Análisis de interacción sísmica suelo- estructura para evaluar vulnerabilidad por resonancia sísmica en edificios entre 3 y 7 pisos en un sector de la localidad de Chapinero- Bogotá

dc.contributor.advisorRodríguez Granados, Edgar Eduardospa
dc.contributor.authorLozano Rada, José Joaquínspa
dc.coverage.cityBogotáspa
dc.date.accessioned2022-02-07T16:41:51Z
dc.date.available2022-02-07T16:41:51Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, gráficas, mapas, tablasspa
dc.description.abstractEn la presente investigación se realiza una zonificación de vulnerabilidad por resonancia sísmica para edificaciones de tres (3) a siete (7) en un sector de la localidad de Chapinero, Bogotá D.C. Se realizaron modelos de respuesta de sitio 2D y 3D con el software MIDAS GTS NX, se realizaron los modelos de respuesta sísmica local usando el método lineal equivalente, para obtener el periodo de mayor amplificación del suelo, el cual, se contrastó con el periodo fundamental de las estructuras (obtenido a partir de varias metodologías) para determinar el índice de resonancia sísmica; así mismo, se obtuvo la variación del desplazamiento total y las deformaciones cortantes en las secciones representativas. Para determinar los esfuerzos cortantes y los desplazamientos en los elementos estructurales, se desarrollaron modelos numéricos que acoplaran tanto las edificaciones presentes en cada sección bidimensional como la estratigrafía del suelo . Finalmente, se realizó un mapa de vulnerabilidad por resonancia sísmica que incluyó el índice de resonancia obtenido, en conjunto con la edad de construcción de los edificios (categorizado en función de la puesta en vigencia de las normas sismorresistente), los esfuerzos cortantes y los desplazamientos de los elementos estructurales obtenidos a partir de los modelos de interacción sísmica suelo-estructura. (Texto tomado de la fuente).spa
dc.description.abstractIn this reaserch it is carried out a vulnerability zoning for seismic resonance for buildings from three (3) to seven (7) in a sector of Chapinero, Bogotá D.C. With this purpose, 2D and 3D site response models were performed with MIDAS GTS NX software. To develop the seismic resonance analyses, local seismic response models were developed using the equivalent linear method to obtain the period of greatest amplification of the soil, which was contrasted with the fundamental period of the structures (obtained from various methodologies) to determine the seismic resonance index; likewise, the variation of total displacement and shear strains were obtain for representative sections. To determine the shear stresses and displacements in the structural elements, numerical models were developed to couple both the buildings present in each two-dimensional section and the soil stratigraphy. Finally, a seismic resonance vulnerability map was made including the resonance index obtained, together with the age of construction of the buildings (categorized according to date of implementation of seismic-resistant standards), the shear forces and displacements of the structural elements obtained from the soil-structure seismic interaction models.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaDinámica de suelos, respuesta sísmica local y resonancia sísmicaspa
dc.format.extentxxvii, 345 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80894
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesANLISIS_DE_LOS_ACELEROGRAMAS_REGISTRADOS_EN_LA_CIUDAD_DE_MEXICO_DURANTE_EL_TEMBLOR_DEL_25-04-86._EVIDENCIAS_DE_UNA_P.pdf. (1996.).spa
dc.relation.referencesBartlett, S. F., Eeri, M., & Ostadan, F. Development of Design Spectra for Deep and Soft Soil Sites, (3).spa
dc.relation.referencesEllen, B., Norman, M. R., & Bray, J. D. (1998). C7·(1), 91(FEBRUARY), 150–159.spa
dc.relation.referencesKempton, J. J., Stewart, J. P., & Eeri, M. (2006). Prediction Equations for Significant Duration of Earthquake Ground Motions Considering Site and Near-Source Effects, 22(4), 985–1013. https://doi.org/10.1193/1.2358175spa
dc.relation.referencesStewart, J. P., Bray, J. D., Stewart, J. P., & Bray, J. D. Ground Motion Evaluation Procedures for Performance-Based Design Ground Motion Evaluation Procedures for Performance-Based Design, (September 2001).spa
dc.relation.referencesSzczesiak, T., Weber, B., & Bachmann, H. (1999). Nonuniform earthquake input for arch dam – foundation interaction, 18, 487–493.spa
dc.relation.referencesTrifunac, M D, Lee, V. W., & Todorovska, M. I. (1999). Common problems in automatic digitization of strong motion accelerograms, 18, 519–530.spa
dc.relation.referencesTrifunac, Mihailo D. (2009). 75th anniversary of strong motion observation — A historical review, 29, 591–606. https://doi.org/10.1016/j.soildyn.2008.05.011spa
dc.relation.referencesYoud, T. L., Hansen, C. M., & Bartlett, S. F. (2002). Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement, (December), 1007–1017.spa
dc.relation.referencesKempton, J. J., Stewart, J. P., & Eeri, M. (2006). Prediction Equations for Significant Duration of Earthquake Ground Motions Considering Site and Near-Source Effects, 22(4), 985–1013. https://doi.org/10.1193/1.2358175spa
dc.relation.referencesPuerto, G., Losada, L., Díaz, F. J., & Rodríguez, G. A. (2010). SISMO RESISTENTE DE EDIFICACIONES INFORME FINAL VOLUMEN 1 ORIGINAL COORDINACIÓN DE INVESTIGACIÓN Y DESARROLLO OCTUBRE DE 2010 Subdirección de Técnica y de Gestión.spa
dc.relation.referencesStewart, J. P., Bray, J. D., Stewart, J. P., & Bray, J. D. (n.d.). Ground Motion Evaluation Procedures for Performance-Based Design Ground Motion Evaluation Procedures for Performance-Based Design, (September 2001).spa
dc.relation.referencesTrifunac, M. D. anniversary of strong motion observation — A. historical review. (2009). 75th anniversary of strong motion observation — A historical review, 29, 591–606. https://doi.org/10.1016/j.soildyn.2008.05.011spa
dc.relation.referencesPuerto, G., Losada, L., Díaz, F. J., & Rodríguez, G. A. (2010). SISMO RESISTENTE DE EDIFICACIONES INFORME FINAL VOLUMEN 1 ORIGINAL COORDINACIÓN DE INVESTIGACIÓN Y DESARROLLO OCTUBRE DE 2010 Subdirección de Técnica y de Gestión.spa
dc.relation.referencesCorreia, A., Crowley, H., Pinho, R., & Cavalieri, F. (2020). Dynamic soil-structure interaction models for fragility characterization of buildings with shallow foundations, 132(December 2019). https://doi.org/10.1016/j.soildyn.2019.106004spa
dc.relation.referencesGodinho, L., Amado-mendes, P., Pereira, A., & Jr, D. S. (2013). A coupled MFS – FEM model for 2-D dynamic soil – structure interaction in the frequency domain, 129, 74–85. https://doi.org/10.1016/j.compstruc.2013.08.010spa
dc.relation.referencesLiang, J., Han, B., Fu, J., & Liu, R. (2018). In fl uence of site dynamic characteristics on dynamic soil-structure interaction : Comparison between 3D model and 2D models. Soil Dynamics and Earthquake Engineering, 108(January), 79–95. https://doi.org/10.1016/j.soildyn.2018.02.011spa
dc.relation.referencesYazdchi, M., Khalili, N., & Valliappan, S. (1999). Dynamic soil – structure interaction analysis via coupled finite-element – boundary-element method, 18, 499–517.spa
dc.relation.referencesBuildings, M. (2018). J estr. https://doi.org/10.25103/jestr.113.08spa
dc.relation.referencesKarahan, N. (2012). Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction, 3495–3505. https://doi.org/10.5194/nhess-12-3495-2012spa
dc.relation.referencesKodama, N., & Komiya, K. (2012). Model tests and FE - modelling of dynamic soil - structure interaction, 19, 1061–1069. https://doi.org/10.3233/SAV-2012-0712spa
dc.relation.referencesSarrazin, M., & Whitman, R. V. (1972). Dynamic soil-structure interaction. Journal of the Structural Division. https://doi.org/10.1016/S0267-7261(99)00019-6spa
dc.relation.referencesField and Laboratory determination of dynamic propieties of natural soil deposit.pdf. (n.d.).spa
dc.relation.referencesBrennan, A. J., Thusyanthan, N. I., & Madabhushi, S. P. G. (2005). Evaluation of Shear Modulus and Damping, (December), 1488–1497spa
dc.relation.referencesCYCLIC BEHAVIOUR AND DYNAMIC PROPERTIES OF SOILS : A CASE OF JIMMA TOWN TESHOME BIRHANU KEBEDE MASTER OF SCIENCE ADDIS ABABA SCIENCE AND TECHNOLOGY JANUARY 2019. (2019), (January).spa
dc.relation.referencesDobry, R., Vucetic, M., & Angeles, L. (2014). Dynamic properties and seismic response of soft clay deposits, (May).spa
dc.relation.referencesHardin, B. O., & Kalinski, M. E. (2005). Estimating the Shear Modulus of Gravelly Soils, (July), 867–875.spa
dc.relation.referencesJia, J., & Solutions, A. (2019). Chapter 2 Dynamic and Cyclic Properties of Soils. https://doi.org/10.1007/978-3-319-40358-8spa
dc.relation.referencesKumar, P., Murali, A., Bhattacharya, S., & Nikitas, G. (2017). Dynamic soil properties for seismic ground response studies in Northeastern India. Soil Dynamics and Earthquake Engineering, 100(February), 357–370. https://doi.org/10.1016/j.soildyn.2017.06.003spa
dc.relation.referencesOkur, V., & Akinci, K. (2018). Dynamic Behavior of Soft Subgrade Soils Treated with, 2018.spa
dc.relation.referencesZhang, Z. (2017). Dynamics stress – strain behavior of Tianshui soils, (February 2016), 323–335. https://doi.org/10.1007/s10346-016-0694-6spa
dc.relation.referencesPasquali, R., Lai, C. G., & Corigliano, M. (2010). Some Issues in Seismic Analysis and Design of Blockwork Wharves, (December 2008), 102–130. https://doi.org/10.1080/13632460902988992spa
dc.relation.referencesStokoe, K. H., Darendeli, M. B., Gilbert, R. B., Menq, F., & Choi, W. K. (n.d.). Development of a New Family of Normalized Modulus Reduction and Material Damping Curves, 1–10.spa
dc.relation.referencesZhang, J., Andrus, R. D., & Juang, C. H. (2005). Normalized Shear Modulus and Material Damping Ratio Relationships, (April), 453–464.spa
dc.relation.referencesZhang, J., Andrus, R. D., & Juang, C. H. (2008). Model Uncertainty in Normalized Shear Modulus and Damping Relationships, (January), 24–36.spa
dc.relation.referencesMiguel, P., Suarez, B. S. B., Cervera, M., & Canet, J. M. (1998). Plate 1 Three dimensional non-linear analysis of a dam.spa
dc.relation.referencesNum, I. J., & Eng, M. (1993). Plate 1 Analysis of subsonic flow around an aircraft ( Dassault Falkon ) Courtesy of Prof . Ken Morgan , School of Engineering , University ofWalesspa
dc.relation.referencesCarlton, B. (2014). UC Berkeley UC Berkeley Electronic Theses and Dissertations An Improved Description of the Seismic Response of Sites with High Plasticity Soils , Organic Clays , and Deep Soft Soil Deposits by.spa
dc.relation.referencesD, P. (2009). DE CONTROL DE RESPUESTA SÍSMICA EN COLOMBIA J uan A ndrés O viedo * STATUS OF SEISMIC RESPONSE CONTROL TECHNIQUES IN COLOMBIA, 113–124.spa
dc.relation.referencesGallego, M., & Yamin, L. (1999). A MENAZA S ÍSMICA DE C OLOMBIA ”, 12–27.spa
dc.relation.referencesLópez-almansa, F., & Montaña, M. A. (2014). Numerical seismic vulnerability analysis of mid-height steel buildings in Bogotá, Colombia. JCSR, 92, 1–14. https://doi.org/10.1016/j.jcsr.2013.09.002spa
dc.relation.referencesRezaeian, S., & Campbell, K. (2012). PACIFIC EARTHQUAKE ENGINEERING Spectral Damping Scaling Factors for Shallow Crustal Earthquakes in Active Tectonic Regions, (July).spa
dc.relation.referencesYamin, L. E., Hurtado, A., Rincon, R., Dorado, J. F., & Reyes, J. C. (2017). Probabilistic seismic vulnerability assessment of buildings in terms of economic losses. Engineering Structures, 138, 308–323. https://doi.org/10.1016/j.engstruct.2017.02.013spa
dc.relation.referencesBaquero, A. E. (2003). La sismicidad histórica en Colombia, 44(2), 271–283.spa
dc.relation.referencesCaneva, A., Centro, R., Nariño, U. A., Jesús, E. De, Hurtado, S., Geografía, D. De, & Valle, U. (2004). DE LA AMENAZA SÍSMICA PARA BOGOTÁ.spa
dc.relation.referencesGeogr, S., Correspondiente, M., Geogr, S., & Exactas, C. (2004). Historia sísmica de bogotá, 1–10.spa
dc.relation.referencesGuillermo, H., & Avendaño, C. (2010). Análisis histórico de los sismos ocurridos en 1785 y en 1917 en el centro de Colombia and 1917 in the center of Colombia, 153–162.spa
dc.relation.referencesIv, O., & Hern, S. (2015). Evaluación de amenaza sísmica en municipios del departamento de Cundinamarca.spa
dc.relation.referencesLa, S. D. E., & Frontal, F. (2011). Estudios de escenarios de daños Enfoque conceptual del problema Sistema de Evaluación de Daños para Análisis de Riesgo - SEDAR.spa
dc.relation.referencesCarlos, J., & Guarín, O. (2009). ESPECTROS DE DISEÑO CONSIDERANDO INTERACCIÓN DINÁMICA SUELO-ESTRUCTURA.spa
dc.relation.referencesErden, A., & Özgenç, B. (2018). The investigation of soil – structure resonance of historical buildings using seismic refraction and ambient vibrations HVSR measurements : a case study from Trabzon in Turkey. Acta Geophysica, (0123456789). https://doi.org/10.1007/s11600-018-0208-0spa
dc.relation.referencesHerrera, L. (2013). EVALUACIÓN DE LA INTERACCIÓN DINAMICA SUELO-ESTRUCTURA DE EDIFICACIONES CONSTRUIDAS EN LADERA.spa
dc.relation.referencesJuan, C., & Santos, N. (2017). Vulnerabilidad de edificios ante resonancia sísmica en Guadalajara y Zapopan por el sismo del 11 de mayo de 2016 MW = 4 . 9.spa
dc.relation.referencesWang, Y., Asce, M., Rourke, T. D. O., & Asce, M. (2007). Interpretation of Secant Shear Modulus Degradation Characteristics from Pressuremeter Tests, (December), 1556–1567.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembSeismic riskeng
dc.subject.lembRiesgo sísmicospa
dc.subject.lembEarthquake engineeringeng
dc.subject.lembIngeniería sísmicaspa
dc.subject.proposalVulnerabilidad sísmicaspa
dc.subject.proposalMétodo elementos finitosspa
dc.subject.proposalFunción de transferenciaspa
dc.subject.proposalFactor de amplificaciónspa
dc.subject.proposalModelo numéricospa
dc.subject.proposalResonancia sísmicaspa
dc.subject.proposalSeismic Resonanceeng
dc.subject.proposalSeismic vulnerabilityeng
dc.subject.proposalFinite element methodeng
dc.subject.proposalTransfer functioneng
dc.subject.proposalAmplification factoreng
dc.subject.proposalNumerical modeleng
dc.subject.unescoEdificiospa
dc.subject.unescoBuildingseng
dc.titleAnálisis de interacción sísmica suelo- estructura para evaluar vulnerabilidad por resonancia sísmica en edificios entre 3 y 7 pisos en un sector de la localidad de Chapinero- Bogotáspa
dc.title.translatedSeismic soil-structure interaction analysis to evaluate seismic resonance vulnerability in buildings between 3 and 7 stories in a sector of the Chapinero-Bogota areaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024540840.2021.pdf
Tamaño:
32.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: