Evaluation of cellular aggregate topologies from an Off-lattice model for tissue bioprinting

dc.contributor.advisorGodoy Silva, Rubén Daríospa
dc.contributor.advisorOrozco Alvarado, Gustavo Adolfospa
dc.contributor.authorPuentes Urrego, Nicolasspa
dc.contributor.orcidPuentes Urrego, Nicolas [0000000201191852]spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2024-10-28T20:22:42Z
dc.date.available2024-10-28T20:22:42Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractThis thesis presents an exploration of cellular dynamics, utilizing various modeling frameworks and simulation techniques. Starting from the analysis of core-centered models, incorporating an approach to contractile stress from polarization vectors and a detailed evaluation of force functions governing attraction-repulsion interactions, the study unravels the intricate cellular behaviors. The integration of protrusive forces, genetic networks, and specific models like Yalla, MecaGen, and Oriola enhances the understanding of these dynamics. Additionally, neighborhood algorithms, such as the Gabriel graph, contribute to a more nuanced investigation. The modeling framework is implemented through the CellAggregate.jl platform. In the simulation framework, built with CUDA technology, aspects like structured data, nearest neighbor calculations, and forces, including polarization vectors, attraction-repulsion, and contractile forces, are addressed. Further discussions focus on the extraction of information related to the fusion of cellular aggregates. Results derived from experimental data, initial conditions, in-silico calibration, and simulation setups are presented. A subsequent analysis of the performance of functions and parameters is conducted. The thesis delves into the stabilization of a single cellular aggregate under extreme simulation conditions, exploring cell loss and mean squared displacement. The fusion of cellular aggregates is examined, including the evaluation of adjusted parameters using the Chi-squared test. The exploration extends to complex aggregates, providing a comprehensive understanding of topological aspects in tissue bioprinting.eng
dc.description.abstractEsta tesis explora la dinámica celular mediante diversos marcos de modelado y técnicas de simulación. Desde el análisis de modelos centrados en el núcleo hasta la evaluación detallada de funciones de fuerza que rigen las interacciones de atracción-repulsión, el estudio desentraña los complejos comportamientos celulares. La integración de fuerzas protrusivas, redes genéticas y modelos específicos como Yalla, MecaGen y Oriola enriquecen la comprensión de estas dinámicas. Además, se exploran algoritmos de vecindad, como el grafo de Gabriel, que contribuyen a una investigación más matizada. La implementación del marco de modelado se realiza a través de la plataforma CellAggregate.jl. En el marco de simulación, construido con tecnología CUDA, se abordan aspectos como datos estructurados, cálculos de vecinos más cercanos y fuerzas que incluyen vectores de polarización, atracción-repulsión y fuerzas contractiles. Otras discusiones se centran en la extracción de información relacionada con la fusión de agregados celulares. Se presentan resultados derivados de datos experimentales, condiciones iniciales, calibración in-silico y configuraciones de simulación. Un análisis del rendimiento de funciones y parámetros sigue a estos resultados. La tesis profundiza en la estabilización de un solo agregado celular bajo condiciones extremas de simulación, explorando la pérdida de células y el desplazamiento cuadrático medio. Se examina la fusión de agregados celulares, con evaluación de parámetros ajustados mediante la prueba de Chicuadrado. La exploración se extiende a agregados complejos, brindando una comprensión integral de los aspectos topológicos en la bioimpresión de tejidos (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría Ingeniería Quimicaspa
dc.description.researchareaIngeniería de Tejidos, Simulación y Modelamiento Computacionalspa
dc.format.extentxii, 109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87082
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAdenis, L., Gontran, E., Deroulers, C., Grammaticos, B., Juchaux, M., Seksek, O., & Badoual, M. (2020). Experimental andmodeling study of the formation of cell aggregates with differential substrate adhesion. PLoS ONE, 15, https://doi.org/10.1371/journal.pone.0222371.spa
dc.relation.referencesAlbert, R. & Barabási, A. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 4797, https://doi.org/10.1103/revmodphys.74.47 https://doi.org/10.1103/revmodphys.74.47.spa
dc.relation.referencesAldana, M., Larralde, H., & Vázquez, B. (2009). Phase transitions in swarming systems: A recent debate. International Journal of Modern Physics B., https://doi.org/10.1142/S0217979209053552 http://arxiv.org/abs/0907.3434http:// dx.doi.org/10.1142/S0217979209053552.spa
dc.relation.referencesAngelini, T. E., Hannezo, E., Trepat, X., Marquez, M., Fredberg, J. J., & Weitz, D. A. (2011). Glass-like dynamics of collective cell migration. Proceedings of the National Academy of Sciences of the United States of America, 108, 47144719, https://doi.org/10.1073/pnas.1010059108spa
dc.relation.referencesArjoca, S., Robu, A., Neagu, M., & Neagu, A. (2022). Mathematical and computational models in spheroid-based biofabrication. Acta Biomaterialia, https://doi.org/10.1016/j.actbio.2022.07.024.spa
dc.relation.referencesAyan, B., Heo, D. N., Zhang, Z., Dey, M., Povilianskas, A., Drapaca, C., & Ozbolat, I. T. (2020). Aspiration-assisted bioprinting for precise positioning of biologics. Science Advances, 6(10), https://doi.org/10.1126/sciadv.aaw5111spa
dc.relation.referencesBarhouse, P. S., Andrade, M. J., & Smith, Q. (2022). Home away from home: Bioengineering advancements to mimic the developmental and adult stem cell niche. Frontiers in Chemical Engineering, 4, https://doi.org/10.3389/fceng.2022. 832754.spa
dc.relation.referencesBarton, D. L., Henkes, S., Weijer, C. J., & Sknepnek, R. (2017). Active vertex model for cell-resolution description of epithelial tissue mechanics. PLoS Computational Biology, 13, https://doi.org/10.1371/journal.pcbi.1005569.spa
dc.relation.referencesBeaune, G., Sinkkonen, L., GonzalezRodriguez, D., Timonen, J. V. I., & BrochardWyart, F. (2022). Fusion dynamics of hybrid cellmicroparticle aggregates: A jelly pearl model. Langmuir, 38, 52965306, https://doi.org/10.1021/acs.langmuir. 1c02949spa
dc.relation.referencesBechinger, C., Leonardo, R. D., Löwen, H., Reichhardt, C., Volpe, G., & Volpe, G. (2016). Active particles in complex and crowded environments. Reviews of Modern Physics, 88, https://doi.org/10.1103/RevModPhys.88.045006.spa
dc.relation.referencesBenedetto, D. & Pulvirenti, M. (2009). Scaling limits of large systems of non-linear partial differential equations, (pp. 78077822). Springer Link https://doi.org/10.1007/978-0-387-30440-3_463.spa
dc.relation.referencesBertin, E., Droz, M., & Grégoire, G. (2006). Boltzmann and hydrodynamic description for self-propelled particles. Physical Review E, 74(2), https://doi.org/10.1103/physreve.74.022101 https://doi.org/10.1103/physreve.74.022101spa
dc.relation.referencesBertin, E., Droz, M., & Grégoire, G. (2009). Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis. Journal of Physics A, 42, 445001, https://doi.org/10.1088/1751-8113/42/44/445001.spa
dc.relation.referencesBintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J., & Phillips, R. (2005). Transcriptional regulation by the numbers: Models. Current Opinion in Genetics and Development, 15(2), 116–124, https://doi.org/10.1016/j.gde. 2005.02.007.spa
dc.relation.referencesBoland, T., Mironov, V., Gutowska, A., Roth, E. A., & Markwald, R. R. (2003). Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels. Anatomical Record - Part A Discoveries in Molecular, Cellular, and Evolutionary Biology, 272, 497–502, https://doi.org/10.1002/ar.a.10059.spa
dc.relation.referencesBrown, P. J., Green, J. F. E., Binder, B. J., & Osborne, J. M. (2021). A rigid body framework for multi-cellular modelling. bioRxiv, https://doi.org/10.1101/2021.02.10.430170 https://doi.org/10.1101/2021.02.10.430170.spa
dc.relation.referencesCarvalho, J. (2022). A computational model of organism development and carcinogenesis resulting from cells bioelectric properties and communication. Scientific Reports, 12, https://doi.org/10.1038/s41598-022-13281-3.spa
dc.relation.referencesChacón, N. & Lara, H. (2022). Pacientes en lista de espera por órganos y tejido corneal en bogotá d.c. https://saludata. saludcapital.gov.co/osb/fichas_tecnicas_osb/enf-cronicas/OSB_enfermedades_cronicas_organos.pdspa
dc.relation.referencesChaté, H., Ginelli, F., Grégoire, G., Peruani, F., Raynaud, F., & Modeling, F. R. (2008). collective motion: variations on the vicsek model. The European Physical Journal B: Condensed Matter and Complex Systems, 64, 451–456, https: //doi.org/10.1140/epjb/e2008-00275-9ï https://hal.science/hal-01053505.spa
dc.relation.referencesChen, N., Glazier, J. A., Izaguirre, J. A., & Alber, M. S. (2007). A parallel implementation of the cellular potts model for simulation of cell-based morphogenesis. Computer Physics Communications, 176, 670–681, https://doi.org/10.1016/j. cpc.2007.03.007.spa
dc.relation.referencesChu, Y. S., Dufour, S., Thiery, J. P., Perez, E., & Pincet, F. (2005). Johnson-kendall-roberts theory applied to living cells. Physical Review Letters, 94, https://doi.org/10.1103/PhysRevLett.94.028102.spa
dc.relation.referencesConway, J. H. & A., S. N. J. (1999). Sphere packings, lattices, and groups. Springer.spa
dc.relation.referencesCooper, F., et al. (2020). Chaste: Cancer, heart and soft tissue environment. Journal of Open Source Software, 5, 1848, https://doi.org/10.21105/joss.01848.spa
dc.relation.referencesCoulier, A. (2021). Multiscale Modeling in Systems Biology: Methods and Perspectives. Digital comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology. Uppsala University https://doi.org/10.33063/diva-442412spa
dc.relation.referencesCover, T. M. & Hart, P. E. (1952). Approximate formulas for the information transmitted by a discrete communication channel. IEEE Transactions on Information Theory, 24(1), 335–342.spa
dc.relation.referencesCristea, A., Horhat, R., & Neagu, A. (2020). Lattice boltzmann simulations of morphogenesis in artificial tissues. Romanian Journal of Physics.spa
dc.relation.referencesCui, H., Tronser, T., Wang, X., Wesslowski, J., Davidson, G., Popova, A. A., & Levkin, P. A. (2023). Highthroughput formation of miniaturized cocultures of 2d cell monolayers and 3d cell spheroids using droplet microarray. Droplet, 2, https://doi.org/10.1002/dro2.39.spa
dc.relation.referencesCui, H., et al. (2021). Assembly of multi-spheroid cellular architectures by programmable droplet merging. Advanced Materials, 33, https://doi.org/10.1002/adma.202006434.spa
dc.relation.referencesDahiya, P., Caggioni, M., & Spicer, P. T. (2016). Arrested coalescence of viscoelastic droplets: Polydisperse doublets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, https://doi.org/10.1098/rsta.2015.0132spa
dc.relation.referencesDaly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3d bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 12, https://doi.org/10.1038/s41467-021-21029-2spa
dc.relation.referencesDan, D., Mueller, C., Chen, K., & Glazier, J. A. (2005). Solving the advection-diffusion equations in biological contexts using the cellular potts model. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72, https://doi.org/10.1103/PhysRevE.72.041909.spa
dc.relation.referencesDavidson, E. H. & Levine, M. S. (2008). Properties of developmental gene regulatory networks www.nasonline.org/SACKLER_Gene_Networksspa
dc.relation.referencesde Salud, I. N. (2022). Red de Donación y Trasplantes en Colombia no se detiene. Instituto Nacional de Salud https: //www.ins.gov.co/Noticias/Paginas/Red-de-Donaci%C3%B3n-y-Trasplantes-en-Colombia-no-se-detiene.aspxspa
dc.relation.referencesDecarli, M. C., et al. (2021). Cell spheroids as a versatile research platform: Formation mechanisms, high throughput production, characterization and applications. Biofabrication, 13, https://doi.org/10.1088/1758-5090/abe6f2spa
dc.relation.referencesDelile, J., Herrmann, M., Peyriéras, N., & Doursat, R. (2017). A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation. Nature Communications, 8, https://doi.org/10.1038/ncomms13929.spa
dc.relation.referencesDouezan, S. & Brochard-Wyart, F. (2012). Active diffusion-limited aggregation of cells. Soft Matter, 8, 784–788, https: //doi.org/10.1039/c1sm06399espa
dc.relation.referencesDrasdo, D., Buttenschön, A., & Liedekerke, P. V. (2018). Agent-based lattice models of multicellular systems: Numerical methods, implementation, and applications. Elsevier Inc.spa
dc.relation.referencesEke, G., et al. (2022). Cell aggregate assembly through microengineering for functional tissue emergence. Cells, 11(9), 1394, https://doi.org/10.3390/cells11091394.spa
dc.relation.referencesElgeti, J., Winkler, R. G., & Gompper, G. (2015). Physics of microswimmerssingle particle motion and collective behavior: a review. Reports on Progress in Physics, 78, 056601, https://doi.org/10.1088/0034-4885/78/5/056601.spa
dc.relation.referencesFleming, P. A., Argraves, W. S., Gentile, C., Neagu, A., Forgacs, G., & Drake, C. J. (2010). Fusion of uniluminal vascular spheroids: A model for assembly of blood vessels. Developmental Dynamics, 239, 398–406, https://doi.org/10.1002/dvdy.22161.spa
dc.relation.referencesFlenner, E., Janosi, L., Barz, B., Neagu, A., Forgacs, G., & Kosztin, I. (2012). Kinetic monte carlo and cellular particle dynamics simulations of multicellular systems. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 85, https://doi.org/10.1103/PhysRevE.85.031907.spa
dc.relation.referencesFlenner, E., Marga, F., Neagu, A., Kosztin, I., & Forgacs, G. (2008). Relating biophysical properties across scales. Current Topics in Developmental Biology, 81, 461–483, https://doi.org/10.1016/S0070-2153(07)81016-7.spa
dc.relation.referencesGermann, P., Marin-Riera, M., & Sharpe, J. (2019). ya||a: Gpu-powered spheroid models for mesenchyme and epithelium. Cell Systems, 8, 261–266.e3, https://doi.org/10.1016/j.cels.2019.02.007spa
dc.relation.referencesGhaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M., & Macklin, P. (2018). Physicell: An open source physics-based cell simulator for 3-d multicellular systems. PLoS Computational Biology, 14, https://doi.org/10.1371/journal.pcbi.1005991.spa
dc.relation.referencesGhosh, A. & Zhou, H. X. (2020). Determinants for fusion speed of biomolecular droplets. Angewandte Chemie - International Edition, 59, 20837–20840, https://doi.org/10.1002/anie.202006711.spa
dc.relation.referencesGillespie, D. T., Hellander, A., & Petzold, L. R. (2013). Perspective: Stochastic algorithms for chemical kinetics. Journal of Chemical Physics, 138, https://doi.org/10.1063/1.4801941.spa
dc.relation.referencesGinelli, F. & Chaté, H. (2010). Relevance of metric-free interactions in flocking phenomena. Physical Review Letters, 105, https://doi.org/10.1103/physrevlett.105.168103.spa
dc.relation.referencesGlazier, J. A. & Popp, J. (2007). Ii.1 magnetization to morphogenesis: Ab rief historyofthe glazier-graner-hogeweg model. Mathematics and Biosciences in Interaction,, (pp. 79–106). https://wiki.santafe.edu/images/c/c2/Glazier_proofsv2.pdf.spa
dc.relation.referencesGord, A., Holmes, W. R., Dai, X., & Nie, Q. (2014). Computational modelling of epidermal stratification highlights the importance of asymmetric cell division for predictable and robust layer formation. Journal of the Royal Society Interface,11, https://doi.org/10.1098/rsif.2014.0631.spa
dc.relation.referencesGorochowski, T. E., et al. (2012). Bsim: An agent-based tool for modeling bacterial populations in systems and synthetic biology. PLoS ONE, 7, https://doi.org/10.1371/journal.pone.0042790.spa
dc.relation.referencesGraudenzi, A., Caravagna, G., Matteis, G. D., & Antoniotti, M. (2014). Investigating the relation between stochastic differentiation, homeostasis and clonal expansion in intestinal crypts via multiscale modeling. PLoS ONE, 9, https: //doi.org/10.1371/journal.pone.0097272.spa
dc.relation.referencesGrosser, S., et al. (2021). Cell and nucleus shape as an indicator of tissue fluidity in carcinoma. Physical Review X, 11(1), https://doi.org/10.1103/physrevx.11.011033 https://doi.org/10.1103/physrevx.11.011033.spa
dc.relation.referencesGrégoire, G. & Chaté, H. (2004). Onset of collective and cohesive motion. Physical Review Letters, 92(2), https://doi.org/10.1103/physrevlett.92.025702 https://doi.org/10.1103/physrevlett.92.025702spa
dc.relation.referencesGuo, M., et al. (2014). Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell, 158, 822–832, https://doi.org/10.1016/j.cell.2014.06.051spa
dc.relation.referencesHajdu, Z., Mironov, V., Mehesz, A. N., Norris, R. A., Markwald, R. R., & Visconti, R. P. (2010). Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation. Journal of Tissue Engineering and Regenerative Medicine, 4, 659–664, https://doi.org/10.1002/term.291spa
dc.relation.referencesHastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference and prediction. Springer, 2 edition http://www-stat.stanford.edu/~tibs/ElemStatLearn/.spa
dc.relation.referencesHoehme, S. & Drasdo, D. (2010). A cell-based simulation software for multi-cellular systems. Bioinformatics, 26, 2641–2642, https://doi.org/10.1093/bioinformatics/btq437.spa
dc.relation.referencesImani, R., Emami, S. H., Fakhrzadeh, H., Baheiraei, N., & Sharifi, A. M. (2012). Optimization and comparison of two different 3d culture methods to prepare cell aggregates as a bioink for organ printing. Biocell, 36, 37–45, https://doi.org/10.32604/biocell.2012.36.037.spa
dc.relation.referencesInfantil, F. C. (2021). Actualmente en colombia, más del 20esperando un trasplante https://cardioinfantil.org/noticias/ actualmente-en-colombia-mas-del-20-de-los-pacientes-fallecen-esperando-un-trasplante/.spa
dc.relation.referencesNewman, T. (2005). Modeling multicellular systems using subcellular elements. Mathematical Biosciences and Engineering, 2(3), 613624, https://doi.org/10.3934/mbe.2005.2.61spa
dc.relation.referencesJakab, K., et al. (2008a). Relating cell and tissue mechanics: Implications and applications. Developmental Dynamics, 237, 2438–2449, https://doi.org/10.1002/dvdy.21684.spa
dc.relation.referencesJakab, K., Neagu, A., Mironov, V., Markwald, R. R., & Forgács, G. (2004). Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Sciences of the United States of America, 101, 28642869, https://doi.org/10.1073/pnas.0400164101.spa
dc.relation.referencesJakab, K., et al. (2008b). Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Engineering - Part A., 14, 413–421, https://doi.org/10.1089/tea.2007.0173.spa
dc.relation.referencesJakab, K., Norotte, C., Marga, F., Murphy, K., Vunjak-Novakovic, G., & Forgacs, G. (2010). Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2, https://doi.org/10.1088/1758-5082/2/2/022001.spa
dc.relation.referencesJakab, K. R., Damon, B., Neagu, A., Jakab, K., Damon, B., Kachurin, A., & Forgacs, G. (2006). Three-dimensional tissue constructs built by bioprinting. Biorheology, 43, 509–513 https://www.researchgate.net/publication/6876030spa
dc.relation.referencesJeong, Y., Tin, A., & Irudayaraj, J. (2022). Flipped well-plate hanging-drop technique for growing three-dimensional tumors. Frontiers in Bioengineering and Biotechnology, 10, https://doi.org/10.3389/fbioe.2022.898699.spa
dc.relation.referencesKang, S., Kahan, S., McDermott, J., Flann, N. S., & Shmulevich, I. (2014). Biocellion: accelerating computer simulation of multicellular biological system models. Bioinformatics, 30, 31013108, https://doi.org/10.1093/bioinformatics/btu498.spa
dc.relation.referencesKanj, I. A., Perkoviťc, P., & Xia, G. (2008). Local construction of near-optimal power spanners for wireless ad-hoc networks. IEEE Transactions on Mobile Computing, 8.spa
dc.relation.referencesKarlebach, G. & Shamir, R. (2008). Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology, 9(10), 770–780, https://doi.org/10.1038/nrm2503.spa
dc.relation.referencesKosheleva, N. V., et al. (2020). Cell spheroid fusion: beyond liquid drops model. Scientific Reports, 10, https://doi.org/10.1038/s41598-020-69540-8.spa
dc.relation.referencesKosztin, I., Vunjak-Novakovic, G., & Forgacs, G. (2012). Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 84, 1791–1805, https://doi.org/10.1103 RevModPhys.84.1791.spa
dc.relation.referencesKoudan, E. V., Bulanova, E. A., Pereira, F. D., Parfenov, V. A., Kasyanov, V. A., Hesuani, Y. D., & Mironov, V. A. (2016). Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3d bioprinter. International Journal of Bioprinting, 2, 45–52, https://doi.org/10.18063/IJB.2016.01.007.spa
dc.relation.referencesKoudan, E. V., et al. (2022). Correlation of the regenerative potential of dermal fibroblasts in 2d culture with the biological properties of fibroblast-derived tissue spheroids. Cell and Tissue Research, 390, 453–464, https://doi.org/10.1007/s00441-022-03690-1.spa
dc.relation.referencesKrapivsky, P. L., Redner, S., & Leyvraz, F. (2000). Connectivity of growing random networks. Physical Review Letters, 85(21),46294632, https://doi.org/10.1103/physrevlett.85.4629.spa
dc.relation.referencesKöster, T., Henning, P., & Uhrmacher, A. M. (2019). Potential based, spatial simulation of dynamically nested particles. BMC Bioinformatics, 20, https://doi.org/10.1186/s12859-019-3092-yspa
dc.relation.referencesLevato, R., Visser, J., Planell, J. A., Engel, E., Malda, J., & Mateos-Timoneda, M. A. (2014). Biofabrication of tissue constructs by 3d bioprinting of cell-laden microcarriers. Biofabrication, 6, https://doi.org/10.1088/1758-5082/6/3/035020.spa
dc.relation.referencesLewis, M. A., Maini, P. K., & Petrovskii, S. V., Eds. (2013). Dispersal, Individual Movement and Spatial Ecology, volume 2071. Springer Berlin Heidelberg http://link.springer.com/10.1007/978-3-642-35497-7.spa
dc.relation.referencesLin, H., Li, Q., & Lei, Y. (2017). Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks. Biofabrication, 9, https://doi.org/10.1088/1758-5090/aa663b.spa
dc.relation.referencesLötstedt, P. (2021). Derivation of continuum models from discrete models of mechanical forces in cell populations. Journal of Mathematical Biology, 83, https://doi.org/10.1007/s00285-021-01697-wspa
dc.relation.referencesMaestri, S., Merelli, E., & Pettini, M. (2022). Agent-based models for detecting the driving forces of biomolecular interactions. Scientific Reports, 12, https://doi.org/10.1038/s41598-021-04205-8.spa
dc.relation.referencesMaignan, L. & Gruau, F. (2011). Gabriel graphs in arbitrary metric space and their cellular automaton for many grids. ACM Transactions on Autonomous and Adaptive Systems, 6, https://doi.org/10.1145/1968513.1968515.spa
dc.relation.referencesMaritan, S. M., Lian, E. Y., & Mulligan, L. M. (2017). An efficient and flexible cell aggregation method for 3d spheroid production. Journal of Visualized Experiments, 2017, https://doi.org/10.3791/55544.spa
dc.relation.referencesMarmottant, P., Mgharbel, A., & Stirbat, T. V. (2021). Physics of multicellular spheroids: a model for cell biology and complex fluids https://ilm.univ-lyon1.fr/index.php?option=com_content&view=article&id=134&act=157.spa
dc.relation.referencesMartínez, R., Alarcón, F., Rodriguez, D., Aragonés, J. I., & Valeriani, C. (2018). Collective behavior of vicsek particles without and with obstacles. The European Physical Journal E, 41, https://doi.org/10.1140/epje/i2018-11706-8.spa
dc.relation.referencesMaspero, D., et al. (2019). The influence of nutrients diffusion on a metabolism-driven model of a multi-cellular system. Fundamenta Informaticae, 171, 279–295, https://doi.org/10.3233/FI-2020-1883.spa
dc.relation.referencesMathias, S., Coulier, A., Bouchnita, A., & Hellander, A. (2020). Impact of force function formulations on the numerical simulation of centre-based models. Bulletin of Mathematical Biology, 82, https://doi.org/10.1007/s11538-020-00810-2.spa
dc.relation.referencesMathias, S., Coulier, A., & Hellander, A. (2022). Cbmos: a gpu-enabled python framework for the numerical study of center-based models. BMC Bioinformatics, 23, https://doi.org/10.1186/s12859-022-04575-4.spa
dc.relation.referencesMcCune, M., Shafiee, A., Forgacs, G., & Kosztin, I. (2014). Predictive modeling of post bioprinting structure formation. Soft Matter, 10, 1790–1800, https://doi.org/10.1039/c3sm52806e.spa
dc.relation.referencesMelchert, O. (2013). Percolation thresholds on planar euclidean relative-neighborhood graphs. Physical Review E, 87, https://doi.org/10.1103/physreve.87.042106.spa
dc.relation.referencesMirams, G. R., et al. (2013). Chaste: An open source c++ library for computational physiology and biology. PLoS Computational Biology, 9, https://doi.org/10.1371/journal.pcbi.1002970.spa
dc.relation.referencesMironov, V., Visconti, R. P., Kasyanov, V., Forgacs, G., Drake, C. J., & Markwald, R. R. (2009). Organ printing: Tissue spheroids as building blocks. Biomaterials, 30, 2164–2174, https://doi.org/10.1016/j.biomaterials.2008.12.084.spa
dc.relation.referencesMolina, M. I., et al. (2018). Principales causas de negativa familiar a la donación de órganos y tejidos: 10 años de experiencia en un centro latinoamericano. Nefrología, 38, 225–227, https://doi.org/10.1016/j.nefro.2017.05.004spa
dc.relation.referencesNagy, M., Daruka, I., & Vicsek, T. (2007). New aspects of the continuous phase transition in the scalar noise model (snm) of collective motion. Physica A: Statistical Mechanics and Its Applications, 373, 445454, https://doi.org/10.1016/j.physa.2006.05.035 https://doi.org/10.1016/j.physa.2006.05.035.spa
dc.relation.referencesNava-Sedeño, J. M., VoSS-Böhme, A., Hatzikirou, H., Deutsch, A., & Peruani, F. (2020). Modelling collective cell motion: Are on- and off-lattice models equivalent?: Equivalent on- and off-lattice models. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, https://doi.org/10.1098/rstb.2019.0378spa
dc.relation.referencesNeagu, A., Jakab, K., Jamison, R., & Forgacs, G. (2005). Role of physical mechanisms in biological self-organization. Physical Review Letters, 95, https://doi.org/10.1103/PhysRevLett.95.178104spa
dc.relation.referencesNoppe, A. (2019). Simulating the collective behaviour of a monolayer of epithelial cells using a cellular Potts model. PhD thesis, University of Queensland.spa
dc.relation.referencesOkuda, S., Miura, T., Inoue, Y., Adachi, T., & Eiraku, M. (2018). Combining turing and 3d vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching. Scientific Reports, 8, https://doi. org/10.1038/s41598-018-20678-6.spa
dc.relation.referencesOmasa, T., Onitsuka, M., & Kim, W.-D. (2010). Cell engineering and cultivation of chinese hamster ovary (cho) cells. Current Pharmaceutical Biotechnology, 11, 233–240.spa
dc.relation.referencesOngenae, S., Cuvelier, M., Vangheel, J., Ramon, H., & Smeets, B. (2021). Activity-induced fluidization and arrested coalescence in fusion of cellular aggregates. Frontiers in Physics, 9, https://doi.org/10.3389/fphy.2021.649821.spa
dc.relation.referencesOriola, D., Alert, R., & Casademunt, J. (2017). Fluidization and active thinning by molecular kinetics in active gels. Physical Review Letters, 118, https://doi.org/10.1103/PhysRevLett.118.088002.spa
dc.relation.referencesOriola, D., et al. (2022). Arrested coalescence of multicellular aggregates. Soft Matter, https://doi.org/10.1039/D2SM00063F http://xlink.rsc.org/?DOI=D2SM00063F.spa
dc.relation.referencesOswald, L., Grosser, S., Smith, D. M., & Käs, J. A. (2017). Jamming transitions in cancer. Journal of Physics D: Applied Physics, 50(48), https://doi.org/10.1088/1361-6463/aa8e83.spa
dc.relation.referencesPalaniappan, S. K., Yachie-Kinoshita, A., & Ghosh, S. (2018). Chapter 20287 - computational systems biology. Encyclopedia of Bioinformatics and Computational Biology, (pp. 1–7)., https://doi.org/10.1016/j http://doi.org/10.1016/jspa
dc.relation.referencesPawar, A. B., Caggioni, M., Hartel, R. W., & Spicer, P. T. (2012). Arrested coalescence of viscoelastic droplets with internal microstructure. Faraday Discussions, 158, 341–350, https://doi.org/10.1039/c2fd20029e.spa
dc.relation.referencesPeruani, F., KlauSS, T., Deutsch, A., & VossBöhme, A. (2011). Traffic jams, gliders, and bands in the quest for collective motion of self-propelled particles. Physical Review Letters, 106, https://doi.org/10.1103/physrevlett.106.128101.spa
dc.relation.referencesPeskin, C. S., Odell, G. M., & Oster, G. F. (1993). Cellular motions and thermal fluctuations: the brownian ratchet. Biophysical Journal, 65, 316–324, https://doi.org/10.1016/S0006-3495(93)81035spa
dc.relation.referencesPeter, I. S. & Davidson, E. H. (2009). Modularity and design principles in the sea urchin embryo gene regulatory network. FEBS Letters, 583(24), 3948–3958, https://doi.org/10.1016/j.febslet.2009.11.060.spa
dc.relation.referencesPetridou, N. I., Grigolon, S., Salbreux, G., Hannezo, E., & Heisenberg, C. P. (2019). Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical wnt signalling. Nature Cell Biology, 21, 169–178, https://doi.org/10.1038/s41556-018-0247-4.spa
dc.relation.referencesPokluda, O., Bellehumeur, C. T., & Vlachopoulos, J. (1997). Modification of frenkels model for sintering. AIChE Journal, 43(12), 32533256, https://doi.org/10.1002/aic.690431213spa
dc.relation.referencesPolychronopoulos, N. D., Benos, L., & Vlachopoulos, J. (2023). Mathematical modelling of coalescence of viscous particles: An overview. Canadian Journal of Chemical Engineering, https://doi.org/10.1002/cjce.24910.spa
dc.relation.referencesPourquié, O. (2003). The segmentation clock: Converting embryonic time into spatial pattern. Science, 301(5631), 328–330, https://doi.org/10.1126/science.1085887.spa
dc.relation.referencesPurcell, E. M. (1977). Life at low reynolds number. American Journal of Physics, 45, 3–11, https://doi.org/10.1119/1.10903spa
dc.relation.referencesPönisch, W. & Zaburdaev, V. (2018). Relative distance between tracers as a measure of diffusivity within moving aggregates. European Physical Journal B, 91, https://doi.org/10.1140/epjb/e2017-80347-5.spa
dc.relation.referencesQian, J. X., Wang, J., & Lu, Y. Q. (2023). Motional consensus of self-propelled particles. Scientific reports, 13, 8169, https://doi.org/10.1038/s41598-023-35238-w.spa
dc.relation.referencesRanft, J., Basan, M., Elgeti, J., Joanny, J.-F., Prost, J., & Jülicher, F. (2010). Fluidization of tissues by cell division and apoptosis. Proceedings of the National Academy of Sciences, 107(49), 2086320868, https://doi.org/10.1073/pnas.1011086107.spa
dc.relation.referencesRichmond, P., Walker, D., Coakley, S., & Romano, D. (2010). High performance cellular level agent-based simulation with flame for the gpu. Briefings in Bioinformatics, 11, 334–347, https://doi.org/10.1093/bib/bbp073spa
dc.relation.referencesRobu, A., Aldea, R., Munteanu, O., Neagu, M., Stoicu-Tivadar, L., & Neagu, A. (2012). Computer simulations of in vitro morphogenesis. BioSystems, 109, 430–443, https://doi.org/10.1016/j.biosystems.2012.06.002.spa
dc.relation.referencesRobu, A., Mironov, V., & Neagu, A. (2019). Using sacrificial cell spheroids for the bioprinting of perfusable 3d tissue and organ constructs: A computational study. Computational and Mathematical Methods in Medicine, 2019, https://doi.org/10.1155/2019/7853586.spa
dc.relation.referencesRodríguez, D. A. S., Ramos-Murillo, A. I., & Godoy-Silva, R. D. (2021). Tissue engineering, 3d-bioprinting, morphogenesis modelling and simulation of biostructures: Relevance, underpinning biological principles and future trends. Bioprinting, 24,https://doi.org/10.1016/j.bprint.2021.e00171.spa
dc.relation.referencesRudge, T. J., Steiner, P. J., Phillips, A., & Haseloff, J. (2012). Computational modeling of synthetic microbial biofilms. ACS Synthetic Biology, 1, 345–352, https://doi.org/10.1021/sb300031n.spa
dc.relation.referencesScianna, M. & Preziosi, L. (2013). Cellular potts models multiscale extensions and Biological Applications. Chapman and Hall/CRC.spa
dc.relation.referencesSego, T. J., Kasacheuski, U., Hauersperger, D., Tovar, A., & Moldovan, N. I. (2017). A heuristic computational model of basic cellular processes and oxygenation during spheroid-dependent biofabrication. Biofabrication, 9, https://doi.org/10.1088/1758-5090/aa6ed4.spa
dc.relation.referencesShaebani, M. R., Wysocki, A., Winkler, R. G., Gompper, G., & Rieger, H. (2020). Computational models for active matter. Nature Reviews Physics, 2, 181199, https://doi.org/10.1038/s42254-020-0152-1.spa
dc.relation.referencesShafiee, A., McCune, M., Forgacs, G., & Kosztin, I. (2015). Post-deposition bioink self-assembly: A quantitative study. Biofabrication, 7, https://doi.org/10.1088/1758-5090/7/4/045005.spa
dc.relation.referencesShanjani, Y., Pan, C. C., Elomaa, L., & Yang, Y. (2015). A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication, 7, https://doi.org/10.1088/1758-5090/7/4/045008.spa
dc.relation.referencesSmith, K. (2013). Precalculus: a functional approach to graphing and problem solving. Jones and Bartlett Publishers.spa
dc.relation.referencesSomogyi, E. (2017). A modeling and simulation language for biological cells with coupled mechanical and chemical processes. arXiv.org http://arxiv.org/abs/1701.00317.spa
dc.relation.referencesSong, Y., Yang, S., & Lei, J. (2019). Paracells: A gpu architecture for cell-centered models in computational biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16, 994–1006, https://doi.org/10.1109/TCBB. 2018.2814570.spa
dc.relation.referencesStarruSS, J., Back, W. D., Brusch, L., & Deutsch, A. (2014). Morpheus: A user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics, 30, 1331–1332, https://doi.org/10.1093/bioinformatics/btt772.spa
dc.relation.referencesSteinberg, M. S. (2007). Differential adhesion in morphogenesis: a modern view. Current Opinion in Genetics and Development, 17, 281–286, https://doi.org/10.1016/j.gde.2007.05.002.spa
dc.relation.referencesStruber, A., et al. (2022). Low-cost devices for three-dimensional cell aggregation, real-time monitoring microscopy, microfluidic immunostaining, and deconvolution analysis. Bioengineering, 9, https://doi.org/10.3390/bioengineering9020060.spa
dc.relation.referencesSun, S. X., Lan, G., & Atilgan, E. (2008). Chapter 23 stochastic modeling methods in cell biology. Methods in Cell Biology, 89, 601–621, https://doi.org/10.1016/S0091-679X(08)00623-7.spa
dc.relation.referencesSussman, D. M. (2017). cellgpu: Massively parallel simulations of dynamic vertex models. Computer Physics Communications, 219, 400–406, https://doi.org/10.1016/j.cpc.2017.06.001.spa
dc.relation.referencesSwat, M. H., Thomas, G. L., Belmonte, J. M., Shirinifard, A., Hmeljak, D., & Glazier, J. A. (2012). Multi-Scale Modeling of Tissues Using CompuCell3D, volume 110. Academic Press Inc.spa
dc.relation.referencesSütterlin, T., Kolb, C., Dickhaus, H., Jäger, D., & Grabe, N. (2012). Bridging the scales: semantic integration of quantitative sbml in graphical multi-cellular models and simulations with episim and copasi. Bioinformatics, 29(2), 223229, https://doi.org/10.1093/bioinformatics/bts659 https://doi.org/10.1093/bioinformatics/bts659.spa
dc.relation.referencesTapia, J. J. & D’Souza, R. M. (2011). Parallelizing the cellular potts model on graphics processing units. Computer Physics Communications, 182, 857–865, https://doi.org/10.1016/j.cpc.2010.12.011spa
dc.relation.referencesTheriot, J. A. (2000). The polymerization motor. Traffic, 1, 19–28.spa
dc.relation.referencesThomas, G. L., Mironov, V., Nagy-Mehez, A., & Mombach, J. C. (2014). Dynamics of cell aggregates fusion: Experiments and simulations. Physica A: Statistical Mechanics and its Applications, 395, 247–254, https://doi.org/10.1016/j.physa. 2013.10.037.spa
dc.relation.referencesVerdier, C. & Brizard, M. (2002). Understanding droplet coalescence and its use to measure interfacial tension. Rheologica Acta, 41, 514–523, https://doi.org/10.1007/s00397-002-0249-8ï https://hal.science/hal-00322106.spa
dc.relation.referencesVicsek, T., Czirók, A., BenJacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75(6), 12261229, https://doi.org/10.1103/physrevlett.75.1226 https: //doi.org/10.1103/physrevlett.75.1226.spa
dc.relation.referencesWejchert, J., Weaire, D., & Kermode, J. P. (1986). Monte carlo simulation of the evolution of a two-dimensional soap froth. Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, 53, 15–24, https://doi.org/10.1080/13642818608238968.spa
dc.relation.referencesWolgemuth, C. W. & Sun, S. X. (2020). Active random forces can drive differential cellular positioning and enhance motor-driven transport. Molecular Biology of the Cell, 31(20), 22832288, https://doi.org/10.1091/mbc.e19-11-0629.spa
dc.relation.referencesYang, X., Mironov, V., & Wang, Q. (2012). Modeling fusion of cellular aggregates in biofabrication using phase field theories. Journal of Theoretical Biology, 303, 110–118, https://doi.org/10.1016/j.jtbi.2012.03.003spa
dc.relation.referencesYoo, E., Khatri, S., & Blanchette, F. (2020). Hydrodynamic forces on randomly formed marine aggregates. Physical Review Fluids, 5, https://doi.org/10.1103/PhysRevFluids.5.044305.spa
dc.relation.referencesYu, C. & Yang, B. (2014). Parallelizing the cellular potts model on gpu and multi-core cpu. an opencl cross-platform study. International Joint Conference on Computer Science and Software Engineering, (pp. 117–122). https://doi.org/10.1109/JCSSE.2014.6841853.spa
dc.relation.referencesZeng, Y., et al. (2023). Miniaturizing chemistry and biology using droplets in open systems. Nature Reviews Chemistry, https://doi.org/10.1038/s41570-023-00483-0.spa
dc.relation.referencesZhao, J., Naveed, H., Kachalo, S., Cao, Y., Tian, W., & Liang, J. (2013). Dynamic mechanical finite element model of biological cells for studying cellular pattern formation. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, (pp. 4517–4520)., https://doi.org/10.1109/EMBC.2013.6610551.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.decsBioimpresiónspa
dc.subject.decsBioprintingeng
dc.subject.decsAgregación Celularspa
dc.subject.decsCell Aggregationeng
dc.subject.lembALGORITMOS (COMPUTADORES)spa
dc.subject.lembComputer algorithmseng
dc.subject.lembALGORITMOS GENETICOSspa
dc.subject.lembGenetic algorithmseng
dc.subject.proposalCenter-Based Modelseng
dc.subject.proposalFusion of Cell Aggregateseng
dc.subject.proposalTissue Engineeringeng
dc.subject.proposalMulti-cellular Systemseng
dc.subject.proposalComputational Biologyeng
dc.subject.proposalSimulation Frameworkeng
dc.subject.proposalOff-Lattice Modelseng
dc.subject.proposalCell Adhesioneng
dc.subject.proposalModelos Centrados en el Núcleospa
dc.subject.proposalFusión de Agregados Celularesspa
dc.subject.proposalIngeniería de Tejidosspa
dc.subject.proposalSistemas Multicelularesspa
dc.subject.proposalBiología Computacionalspa
dc.subject.proposalMarco de Simulaciónspa
dc.subject.proposalModelos Fuera de Rejillaspa
dc.subject.proposalAdhesión Celularspa
dc.titleEvaluation of cellular aggregate topologies from an Off-lattice model for tissue bioprintingeng
dc.title.translatedEvaluación de topologías de agregados celulares a partir de un modelo de Off-lattice para bioimpresión de tejidosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013670577.2024.pdf
Tamaño:
6.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: