Evaluation of cellular aggregate topologies from an Off-lattice model for tissue bioprinting
dc.contributor.advisor | Godoy Silva, Rubén Darío | spa |
dc.contributor.advisor | Orozco Alvarado, Gustavo Adolfo | spa |
dc.contributor.author | Puentes Urrego, Nicolas | spa |
dc.contributor.orcid | Puentes Urrego, Nicolas [0000000201191852] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Químicos y Bioquímicos | spa |
dc.date.accessioned | 2024-10-28T20:22:42Z | |
dc.date.available | 2024-10-28T20:22:42Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | This thesis presents an exploration of cellular dynamics, utilizing various modeling frameworks and simulation techniques. Starting from the analysis of core-centered models, incorporating an approach to contractile stress from polarization vectors and a detailed evaluation of force functions governing attraction-repulsion interactions, the study unravels the intricate cellular behaviors. The integration of protrusive forces, genetic networks, and specific models like Yalla, MecaGen, and Oriola enhances the understanding of these dynamics. Additionally, neighborhood algorithms, such as the Gabriel graph, contribute to a more nuanced investigation. The modeling framework is implemented through the CellAggregate.jl platform. In the simulation framework, built with CUDA technology, aspects like structured data, nearest neighbor calculations, and forces, including polarization vectors, attraction-repulsion, and contractile forces, are addressed. Further discussions focus on the extraction of information related to the fusion of cellular aggregates. Results derived from experimental data, initial conditions, in-silico calibration, and simulation setups are presented. A subsequent analysis of the performance of functions and parameters is conducted. The thesis delves into the stabilization of a single cellular aggregate under extreme simulation conditions, exploring cell loss and mean squared displacement. The fusion of cellular aggregates is examined, including the evaluation of adjusted parameters using the Chi-squared test. The exploration extends to complex aggregates, providing a comprehensive understanding of topological aspects in tissue bioprinting. | eng |
dc.description.abstract | Esta tesis explora la dinámica celular mediante diversos marcos de modelado y técnicas de simulación. Desde el análisis de modelos centrados en el núcleo hasta la evaluación detallada de funciones de fuerza que rigen las interacciones de atracción-repulsión, el estudio desentraña los complejos comportamientos celulares. La integración de fuerzas protrusivas, redes genéticas y modelos específicos como Yalla, MecaGen y Oriola enriquecen la comprensión de estas dinámicas. Además, se exploran algoritmos de vecindad, como el grafo de Gabriel, que contribuyen a una investigación más matizada. La implementación del marco de modelado se realiza a través de la plataforma CellAggregate.jl. En el marco de simulación, construido con tecnología CUDA, se abordan aspectos como datos estructurados, cálculos de vecinos más cercanos y fuerzas que incluyen vectores de polarización, atracción-repulsión y fuerzas contractiles. Otras discusiones se centran en la extracción de información relacionada con la fusión de agregados celulares. Se presentan resultados derivados de datos experimentales, condiciones iniciales, calibración in-silico y configuraciones de simulación. Un análisis del rendimiento de funciones y parámetros sigue a estos resultados. La tesis profundiza en la estabilización de un solo agregado celular bajo condiciones extremas de simulación, explorando la pérdida de células y el desplazamiento cuadrático medio. Se examina la fusión de agregados celulares, con evaluación de parámetros ajustados mediante la prueba de Chicuadrado. La exploración se extiende a agregados complejos, brindando una comprensión integral de los aspectos topológicos en la bioimpresión de tejidos (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestría Ingeniería Quimica | spa |
dc.description.researcharea | Ingeniería de Tejidos, Simulación y Modelamiento Computacional | spa |
dc.format.extent | xii, 109 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87082 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Adenis, L., Gontran, E., Deroulers, C., Grammaticos, B., Juchaux, M., Seksek, O., & Badoual, M. (2020). Experimental andmodeling study of the formation of cell aggregates with differential substrate adhesion. PLoS ONE, 15, https://doi.org/10.1371/journal.pone.0222371. | spa |
dc.relation.references | Albert, R. & Barabási, A. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 4797, https://doi.org/10.1103/revmodphys.74.47 https://doi.org/10.1103/revmodphys.74.47. | spa |
dc.relation.references | Aldana, M., Larralde, H., & Vázquez, B. (2009). Phase transitions in swarming systems: A recent debate. International Journal of Modern Physics B., https://doi.org/10.1142/S0217979209053552 http://arxiv.org/abs/0907.3434http:// dx.doi.org/10.1142/S0217979209053552. | spa |
dc.relation.references | Angelini, T. E., Hannezo, E., Trepat, X., Marquez, M., Fredberg, J. J., & Weitz, D. A. (2011). Glass-like dynamics of collective cell migration. Proceedings of the National Academy of Sciences of the United States of America, 108, 47144719, https://doi.org/10.1073/pnas.1010059108 | spa |
dc.relation.references | Arjoca, S., Robu, A., Neagu, M., & Neagu, A. (2022). Mathematical and computational models in spheroid-based biofabrication. Acta Biomaterialia, https://doi.org/10.1016/j.actbio.2022.07.024. | spa |
dc.relation.references | Ayan, B., Heo, D. N., Zhang, Z., Dey, M., Povilianskas, A., Drapaca, C., & Ozbolat, I. T. (2020). Aspiration-assisted bioprinting for precise positioning of biologics. Science Advances, 6(10), https://doi.org/10.1126/sciadv.aaw5111 | spa |
dc.relation.references | Barhouse, P. S., Andrade, M. J., & Smith, Q. (2022). Home away from home: Bioengineering advancements to mimic the developmental and adult stem cell niche. Frontiers in Chemical Engineering, 4, https://doi.org/10.3389/fceng.2022. 832754. | spa |
dc.relation.references | Barton, D. L., Henkes, S., Weijer, C. J., & Sknepnek, R. (2017). Active vertex model for cell-resolution description of epithelial tissue mechanics. PLoS Computational Biology, 13, https://doi.org/10.1371/journal.pcbi.1005569. | spa |
dc.relation.references | Beaune, G., Sinkkonen, L., GonzalezRodriguez, D., Timonen, J. V. I., & BrochardWyart, F. (2022). Fusion dynamics of hybrid cellmicroparticle aggregates: A jelly pearl model. Langmuir, 38, 52965306, https://doi.org/10.1021/acs.langmuir. 1c02949 | spa |
dc.relation.references | Bechinger, C., Leonardo, R. D., Löwen, H., Reichhardt, C., Volpe, G., & Volpe, G. (2016). Active particles in complex and crowded environments. Reviews of Modern Physics, 88, https://doi.org/10.1103/RevModPhys.88.045006. | spa |
dc.relation.references | Benedetto, D. & Pulvirenti, M. (2009). Scaling limits of large systems of non-linear partial differential equations, (pp. 78077822). Springer Link https://doi.org/10.1007/978-0-387-30440-3_463. | spa |
dc.relation.references | Bertin, E., Droz, M., & Grégoire, G. (2006). Boltzmann and hydrodynamic description for self-propelled particles. Physical Review E, 74(2), https://doi.org/10.1103/physreve.74.022101 https://doi.org/10.1103/physreve.74.022101 | spa |
dc.relation.references | Bertin, E., Droz, M., & Grégoire, G. (2009). Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis. Journal of Physics A, 42, 445001, https://doi.org/10.1088/1751-8113/42/44/445001. | spa |
dc.relation.references | Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J., & Phillips, R. (2005). Transcriptional regulation by the numbers: Models. Current Opinion in Genetics and Development, 15(2), 116–124, https://doi.org/10.1016/j.gde. 2005.02.007. | spa |
dc.relation.references | Boland, T., Mironov, V., Gutowska, A., Roth, E. A., & Markwald, R. R. (2003). Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels. Anatomical Record - Part A Discoveries in Molecular, Cellular, and Evolutionary Biology, 272, 497–502, https://doi.org/10.1002/ar.a.10059. | spa |
dc.relation.references | Brown, P. J., Green, J. F. E., Binder, B. J., & Osborne, J. M. (2021). A rigid body framework for multi-cellular modelling. bioRxiv, https://doi.org/10.1101/2021.02.10.430170 https://doi.org/10.1101/2021.02.10.430170. | spa |
dc.relation.references | Carvalho, J. (2022). A computational model of organism development and carcinogenesis resulting from cells bioelectric properties and communication. Scientific Reports, 12, https://doi.org/10.1038/s41598-022-13281-3. | spa |
dc.relation.references | Chacón, N. & Lara, H. (2022). Pacientes en lista de espera por órganos y tejido corneal en bogotá d.c. https://saludata. saludcapital.gov.co/osb/fichas_tecnicas_osb/enf-cronicas/OSB_enfermedades_cronicas_organos.pd | spa |
dc.relation.references | Chaté, H., Ginelli, F., Grégoire, G., Peruani, F., Raynaud, F., & Modeling, F. R. (2008). collective motion: variations on the vicsek model. The European Physical Journal B: Condensed Matter and Complex Systems, 64, 451–456, https: //doi.org/10.1140/epjb/e2008-00275-9ï https://hal.science/hal-01053505. | spa |
dc.relation.references | Chen, N., Glazier, J. A., Izaguirre, J. A., & Alber, M. S. (2007). A parallel implementation of the cellular potts model for simulation of cell-based morphogenesis. Computer Physics Communications, 176, 670–681, https://doi.org/10.1016/j. cpc.2007.03.007. | spa |
dc.relation.references | Chu, Y. S., Dufour, S., Thiery, J. P., Perez, E., & Pincet, F. (2005). Johnson-kendall-roberts theory applied to living cells. Physical Review Letters, 94, https://doi.org/10.1103/PhysRevLett.94.028102. | spa |
dc.relation.references | Conway, J. H. & A., S. N. J. (1999). Sphere packings, lattices, and groups. Springer. | spa |
dc.relation.references | Cooper, F., et al. (2020). Chaste: Cancer, heart and soft tissue environment. Journal of Open Source Software, 5, 1848, https://doi.org/10.21105/joss.01848. | spa |
dc.relation.references | Coulier, A. (2021). Multiscale Modeling in Systems Biology: Methods and Perspectives. Digital comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology. Uppsala University https://doi.org/10.33063/diva-442412 | spa |
dc.relation.references | Cover, T. M. & Hart, P. E. (1952). Approximate formulas for the information transmitted by a discrete communication channel. IEEE Transactions on Information Theory, 24(1), 335–342. | spa |
dc.relation.references | Cristea, A., Horhat, R., & Neagu, A. (2020). Lattice boltzmann simulations of morphogenesis in artificial tissues. Romanian Journal of Physics. | spa |
dc.relation.references | Cui, H., Tronser, T., Wang, X., Wesslowski, J., Davidson, G., Popova, A. A., & Levkin, P. A. (2023). Highthroughput formation of miniaturized cocultures of 2d cell monolayers and 3d cell spheroids using droplet microarray. Droplet, 2, https://doi.org/10.1002/dro2.39. | spa |
dc.relation.references | Cui, H., et al. (2021). Assembly of multi-spheroid cellular architectures by programmable droplet merging. Advanced Materials, 33, https://doi.org/10.1002/adma.202006434. | spa |
dc.relation.references | Dahiya, P., Caggioni, M., & Spicer, P. T. (2016). Arrested coalescence of viscoelastic droplets: Polydisperse doublets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, https://doi.org/10.1098/rsta.2015.0132 | spa |
dc.relation.references | Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3d bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12, https://doi.org/10.1038/s41467-021-21029-2 | spa |
dc.relation.references | Dan, D., Mueller, C., Chen, K., & Glazier, J. A. (2005). Solving the advection-diffusion equations in biological contexts using the cellular potts model. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72, https://doi.org/10.1103/PhysRevE.72.041909. | spa |
dc.relation.references | Davidson, E. H. & Levine, M. S. (2008). Properties of developmental gene regulatory networks www.nasonline.org/SACKLER_Gene_Networks | spa |
dc.relation.references | de Salud, I. N. (2022). Red de Donación y Trasplantes en Colombia no se detiene. Instituto Nacional de Salud https: //www.ins.gov.co/Noticias/Paginas/Red-de-Donaci%C3%B3n-y-Trasplantes-en-Colombia-no-se-detiene.aspx | spa |
dc.relation.references | Decarli, M. C., et al. (2021). Cell spheroids as a versatile research platform: Formation mechanisms, high throughput production, characterization and applications. Biofabrication, 13, https://doi.org/10.1088/1758-5090/abe6f2 | spa |
dc.relation.references | Delile, J., Herrmann, M., Peyriéras, N., & Doursat, R. (2017). A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation. Nature Communications, 8, https://doi.org/10.1038/ncomms13929. | spa |
dc.relation.references | Douezan, S. & Brochard-Wyart, F. (2012). Active diffusion-limited aggregation of cells. Soft Matter, 8, 784–788, https: //doi.org/10.1039/c1sm06399e | spa |
dc.relation.references | Drasdo, D., Buttenschön, A., & Liedekerke, P. V. (2018). Agent-based lattice models of multicellular systems: Numerical methods, implementation, and applications. Elsevier Inc. | spa |
dc.relation.references | Eke, G., et al. (2022). Cell aggregate assembly through microengineering for functional tissue emergence. Cells, 11(9), 1394, https://doi.org/10.3390/cells11091394. | spa |
dc.relation.references | Elgeti, J., Winkler, R. G., & Gompper, G. (2015). Physics of microswimmerssingle particle motion and collective behavior: a review. Reports on Progress in Physics, 78, 056601, https://doi.org/10.1088/0034-4885/78/5/056601. | spa |
dc.relation.references | Fleming, P. A., Argraves, W. S., Gentile, C., Neagu, A., Forgacs, G., & Drake, C. J. (2010). Fusion of uniluminal vascular spheroids: A model for assembly of blood vessels. Developmental Dynamics, 239, 398–406, https://doi.org/10.1002/dvdy.22161. | spa |
dc.relation.references | Flenner, E., Janosi, L., Barz, B., Neagu, A., Forgacs, G., & Kosztin, I. (2012). Kinetic monte carlo and cellular particle dynamics simulations of multicellular systems. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 85, https://doi.org/10.1103/PhysRevE.85.031907. | spa |
dc.relation.references | Flenner, E., Marga, F., Neagu, A., Kosztin, I., & Forgacs, G. (2008). Relating biophysical properties across scales. Current Topics in Developmental Biology, 81, 461–483, https://doi.org/10.1016/S0070-2153(07)81016-7. | spa |
dc.relation.references | Germann, P., Marin-Riera, M., & Sharpe, J. (2019). ya||a: Gpu-powered spheroid models for mesenchyme and epithelium. Cell Systems, 8, 261–266.e3, https://doi.org/10.1016/j.cels.2019.02.007 | spa |
dc.relation.references | Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M., & Macklin, P. (2018). Physicell: An open source physics-based cell simulator for 3-d multicellular systems. PLoS Computational Biology, 14, https://doi.org/10.1371/journal.pcbi.1005991. | spa |
dc.relation.references | Ghosh, A. & Zhou, H. X. (2020). Determinants for fusion speed of biomolecular droplets. Angewandte Chemie - International Edition, 59, 20837–20840, https://doi.org/10.1002/anie.202006711. | spa |
dc.relation.references | Gillespie, D. T., Hellander, A., & Petzold, L. R. (2013). Perspective: Stochastic algorithms for chemical kinetics. Journal of Chemical Physics, 138, https://doi.org/10.1063/1.4801941. | spa |
dc.relation.references | Ginelli, F. & Chaté, H. (2010). Relevance of metric-free interactions in flocking phenomena. Physical Review Letters, 105, https://doi.org/10.1103/physrevlett.105.168103. | spa |
dc.relation.references | Glazier, J. A. & Popp, J. (2007). Ii.1 magnetization to morphogenesis: Ab rief historyofthe glazier-graner-hogeweg model. Mathematics and Biosciences in Interaction,, (pp. 79–106). https://wiki.santafe.edu/images/c/c2/Glazier_proofsv2.pdf. | spa |
dc.relation.references | Gord, A., Holmes, W. R., Dai, X., & Nie, Q. (2014). Computational modelling of epidermal stratification highlights the importance of asymmetric cell division for predictable and robust layer formation. Journal of the Royal Society Interface,11, https://doi.org/10.1098/rsif.2014.0631. | spa |
dc.relation.references | Gorochowski, T. E., et al. (2012). Bsim: An agent-based tool for modeling bacterial populations in systems and synthetic biology. PLoS ONE, 7, https://doi.org/10.1371/journal.pone.0042790. | spa |
dc.relation.references | Graudenzi, A., Caravagna, G., Matteis, G. D., & Antoniotti, M. (2014). Investigating the relation between stochastic differentiation, homeostasis and clonal expansion in intestinal crypts via multiscale modeling. PLoS ONE, 9, https: //doi.org/10.1371/journal.pone.0097272. | spa |
dc.relation.references | Grosser, S., et al. (2021). Cell and nucleus shape as an indicator of tissue fluidity in carcinoma. Physical Review X, 11(1), https://doi.org/10.1103/physrevx.11.011033 https://doi.org/10.1103/physrevx.11.011033. | spa |
dc.relation.references | Grégoire, G. & Chaté, H. (2004). Onset of collective and cohesive motion. Physical Review Letters, 92(2), https://doi.org/10.1103/physrevlett.92.025702 https://doi.org/10.1103/physrevlett.92.025702 | spa |
dc.relation.references | Guo, M., et al. (2014). Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell, 158, 822–832, https://doi.org/10.1016/j.cell.2014.06.051 | spa |
dc.relation.references | Hajdu, Z., Mironov, V., Mehesz, A. N., Norris, R. A., Markwald, R. R., & Visconti, R. P. (2010). Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation. Journal of Tissue Engineering and Regenerative Medicine, 4, 659–664, https://doi.org/10.1002/term.291 | spa |
dc.relation.references | Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference and prediction. Springer, 2 edition http://www-stat.stanford.edu/~tibs/ElemStatLearn/. | spa |
dc.relation.references | Hoehme, S. & Drasdo, D. (2010). A cell-based simulation software for multi-cellular systems. Bioinformatics, 26, 2641–2642, https://doi.org/10.1093/bioinformatics/btq437. | spa |
dc.relation.references | Imani, R., Emami, S. H., Fakhrzadeh, H., Baheiraei, N., & Sharifi, A. M. (2012). Optimization and comparison of two different 3d culture methods to prepare cell aggregates as a bioink for organ printing. Biocell, 36, 37–45, https://doi.org/10.32604/biocell.2012.36.037. | spa |
dc.relation.references | Infantil, F. C. (2021). Actualmente en colombia, más del 20esperando un trasplante https://cardioinfantil.org/noticias/ actualmente-en-colombia-mas-del-20-de-los-pacientes-fallecen-esperando-un-trasplante/. | spa |
dc.relation.references | Newman, T. (2005). Modeling multicellular systems using subcellular elements. Mathematical Biosciences and Engineering, 2(3), 613624, https://doi.org/10.3934/mbe.2005.2.61 | spa |
dc.relation.references | Jakab, K., et al. (2008a). Relating cell and tissue mechanics: Implications and applications. Developmental Dynamics, 237, 2438–2449, https://doi.org/10.1002/dvdy.21684. | spa |
dc.relation.references | Jakab, K., Neagu, A., Mironov, V., Markwald, R. R., & Forgács, G. (2004). Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Sciences of the United States of America, 101, 28642869, https://doi.org/10.1073/pnas.0400164101. | spa |
dc.relation.references | Jakab, K., et al. (2008b). Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Engineering - Part A., 14, 413–421, https://doi.org/10.1089/tea.2007.0173. | spa |
dc.relation.references | Jakab, K., Norotte, C., Marga, F., Murphy, K., Vunjak-Novakovic, G., & Forgacs, G. (2010). Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2, https://doi.org/10.1088/1758-5082/2/2/022001. | spa |
dc.relation.references | Jakab, K. R., Damon, B., Neagu, A., Jakab, K., Damon, B., Kachurin, A., & Forgacs, G. (2006). Three-dimensional tissue constructs built by bioprinting. Biorheology, 43, 509–513 https://www.researchgate.net/publication/6876030 | spa |
dc.relation.references | Jeong, Y., Tin, A., & Irudayaraj, J. (2022). Flipped well-plate hanging-drop technique for growing three-dimensional tumors. Frontiers in Bioengineering and Biotechnology, 10, https://doi.org/10.3389/fbioe.2022.898699. | spa |
dc.relation.references | Kang, S., Kahan, S., McDermott, J., Flann, N. S., & Shmulevich, I. (2014). Biocellion: accelerating computer simulation of multicellular biological system models. Bioinformatics, 30, 31013108, https://doi.org/10.1093/bioinformatics/btu498. | spa |
dc.relation.references | Kanj, I. A., Perkoviťc, P., & Xia, G. (2008). Local construction of near-optimal power spanners for wireless ad-hoc networks. IEEE Transactions on Mobile Computing, 8. | spa |
dc.relation.references | Karlebach, G. & Shamir, R. (2008). Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology, 9(10), 770–780, https://doi.org/10.1038/nrm2503. | spa |
dc.relation.references | Kosheleva, N. V., et al. (2020). Cell spheroid fusion: beyond liquid drops model. Scientific Reports, 10, https://doi.org/10.1038/s41598-020-69540-8. | spa |
dc.relation.references | Kosztin, I., Vunjak-Novakovic, G., & Forgacs, G. (2012). Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 84, 1791–1805, https://doi.org/10.1103 RevModPhys.84.1791. | spa |
dc.relation.references | Koudan, E. V., Bulanova, E. A., Pereira, F. D., Parfenov, V. A., Kasyanov, V. A., Hesuani, Y. D., & Mironov, V. A. (2016). Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3d bioprinter. International Journal of Bioprinting, 2, 45–52, https://doi.org/10.18063/IJB.2016.01.007. | spa |
dc.relation.references | Koudan, E. V., et al. (2022). Correlation of the regenerative potential of dermal fibroblasts in 2d culture with the biological properties of fibroblast-derived tissue spheroids. Cell and Tissue Research, 390, 453–464, https://doi.org/10.1007/s00441-022-03690-1. | spa |
dc.relation.references | Krapivsky, P. L., Redner, S., & Leyvraz, F. (2000). Connectivity of growing random networks. Physical Review Letters, 85(21),46294632, https://doi.org/10.1103/physrevlett.85.4629. | spa |
dc.relation.references | Köster, T., Henning, P., & Uhrmacher, A. M. (2019). Potential based, spatial simulation of dynamically nested particles. BMC Bioinformatics, 20, https://doi.org/10.1186/s12859-019-3092-y | spa |
dc.relation.references | Levato, R., Visser, J., Planell, J. A., Engel, E., Malda, J., & Mateos-Timoneda, M. A. (2014). Biofabrication of tissue constructs by 3d bioprinting of cell-laden microcarriers. Biofabrication, 6, https://doi.org/10.1088/1758-5082/6/3/035020. | spa |
dc.relation.references | Lewis, M. A., Maini, P. K., & Petrovskii, S. V., Eds. (2013). Dispersal, Individual Movement and Spatial Ecology, volume 2071. Springer Berlin Heidelberg http://link.springer.com/10.1007/978-3-642-35497-7. | spa |
dc.relation.references | Lin, H., Li, Q., & Lei, Y. (2017). Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks. Biofabrication, 9, https://doi.org/10.1088/1758-5090/aa663b. | spa |
dc.relation.references | Lötstedt, P. (2021). Derivation of continuum models from discrete models of mechanical forces in cell populations. Journal of Mathematical Biology, 83, https://doi.org/10.1007/s00285-021-01697-w | spa |
dc.relation.references | Maestri, S., Merelli, E., & Pettini, M. (2022). Agent-based models for detecting the driving forces of biomolecular interactions. Scientific Reports, 12, https://doi.org/10.1038/s41598-021-04205-8. | spa |
dc.relation.references | Maignan, L. & Gruau, F. (2011). Gabriel graphs in arbitrary metric space and their cellular automaton for many grids. ACM Transactions on Autonomous and Adaptive Systems, 6, https://doi.org/10.1145/1968513.1968515. | spa |
dc.relation.references | Maritan, S. M., Lian, E. Y., & Mulligan, L. M. (2017). An efficient and flexible cell aggregation method for 3d spheroid production. Journal of Visualized Experiments, 2017, https://doi.org/10.3791/55544. | spa |
dc.relation.references | Marmottant, P., Mgharbel, A., & Stirbat, T. V. (2021). Physics of multicellular spheroids: a model for cell biology and complex fluids https://ilm.univ-lyon1.fr/index.php?option=com_content&view=article&id=134&act=157. | spa |
dc.relation.references | Martínez, R., Alarcón, F., Rodriguez, D., Aragonés, J. I., & Valeriani, C. (2018). Collective behavior of vicsek particles without and with obstacles. The European Physical Journal E, 41, https://doi.org/10.1140/epje/i2018-11706-8. | spa |
dc.relation.references | Maspero, D., et al. (2019). The influence of nutrients diffusion on a metabolism-driven model of a multi-cellular system. Fundamenta Informaticae, 171, 279–295, https://doi.org/10.3233/FI-2020-1883. | spa |
dc.relation.references | Mathias, S., Coulier, A., Bouchnita, A., & Hellander, A. (2020). Impact of force function formulations on the numerical simulation of centre-based models. Bulletin of Mathematical Biology, 82, https://doi.org/10.1007/s11538-020-00810-2. | spa |
dc.relation.references | Mathias, S., Coulier, A., & Hellander, A. (2022). Cbmos: a gpu-enabled python framework for the numerical study of center-based models. BMC Bioinformatics, 23, https://doi.org/10.1186/s12859-022-04575-4. | spa |
dc.relation.references | McCune, M., Shafiee, A., Forgacs, G., & Kosztin, I. (2014). Predictive modeling of post bioprinting structure formation. Soft Matter, 10, 1790–1800, https://doi.org/10.1039/c3sm52806e. | spa |
dc.relation.references | Melchert, O. (2013). Percolation thresholds on planar euclidean relative-neighborhood graphs. Physical Review E, 87, https://doi.org/10.1103/physreve.87.042106. | spa |
dc.relation.references | Mirams, G. R., et al. (2013). Chaste: An open source c++ library for computational physiology and biology. PLoS Computational Biology, 9, https://doi.org/10.1371/journal.pcbi.1002970. | spa |
dc.relation.references | Mironov, V., Visconti, R. P., Kasyanov, V., Forgacs, G., Drake, C. J., & Markwald, R. R. (2009). Organ printing: Tissue spheroids as building blocks. Biomaterials, 30, 2164–2174, https://doi.org/10.1016/j.biomaterials.2008.12.084. | spa |
dc.relation.references | Molina, M. I., et al. (2018). Principales causas de negativa familiar a la donación de órganos y tejidos: 10 años de experiencia en un centro latinoamericano. Nefrología, 38, 225–227, https://doi.org/10.1016/j.nefro.2017.05.004 | spa |
dc.relation.references | Nagy, M., Daruka, I., & Vicsek, T. (2007). New aspects of the continuous phase transition in the scalar noise model (snm) of collective motion. Physica A: Statistical Mechanics and Its Applications, 373, 445454, https://doi.org/10.1016/j.physa.2006.05.035 https://doi.org/10.1016/j.physa.2006.05.035. | spa |
dc.relation.references | Nava-Sedeño, J. M., VoSS-Böhme, A., Hatzikirou, H., Deutsch, A., & Peruani, F. (2020). Modelling collective cell motion: Are on- and off-lattice models equivalent?: Equivalent on- and off-lattice models. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, https://doi.org/10.1098/rstb.2019.0378 | spa |
dc.relation.references | Neagu, A., Jakab, K., Jamison, R., & Forgacs, G. (2005). Role of physical mechanisms in biological self-organization. Physical Review Letters, 95, https://doi.org/10.1103/PhysRevLett.95.178104 | spa |
dc.relation.references | Noppe, A. (2019). Simulating the collective behaviour of a monolayer of epithelial cells using a cellular Potts model. PhD thesis, University of Queensland. | spa |
dc.relation.references | Okuda, S., Miura, T., Inoue, Y., Adachi, T., & Eiraku, M. (2018). Combining turing and 3d vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching. Scientific Reports, 8, https://doi. org/10.1038/s41598-018-20678-6. | spa |
dc.relation.references | Omasa, T., Onitsuka, M., & Kim, W.-D. (2010). Cell engineering and cultivation of chinese hamster ovary (cho) cells. Current Pharmaceutical Biotechnology, 11, 233–240. | spa |
dc.relation.references | Ongenae, S., Cuvelier, M., Vangheel, J., Ramon, H., & Smeets, B. (2021). Activity-induced fluidization and arrested coalescence in fusion of cellular aggregates. Frontiers in Physics, 9, https://doi.org/10.3389/fphy.2021.649821. | spa |
dc.relation.references | Oriola, D., Alert, R., & Casademunt, J. (2017). Fluidization and active thinning by molecular kinetics in active gels. Physical Review Letters, 118, https://doi.org/10.1103/PhysRevLett.118.088002. | spa |
dc.relation.references | Oriola, D., et al. (2022). Arrested coalescence of multicellular aggregates. Soft Matter, https://doi.org/10.1039/D2SM00063F http://xlink.rsc.org/?DOI=D2SM00063F. | spa |
dc.relation.references | Oswald, L., Grosser, S., Smith, D. M., & Käs, J. A. (2017). Jamming transitions in cancer. Journal of Physics D: Applied Physics, 50(48), https://doi.org/10.1088/1361-6463/aa8e83. | spa |
dc.relation.references | Palaniappan, S. K., Yachie-Kinoshita, A., & Ghosh, S. (2018). Chapter 20287 - computational systems biology. Encyclopedia of Bioinformatics and Computational Biology, (pp. 1–7)., https://doi.org/10.1016/j http://doi.org/10.1016/j | spa |
dc.relation.references | Pawar, A. B., Caggioni, M., Hartel, R. W., & Spicer, P. T. (2012). Arrested coalescence of viscoelastic droplets with internal microstructure. Faraday Discussions, 158, 341–350, https://doi.org/10.1039/c2fd20029e. | spa |
dc.relation.references | Peruani, F., KlauSS, T., Deutsch, A., & VossBöhme, A. (2011). Traffic jams, gliders, and bands in the quest for collective motion of self-propelled particles. Physical Review Letters, 106, https://doi.org/10.1103/physrevlett.106.128101. | spa |
dc.relation.references | Peskin, C. S., Odell, G. M., & Oster, G. F. (1993). Cellular motions and thermal fluctuations: the brownian ratchet. Biophysical Journal, 65, 316–324, https://doi.org/10.1016/S0006-3495(93)81035 | spa |
dc.relation.references | Peter, I. S. & Davidson, E. H. (2009). Modularity and design principles in the sea urchin embryo gene regulatory network. FEBS Letters, 583(24), 3948–3958, https://doi.org/10.1016/j.febslet.2009.11.060. | spa |
dc.relation.references | Petridou, N. I., Grigolon, S., Salbreux, G., Hannezo, E., & Heisenberg, C. P. (2019). Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical wnt signalling. Nature Cell Biology, 21, 169–178, https://doi.org/10.1038/s41556-018-0247-4. | spa |
dc.relation.references | Pokluda, O., Bellehumeur, C. T., & Vlachopoulos, J. (1997). Modification of frenkels model for sintering. AIChE Journal, 43(12), 32533256, https://doi.org/10.1002/aic.690431213 | spa |
dc.relation.references | Polychronopoulos, N. D., Benos, L., & Vlachopoulos, J. (2023). Mathematical modelling of coalescence of viscous particles: An overview. Canadian Journal of Chemical Engineering, https://doi.org/10.1002/cjce.24910. | spa |
dc.relation.references | Pourquié, O. (2003). The segmentation clock: Converting embryonic time into spatial pattern. Science, 301(5631), 328–330, https://doi.org/10.1126/science.1085887. | spa |
dc.relation.references | Purcell, E. M. (1977). Life at low reynolds number. American Journal of Physics, 45, 3–11, https://doi.org/10.1119/1.10903 | spa |
dc.relation.references | Pönisch, W. & Zaburdaev, V. (2018). Relative distance between tracers as a measure of diffusivity within moving aggregates. European Physical Journal B, 91, https://doi.org/10.1140/epjb/e2017-80347-5. | spa |
dc.relation.references | Qian, J. X., Wang, J., & Lu, Y. Q. (2023). Motional consensus of self-propelled particles. Scientific reports, 13, 8169, https://doi.org/10.1038/s41598-023-35238-w. | spa |
dc.relation.references | Ranft, J., Basan, M., Elgeti, J., Joanny, J.-F., Prost, J., & Jülicher, F. (2010). Fluidization of tissues by cell division and apoptosis. Proceedings of the National Academy of Sciences, 107(49), 2086320868, https://doi.org/10.1073/pnas.1011086107. | spa |
dc.relation.references | Richmond, P., Walker, D., Coakley, S., & Romano, D. (2010). High performance cellular level agent-based simulation with flame for the gpu. Briefings in Bioinformatics, 11, 334–347, https://doi.org/10.1093/bib/bbp073 | spa |
dc.relation.references | Robu, A., Aldea, R., Munteanu, O., Neagu, M., Stoicu-Tivadar, L., & Neagu, A. (2012). Computer simulations of in vitro morphogenesis. BioSystems, 109, 430–443, https://doi.org/10.1016/j.biosystems.2012.06.002. | spa |
dc.relation.references | Robu, A., Mironov, V., & Neagu, A. (2019). Using sacrificial cell spheroids for the bioprinting of perfusable 3d tissue and organ constructs: A computational study. Computational and Mathematical Methods in Medicine, 2019, https://doi.org/10.1155/2019/7853586. | spa |
dc.relation.references | Rodríguez, D. A. S., Ramos-Murillo, A. I., & Godoy-Silva, R. D. (2021). Tissue engineering, 3d-bioprinting, morphogenesis modelling and simulation of biostructures: Relevance, underpinning biological principles and future trends. Bioprinting, 24,https://doi.org/10.1016/j.bprint.2021.e00171. | spa |
dc.relation.references | Rudge, T. J., Steiner, P. J., Phillips, A., & Haseloff, J. (2012). Computational modeling of synthetic microbial biofilms. ACS Synthetic Biology, 1, 345–352, https://doi.org/10.1021/sb300031n. | spa |
dc.relation.references | Scianna, M. & Preziosi, L. (2013). Cellular potts models multiscale extensions and Biological Applications. Chapman and Hall/CRC. | spa |
dc.relation.references | Sego, T. J., Kasacheuski, U., Hauersperger, D., Tovar, A., & Moldovan, N. I. (2017). A heuristic computational model of basic cellular processes and oxygenation during spheroid-dependent biofabrication. Biofabrication, 9, https://doi.org/10.1088/1758-5090/aa6ed4. | spa |
dc.relation.references | Shaebani, M. R., Wysocki, A., Winkler, R. G., Gompper, G., & Rieger, H. (2020). Computational models for active matter. Nature Reviews Physics, 2, 181199, https://doi.org/10.1038/s42254-020-0152-1. | spa |
dc.relation.references | Shafiee, A., McCune, M., Forgacs, G., & Kosztin, I. (2015). Post-deposition bioink self-assembly: A quantitative study. Biofabrication, 7, https://doi.org/10.1088/1758-5090/7/4/045005. | spa |
dc.relation.references | Shanjani, Y., Pan, C. C., Elomaa, L., & Yang, Y. (2015). A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication, 7, https://doi.org/10.1088/1758-5090/7/4/045008. | spa |
dc.relation.references | Smith, K. (2013). Precalculus: a functional approach to graphing and problem solving. Jones and Bartlett Publishers. | spa |
dc.relation.references | Somogyi, E. (2017). A modeling and simulation language for biological cells with coupled mechanical and chemical processes. arXiv.org http://arxiv.org/abs/1701.00317. | spa |
dc.relation.references | Song, Y., Yang, S., & Lei, J. (2019). Paracells: A gpu architecture for cell-centered models in computational biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16, 994–1006, https://doi.org/10.1109/TCBB. 2018.2814570. | spa |
dc.relation.references | StarruSS, J., Back, W. D., Brusch, L., & Deutsch, A. (2014). Morpheus: A user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics, 30, 1331–1332, https://doi.org/10.1093/bioinformatics/btt772. | spa |
dc.relation.references | Steinberg, M. S. (2007). Differential adhesion in morphogenesis: a modern view. Current Opinion in Genetics and Development, 17, 281–286, https://doi.org/10.1016/j.gde.2007.05.002. | spa |
dc.relation.references | Struber, A., et al. (2022). Low-cost devices for three-dimensional cell aggregation, real-time monitoring microscopy, microfluidic immunostaining, and deconvolution analysis. Bioengineering, 9, https://doi.org/10.3390/bioengineering9020060. | spa |
dc.relation.references | Sun, S. X., Lan, G., & Atilgan, E. (2008). Chapter 23 stochastic modeling methods in cell biology. Methods in Cell Biology, 89, 601–621, https://doi.org/10.1016/S0091-679X(08)00623-7. | spa |
dc.relation.references | Sussman, D. M. (2017). cellgpu: Massively parallel simulations of dynamic vertex models. Computer Physics Communications, 219, 400–406, https://doi.org/10.1016/j.cpc.2017.06.001. | spa |
dc.relation.references | Swat, M. H., Thomas, G. L., Belmonte, J. M., Shirinifard, A., Hmeljak, D., & Glazier, J. A. (2012). Multi-Scale Modeling of Tissues Using CompuCell3D, volume 110. Academic Press Inc. | spa |
dc.relation.references | Sütterlin, T., Kolb, C., Dickhaus, H., Jäger, D., & Grabe, N. (2012). Bridging the scales: semantic integration of quantitative sbml in graphical multi-cellular models and simulations with episim and copasi. Bioinformatics, 29(2), 223229, https://doi.org/10.1093/bioinformatics/bts659 https://doi.org/10.1093/bioinformatics/bts659. | spa |
dc.relation.references | Tapia, J. J. & D’Souza, R. M. (2011). Parallelizing the cellular potts model on graphics processing units. Computer Physics Communications, 182, 857–865, https://doi.org/10.1016/j.cpc.2010.12.011 | spa |
dc.relation.references | Theriot, J. A. (2000). The polymerization motor. Traffic, 1, 19–28. | spa |
dc.relation.references | Thomas, G. L., Mironov, V., Nagy-Mehez, A., & Mombach, J. C. (2014). Dynamics of cell aggregates fusion: Experiments and simulations. Physica A: Statistical Mechanics and its Applications, 395, 247–254, https://doi.org/10.1016/j.physa. 2013.10.037. | spa |
dc.relation.references | Verdier, C. & Brizard, M. (2002). Understanding droplet coalescence and its use to measure interfacial tension. Rheologica Acta, 41, 514–523, https://doi.org/10.1007/s00397-002-0249-8ï https://hal.science/hal-00322106. | spa |
dc.relation.references | Vicsek, T., Czirók, A., BenJacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75(6), 12261229, https://doi.org/10.1103/physrevlett.75.1226 https: //doi.org/10.1103/physrevlett.75.1226. | spa |
dc.relation.references | Wejchert, J., Weaire, D., & Kermode, J. P. (1986). Monte carlo simulation of the evolution of a two-dimensional soap froth. Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, 53, 15–24, https://doi.org/10.1080/13642818608238968. | spa |
dc.relation.references | Wolgemuth, C. W. & Sun, S. X. (2020). Active random forces can drive differential cellular positioning and enhance motor-driven transport. Molecular Biology of the Cell, 31(20), 22832288, https://doi.org/10.1091/mbc.e19-11-0629. | spa |
dc.relation.references | Yang, X., Mironov, V., & Wang, Q. (2012). Modeling fusion of cellular aggregates in biofabrication using phase field theories. Journal of Theoretical Biology, 303, 110–118, https://doi.org/10.1016/j.jtbi.2012.03.003 | spa |
dc.relation.references | Yoo, E., Khatri, S., & Blanchette, F. (2020). Hydrodynamic forces on randomly formed marine aggregates. Physical Review Fluids, 5, https://doi.org/10.1103/PhysRevFluids.5.044305. | spa |
dc.relation.references | Yu, C. & Yang, B. (2014). Parallelizing the cellular potts model on gpu and multi-core cpu. an opencl cross-platform study. International Joint Conference on Computer Science and Software Engineering, (pp. 117–122). https://doi.org/10.1109/JCSSE.2014.6841853. | spa |
dc.relation.references | Zeng, Y., et al. (2023). Miniaturizing chemistry and biology using droplets in open systems. Nature Reviews Chemistry, https://doi.org/10.1038/s41570-023-00483-0. | spa |
dc.relation.references | Zhao, J., Naveed, H., Kachalo, S., Cao, Y., Tian, W., & Liang, J. (2013). Dynamic mechanical finite element model of biological cells for studying cellular pattern formation. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, (pp. 4517–4520)., https://doi.org/10.1109/EMBC.2013.6610551. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 610 - Medicina y salud | spa |
dc.subject.decs | Bioimpresión | spa |
dc.subject.decs | Bioprinting | eng |
dc.subject.decs | Agregación Celular | spa |
dc.subject.decs | Cell Aggregation | eng |
dc.subject.lemb | ALGORITMOS (COMPUTADORES) | spa |
dc.subject.lemb | Computer algorithms | eng |
dc.subject.lemb | ALGORITMOS GENETICOS | spa |
dc.subject.lemb | Genetic algorithms | eng |
dc.subject.proposal | Center-Based Models | eng |
dc.subject.proposal | Fusion of Cell Aggregates | eng |
dc.subject.proposal | Tissue Engineering | eng |
dc.subject.proposal | Multi-cellular Systems | eng |
dc.subject.proposal | Computational Biology | eng |
dc.subject.proposal | Simulation Framework | eng |
dc.subject.proposal | Off-Lattice Models | eng |
dc.subject.proposal | Cell Adhesion | eng |
dc.subject.proposal | Modelos Centrados en el Núcleo | spa |
dc.subject.proposal | Fusión de Agregados Celulares | spa |
dc.subject.proposal | Ingeniería de Tejidos | spa |
dc.subject.proposal | Sistemas Multicelulares | spa |
dc.subject.proposal | Biología Computacional | spa |
dc.subject.proposal | Marco de Simulación | spa |
dc.subject.proposal | Modelos Fuera de Rejilla | spa |
dc.subject.proposal | Adhesión Celular | spa |
dc.title | Evaluation of cellular aggregate topologies from an Off-lattice model for tissue bioprinting | eng |
dc.title.translated | Evaluación de topologías de agregados celulares a partir de un modelo de Off-lattice para bioimpresión de tejidos | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1013670577.2024.pdf
- Tamaño:
- 6.79 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: