytic representation for the square-well chain fluid, Fluid Phase Equilibria 180 (2001) 183–194. DOI: 10.1016/S0378-3812(01)00346-6.spa
dc.relation.references[150] S. Lian, B-J, Zhang, S. Han, W. Hu, Z. Jin, Calculating thermodynamic properties from perturbation theory III. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilibria 200 (2002) 337–348, DOI: 10.1016/S0378-3812(02)00044-4.spa
dc.relation.references[151] G.P. Oskui, M.A. Jumaa, W.A. Abuhaimed, Laboratory Investigation of Asphaltene Precipitation Problems During CO2/Hydrocarbon Injection Project for EOR Application in Kwaiti Reservoirs, SPE 126267 (2009) 1-11. DOI: 10.2118/126267-MS.spa
dc.relation.references[152] M. Hassanvand, B. Shahsavani, A. Anooshe, Study of temperature effect on asphaltene precipitation by visual and quantitative methods, JPTAF, 3 (2012) 8-18. DOI: 10.5897/JPTAF11.035.spa
dc.relation.references[153] A.K.M. Jamaluddin, N. Joshi, F. Iwere, O. Gurpinar, An Investigation of Asphaltene Instability Under Nitrogen Injection, SPE 74393 (2002) 1-10. DOI: 10.2118/74393-MS.spa
dc.relation.references[154] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gill-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J 50 (2004) 2552-2570. DOI: 10.1002/aic.10243.spa
dc.relation.references[155] D.L. Gonzalez, E. Mahmoodaghdam, F.H. Lim, N.B. Joshi, Effects of Gas Additions to Deepwater Gulf of Mexico Reservoir Oil: Experimental Investigation of Asphaltene Precipitation and Deposition. Presented at SPE Annual Technical Conference and Exhibition, 8-10 October, San Antonio, Texas, USA, 2012. DOI: 10.2118/159098-MS.spa
dc.relation.references[156] O.C. Mullins, E.Y. Sheu, A. Hammami, A.G. Marshall, Asphaltene, Heavy Oils, and Petroleomics, Springer, 2007.spa
dc.relation.references[157] M. Tavakkoli, A. Chen, F. M. Vargas, Rethinking the modeling approach for asphaltene precipitation using the PC-SAFT Equation of State, Fluid Phase Equilibria 416 (2016) 120–129, DOI: 10.1016/j.fluid.2015.11.003.spa
dc.relation.references[158] D.L. Gonzalez, Modeling of Asphaltene Precipitation and Deposition Tendency using the PC-SAFT Equation of State, PhD Thesis, Rice University, 2008.spa
dc.relation.references[159] W.A. Burgess, B.A. Bangbade, I.K. Gamwo, Experimental and predictive PC-SAFT modeling results for density and isothermal compressibility for two oil samples at elevated temperatures and pressures, Fuel (2018) 385-395, DOI: 10.1016/j.fuel.2017.12.101.spa
dc.relation.references[160] L.C.C. Marques, J.O. Pereira, A. D. Bueno, V.S. Marques, E.F. Lucas, C.R.E. Mansur, A.L.C. Machado, G. González, A Study of Asphaltene-Resin Interactions, J. Braz.Chem. Soc,. 23 (2012) 1880-1888. DOI: 10.1590/S0103-50532012005000060.spa
dc.relation.references[161] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib. 12 (1983) 235-251. DOI: 10.1016/0378-3812(83)80064-8.spa
dc.relation.references[162] I. Nezbeda, K. Aim, Perturbed hard sphere equations of state of real liquids. II. Effective hard-sphere diameters and residual properties, Fluid Phase Equilib. 17 (1984) 1-18. DOI: 10.1016/0378-3812(84)80010-2.spa
dc.relation.references[163] W. A. Cañas-Marín, B. A. Hoyos, D. L. Gonzalez, Role of the soft- core repulsion upon the prediction of characteristic curves with PC- SAFT, Fluid Phase Equilib. 499 (2019) 112247. DOI: 10.1016/j.fluid.2019.112247.spa
dc.relation.references[164] P. Bahrami, R. Karrat, S. Mahdavi, H. Firoozinia, Prediction of the gas injection effect on the asphaltene phase envelope, Oil & Gas Science and Technology-Rev. IFP Energies Nouvelles 70 (2015) 1075-1086. DOI: 10.2516/ogst/2014037.spa
dc.relation.references[165] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, A temperature-and density-dependent effective diameter for PC- SAFT, Journal of Molecular Liquids, 300 (2020) 112277.spa
dc.relation.references[166] F. del Rio, D.A. Lonngi, The mean distance of closet approach in the theory of liquids, Phys. Letters. 56A (6) (1976) 463-464. DOI: 10.1016/0375-9601(76)90729-5.spa
dc.relation.references[167] S. Gormsen, J.M. Mollerup, Calculation of effective hard sphere diameters from perturbation theory, Fluid Phase Equilib. 65 (1992) 127–135, DOI: 10.1016/0378-3812(92)87012-C.spa
dc.relation.references[168] L. Verlet, J-J. Weis, Equilibrium theory of simple liquids, Phys. Rev. A, 5 (2) (1972) 939-952. DOI: 10.1103/PhysRevA.5.939.spa
dc.relation.references[169] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988.spa
dc.relation.references[170] D. Henderson, E. W. Grundke, Direct correlation function: Hard sphere fluid, J. Chem. Phys. 63 (1975) 601-607. DOI: 10.1063/1.431378.spa
dc.relation.references[171] T. Wang, T. Davis, Molecular theory of simple dense fluid structure and thermodynamics, Chem. Eng. Commun. 4 (1980) 343-352. DOI: 10.1080/00986448008935914.spa
dc.relation.references[172] H. Nikoofard, T. Rezaye, A. H. Amin, The static structure factor of monatomic liquids using an analytical expression for the hard-sphere correlation function, PCAIJ. 8(4) (2013) 126-131. ISSN: 0974 – 7524.spa
dc.relation.references[173] A. M. Bratkovsky, V. G. Vaks, A. V. Trefilov, On the accuracy of the liquid theory approximate methods for calculating the structure factors in liquid metals, J. Phys. F: Met. Phys. 12 (1982) 611-632. DOI: 10.1088/0305-4608/12/4/004,spa
dc.relation.references[174] M. Giordano, D. de Angelis, A. Forlani, The one-component plasma liquid: and equation for the strongly coupled limit. J. Phys. C: Solid State phys. 17 (1984) 4089-4100. DOI: 10.1088/0022-3719/17/23/010.spa
dc.relation.references[175] A. D. Law, D. M. A. Buzza, Determination of interaction potentials of colloidal monolayers from the inversion of pair correlation functions: A two-dimensional predictor-corrector method, J. Chem. Phys. 131 (2009) 094704. DOI: 10.1063/1.3216568.spa
dc.relation.references[176] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44. DOI: 10.1016/S0378-3812(00)00346-0.spa
dc.relation.references[177] R. P. Brent, Chapter 4: An Algorithm with Guaranteed Convergence for Finding a Zero of a Function, Algorithms for Minimization without Derivatives, Englewood Cliffs, NJ: Prentice-Hall, ISBN 0-13-0223, 1973.spa
dc.relation.references[178] P. Ungerer, B. Faissat, C. Leibovici, H. Zhou, E. Behar, G. Morachini, J. P. Courcy, High pressure-high temperature reservoir fluids: investigation of synthetic condensate gases containing a solid hydrocarbon, Fluid Phase Equilib. 111 (1995) 287- 311. DOI: 10.1016/S0301-9322(97)88277-8.spa
dc.relation.references[179] S. Jiu-Xun, simple analytic expression with high precision for Barker-Henderson diameter, Chin. Phys. Lett. 20 (2003) 180-182. DOI: 10.1088/0256-307X/20/2/302.spa
dc.relation.references[180] S. Zarei, F. Feyzi, Boyle temperature from SAFT, PC-SAFT and SAFT-VR equations of state, Journal of Molecular Liquids. 187 (2013) 144-128. DOI: 10.1016/j.molliq.2013.06.010.spa
dc.relation.references[181] X. Liang, B. Maribo-Mogensen, K. Thomsen, W. Yan, G. M. Kontogeorgis, Approach to improve speed of sound calculation within PC-SAFT framework. Ind. Eng. Chem. Res. 51 (2012) 14903-14914. DOI: 10.1021/ie3018127I.spa
dc.relation.references[182] I. Polishuk, P. Privat, J.N., Jaubert, Novel methodology for analysis and evaluation of SAFT-type equation of state, Ind. Eng. Chem. Res. 2013, S2, 13875. DOI: 10.1021/ie4020155.spa
dc.relation.references[183] P. Paricaud, Extension of the BMCSL equation of state for hard spheres to the metastable disordered region: Application to the SAFT approach, J. Chem. Phys. 143 (2015) 044507. DOI:10.1063/1.4927148.spa
dc.relation.references[184] J. Gross, G. Sadowski, Reply to comment on “Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules”, Ind. Eng. Chem. Res. 58 (2019) 5744-5745. DOI: 10.1021/acs.iecr.9b01515.spa
dc.relation.references[185] C.P. Hicks, C.L. Young, Gas-liquid critical properties of binary mixtures, Chem. Rev. 75(2) (1975) 119-175. DOI: 10.1021/cr60294a001.spa
dc.relation.references[186] E. F. Gholoum, G. P. Oskui, M. Salman, Investigation of Asphaltenes Precipitation Onset Conditions for Kuwaiti Reservoirs, SPE Paper 81571, SPE 13th Middle East Oil Show & Conference, Bahrain, 2003. DOI: 10.2118/81571-MS.spa
dc.relation.references[187] F. Nascimento, G.M.N. Costa, S.A.B. Vieira de Melo, A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope, Fluid Phase Equilibria 494 (2019) 74–92. DOI: 10.1016/j.fluid.2015.11.003. 10.1016/j.fluid.2019.04.027.spa
dc.relation.references[188] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Comparison of four different PC- SAFT versions to predict liquid- liquid equilibria of polymer and asphaltene systems at low temperatures, Fluid Phase Equilib. 521 (2020) 112646.spa
dc.relation.references[189] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178.spa
dc.relation.references[190] O.L. Boshkova, U.K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int. J Thermophys. 31 (2010) 227-252. DOI: 10.1007/s10765-010-0727-7. DOI: 10.1007/s10765-010-0727-7.spa
dc.relation.references[191] A.K.M. Jamaluddin, J. Creek, C.S. Kabir, J.D. McFeeden, D. D´Cruz, M.T. Joseph, N. Joshi, B. Ross, A comparison of various laboratory techniques to measure thermodynamic asphaltene instability, SPE 72154 (2001) 1-17. DOI: 10.2118/72154-MS.spa
dc.relation.references[192] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Prediction of extreme asphaltene onset pressures with PC- SAFT for petroleum reservoir fluids, Fluid Phase Equilib. 522 (2020) 112769.spa
dc.relation.references[193] C.H. Whitson, M.R. Brule, Phase Behavior. SPE monograph series vol. 20 (2000).spa
dc.relation.references[194] K.S. Pedersen, P.L. Christensen, Phase behavior of petroleum reservoir fluids. CRC press. Taylor & Francis Group (2007).spa
dc.relation.references[195] C. S. Agger, H. Sorensen, Algorithm for constructing complete asphaltene PT and Px phase diagrams, Ind. Eng. Chem. Res. 57 (1) (2017) 392-400. DOI: 10.1021/acs.iecr.7b04246.spa
dc.relation.references[196] R. R. Boesen, H. Sorensen, K. S. Pedersen, Asphaltene predictions using screening methods and equations of state, SPE 190401-MS (2018) 1-19. DOI: 10.2118/190401-MS.spa
dc.relation.references[197] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (6) (1972) 1197-1203.spa
dc.relation.references[198] M. Robles, M. López de Haro, A. Santos, Note: Equation of state and the freezing point in the hard-sphere model. J. Chem. Phys. 140 (2014) 136101.spa
dc.relation.references[199] H.S. Kang, C.S. Lee, T. Ree, A perturbation theory of classical equilibrium fluids. J. Chem. Phys. 82(1) (1985) 414-423.spa
dc.relation.references[200] C.F. Leibovici, J. Neoschil, A solution of Rachford-Rice equations for multiphase systems, Fluid Phase Equilib. 112 (1995) 217–221. DOI: 10.1016/0378-3812(95)02797-I.spa
dc.relation.references[201] M.L. Michelsen, Calculation of multiphase equilibrium. Comput. Chem. Eng. 18 (7) (1994) 545-550. DOI: 10.1016/0098-1354(93)E0017-4.spa
dc.relation.references[202] M.L. Michelsen, The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9 (1) (1982) 1-19. DOI: 10.1016/0378-3812(82)85001-2.spa
dc.relation.references[203] W.A. Cañas-Marín, J.D. Ortiz-Arango, U.E. Guerrero-Aconcha, Improved two-sided tangent plane initialization and two-phase-split calculations. Ind. Eng. Chem. Res. 46 (2007) 5429-5436. DOI: 10.1021/ie061361b.spa
dc.relation.references[204] M.A. Trebble, A preliminary evaluation of two and three phase flash initialization procedures. Fluid Phase Equilib. 53 (1989) 113–122. DOI: 10.1016/0378-3812(89)80078-0.spa
dc.relation.references[205] M.L. Michelsen, J.M. Mollerup, Thermodynamic models: Fundamentals & computational aspects. Tie-Line Publications (2004).spa
dc.relation.references[206] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Role of the soft-core repulsion upon density-and temperature-dependent effective diameters from two thermodynamic perturbation theories, Fluid Phase Equilib. 528 (2021) 112849. DOI: 10.1016/j.fluid.2020.112849.spa
dc.relation.references[207] D. Henderson, Rowlinson´s concept of an effective hard sphere diameter, J. Chem. Eng. Data. 55(10) (2010) 4507-4508.spa
dc.relation.references[208] B. J. Alder, C.E. Hecht, Studies in Molecular Dynamics. VII. Hard‐Sphere Distribution Functions and an Augmented van der Waals Theory. J. Chem. Phys. 50 (1969) 2032-2037.spa
dc.relation.references[209] D.M. Heyes, Thermodynamics and elastic moduli of fluids with steeply repulsive potentials. J. Chem. Phys. 107(6) (1997) 1963-1969.spa
dc.relation.references[210] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178.spa
dc.relation.references[211] G.A. Parsafar, C. Izanloo, Deriving analytical expressions for the ideal curves and using the curves to obtain the temperature dependence of equation-of-state parameters. Int. J Thermophys. 27 (5) (2006) 1564-1589.spa
dc.relation.references[212] U.K. Deiters, A. Neumaier, Computer simulation of the characteristic curves of pure fluids. J. Chem. Eng. Data. 61 (8) (2016) 2720-2728.spa
dc.relation.references[213] U.K. Deiters, K.M. De Reuck, Guidelines for publication of equations of state-I. Pure fluids. Pure & Appl. Chem., 68 (6) (1997) 1237-1249.spa
dc.relation.references[214] L. Boltzmann, Lectures on gas theory, University of California Press, Berkeley, CA, 1964.spa
dc.relation.references[215] M. Shokouhi, G.A. Parsafar, A new equation of state derived by the statistical mechanical perturbation theory, Fluid Phase Equilib. 264 (2008) 1-11.spa
dc.relation.references[216] C.M. Silva, H. Liu, E.A. Macedo, Comparison between different explicit expressions of the effective hard sphere diameter of Lennard-Jones fluids: Application to self-diffusion coefficients, Ind. Eng. Chem. Res. 37 (1998) 221-227.spa
dc.relation.references[217] U.K. Deiters, The equation of state of soft repulsive spherical molecules, Molecular Physics. 74 (1) (1991) 153-160.spa
dc.relation.references[218] U.K. Deiters, S.L. Randzio, The equation of state for molecules with shifted Lennard-Jones pair potentials, Fluid Phase Equilib. 103 (1995) 199-212.spa
dc.relation.references[219] R.L. Cotterman, B.J., Schwardz, J.M. Prausnitz, Molecular thermodynamics for fluids al low and high densities. Part I. Pure fluids containing small or large molecules, AIChE J. 32 (11) (1986) 1787-1798.spa
dc.relation.references[220] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44.spa
dc.relation.references[221] Y. Tang, B.C.-Y. Liu, On the mean spherical approximation for the Lennard-Jones fluid, Fluid Phase Equilib. 190 (2001) 149-158.spa
dc.relation.references[222] I. Polishuk, Standardized critical point-based numerical solution of statistical association fluid theory parameters: The perturbed chain-statistical association fluid theory equation of state revisited, Ind. Eng. Chem. Res. 53 (2014) 14127-14141.spa
dc.relation.references[223] Ch. Tegeler, R. Span, W. Wagner, A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures up to 1000 MPa. Journal of Physical and chemical Reference Data, 28 (3) (1999) 779-850.spa
dc.relation.references[224] R. Span, E. Lemmon, R. Jacobsen, W. Wagner, A, Yokozeki, A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. Journal of Physical and chemical Reference Data, 29 (6) (2000) 1361-1433.spa
dc.relation.references[225] R. Span, W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and chemical Reference Data, 25 (6) (1996) 1509-1596.spa
dc.relation.references[226] M. Shokouhi, G.A. Parsafar, The effect of steepness of soft-core square-well potential model on some fluid properties. Molecular Physics, 106 (1) (2008) 103-112.spa
dc.relation.references[227] D. Ghie Chae, F.H. Ree, T. Ree, Radial distribution functions and equation of state of the hard-disk fluid, J. Chem. Phys, 50 (4) (1969) 1581-1589.spa
dc.relation.references[228] D. Henderson, A simple equation of state for hard discs, Molecular Physics, 30 (3) (1975) 971-972.spa
dc.relation.references[229] A. Santos, M. López de Haro, S. Bravo Yuste, An accurate and simple equation of state for hard disks, J. Chem. Phys, 103 (11) (1995) 4622-4625.spa
dc.relation.references[230] D.P. Fraser, M.J. Zuckerman, O.G. Mouritsen, Theory and simulations for hard-disk models of binary mixtures of molecules with internal degrees of freedom, Phys. Rev. A, 43 (12) (1991) 6642-6656.spa
dc.relation.references[231] S. Luding, A. Santos. Molecular dynamics and theory for the contact values of the radial distribution functions of hard-disk fluid mixtures, J. Chem. Phys, 121 (17) (1995) 8458-8465.spa
dc.relation.references[232] A. Santos, S.B. Yuste, M. López de Aro, V. Ogarko. Equation of state of polydisperse hard-disk mixtures in the high-density regime, Phys. Rew. E, 96 (2017) 0626031- 06260311.spa
dc.relation.references[233] P.M. Ndiaye, C. Dariva, J.V. Oliveira, F.W. Tavares, Improving the SAFT-EoS by using an effective WCA segmaent diameter, Fluid Phase Equilib., 194-197 (2002) 531-539. [234] S. Beret, J.M. Prausnitz, Perturbed Hard-Chain Theory: An Equation of State for Fluids Containig Small or Large Molecules, AIChE J., 21 (1975) 1123-1132.spa
dc.relation.references[235] C-H. Kim, P. Vimalchand, M.D. Donohue, S.I. Sandler, Local composition model for chainlike molecules: A new simplified version of the perturbed hard chain theory, AIChE J., 32 (10) (1986) 1726-1734.spa
dc.relation.references[236] A. Galindo, P.J. Whitehead, G. Jackson, A.N. Burgess, Predicting the high-pressure phase equilibria of water + n-alkanes using a simplified SAFT theory with transferable intermolecular interaction parameters, J. chem. Phys., 100 (1996) 6781-6792.spa
dc.relation.references[237] C.J. Sisco, M.I.L. Abutaqiya, F.M. Vargas, Cubi-Plus-Chain (CPC). I: A Statistical Association Fluid Theory-Based Chain Modification to the Cubic Equation of State for Large Nonpolar Molecules, Ind. Eng. Chem. Res., 58 (2019) 7341-7351.spa
dc.relation.references[238] M.I.L. Abutaqiya, C.J. Sisco, Y. Khemka, M.A. Safa, E.F. Gholum, A.M. Rashed, R. Gharbi, S. Santhanagopalan, M. AL-Qahtani, E. AL-Kandari, Accurate Modeling of Asphatene Onset Pressure in Crude Oils Under Gas Injection Using Peng-Robinson Equation of State, Energy Fuels, 34 (2020) 4055-4070.spa
dc.relation.references[239] D. Gonzalez, P. Gramin, P. Haldipur, M. Pietrobon, H. Zeng, Experimental study to understand formation damage due to asphaltene deposition in a deepwater field, SPWLA Formation Testing SIG, 2020 Weminar series.spa
dc.relation.references[240] K.J. Leontaritis, G.A. Mansoori, T-S, Jiang, Asphaltene Deposition in Oil Recovery: A Survey of Field Experiences and Field Approaches, Proceeding of International Conference on Advanced Technologies (ICAT), IL, USA, 1986.spa
dc.relation.references[241] H. Belhaj, H.A. Khalifeh, N. Al-Huraibi, Asphaltene Stability in Crude Oil during Production Process, J. Pet. Environ. Biotechnol., 4(3) (2013) 1-5.spa
dc.relation.references[242] F. Gonzalez, Private Communication, 2021.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembTeoría molecular
dc.subject.lembEcuaciones integrales
dc.subject.lembPerturbación (Dinámica cuántica)
dc.subject.proposalPC-SAFTeng
dc.subject.proposalThermodynamic perturbation theoryeng
dc.subject.proposalIntegral equation theoryeng
dc.subject.proposalEffective diametereng
dc.subject.proposalAsphaltene onset pressureeng
dc.subject.proposalSoft repulsioneng
dc.subject.proposalTeoría de perturbaciones termodinámicasspa
dc.subject.proposalTeoría de ecuaciones integralesspa
dc.subject.proposalPotencial intermolecularspa
dc.subject.proposalDiámetro efectivospa
dc.subject.proposalPresión de inicio de asfaltenosspa
dc.titleDevelopment of an equation of state based on thermodynamic perturbation theory (TPT) for mixtures prone to asphaltene precipitationeng
dc.title.translatedDesarrollo de una ecuación de estado fundamentada en teoría de perturbación termodinámica (TPT) para mezclas propensas a la precipitación de asfaltenosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71730033.2021.pdf
Tamaño:
9.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: