Análisis de interacción sísmica suelo- estructura para evaluar vulnerabilidad por resonancia sísmica en edificios entre 3 y 7 pisos en un sector de la localidad de Chapinero- Bogotá
dc.contributor.advisor | Rodríguez Granados, Edgar Eduardo | spa |
dc.contributor.author | Lozano Rada, José Joaquín | spa |
dc.coverage.city | Bogotá | spa |
dc.date.accessioned | 2022-02-07T16:41:51Z | |
dc.date.available | 2022-02-07T16:41:51Z | |
dc.date.issued | 2021 | |
dc.description | ilustraciones, fotografías, gráficas, mapas, tablas | spa |
dc.description.abstract | En la presente investigación se realiza una zonificación de vulnerabilidad por resonancia sísmica para edificaciones de tres (3) a siete (7) en un sector de la localidad de Chapinero, Bogotá D.C. Se realizaron modelos de respuesta de sitio 2D y 3D con el software MIDAS GTS NX, se realizaron los modelos de respuesta sísmica local usando el método lineal equivalente, para obtener el periodo de mayor amplificación del suelo, el cual, se contrastó con el periodo fundamental de las estructuras (obtenido a partir de varias metodologías) para determinar el índice de resonancia sísmica; así mismo, se obtuvo la variación del desplazamiento total y las deformaciones cortantes en las secciones representativas. Para determinar los esfuerzos cortantes y los desplazamientos en los elementos estructurales, se desarrollaron modelos numéricos que acoplaran tanto las edificaciones presentes en cada sección bidimensional como la estratigrafía del suelo . Finalmente, se realizó un mapa de vulnerabilidad por resonancia sísmica que incluyó el índice de resonancia obtenido, en conjunto con la edad de construcción de los edificios (categorizado en función de la puesta en vigencia de las normas sismorresistente), los esfuerzos cortantes y los desplazamientos de los elementos estructurales obtenidos a partir de los modelos de interacción sísmica suelo-estructura. (Texto tomado de la fuente). | spa |
dc.description.abstract | In this reaserch it is carried out a vulnerability zoning for seismic resonance for buildings from three (3) to seven (7) in a sector of Chapinero, Bogotá D.C. With this purpose, 2D and 3D site response models were performed with MIDAS GTS NX software. To develop the seismic resonance analyses, local seismic response models were developed using the equivalent linear method to obtain the period of greatest amplification of the soil, which was contrasted with the fundamental period of the structures (obtained from various methodologies) to determine the seismic resonance index; likewise, the variation of total displacement and shear strains were obtain for representative sections. To determine the shear stresses and displacements in the structural elements, numerical models were developed to couple both the buildings present in each two-dimensional section and the soil stratigraphy. Finally, a seismic resonance vulnerability map was made including the resonance index obtained, together with the age of construction of the buildings (categorized according to date of implementation of seismic-resistant standards), the shear forces and displacements of the structural elements obtained from the soil-structure seismic interaction models. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | spa |
dc.description.researcharea | Dinámica de suelos, respuesta sísmica local y resonancia sísmica | spa |
dc.format.extent | xxvii, 345 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80894 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Civil y Agrícola | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | ANLISIS_DE_LOS_ACELEROGRAMAS_REGISTRADOS_EN_LA_CIUDAD_DE_MEXICO_DURANTE_EL_TEMBLOR_DEL_25-04-86._EVIDENCIAS_DE_UNA_P.pdf. (1996.). | spa |
dc.relation.references | Bartlett, S. F., Eeri, M., & Ostadan, F. Development of Design Spectra for Deep and Soft Soil Sites, (3). | spa |
dc.relation.references | Ellen, B., Norman, M. R., & Bray, J. D. (1998). C7·(1), 91(FEBRUARY), 150–159. | spa |
dc.relation.references | Kempton, J. J., Stewart, J. P., & Eeri, M. (2006). Prediction Equations for Significant Duration of Earthquake Ground Motions Considering Site and Near-Source Effects, 22(4), 985–1013. https://doi.org/10.1193/1.2358175 | spa |
dc.relation.references | Stewart, J. P., Bray, J. D., Stewart, J. P., & Bray, J. D. Ground Motion Evaluation Procedures for Performance-Based Design Ground Motion Evaluation Procedures for Performance-Based Design, (September 2001). | spa |
dc.relation.references | Szczesiak, T., Weber, B., & Bachmann, H. (1999). Nonuniform earthquake input for arch dam – foundation interaction, 18, 487–493. | spa |
dc.relation.references | Trifunac, M D, Lee, V. W., & Todorovska, M. I. (1999). Common problems in automatic digitization of strong motion accelerograms, 18, 519–530. | spa |
dc.relation.references | Trifunac, Mihailo D. (2009). 75th anniversary of strong motion observation — A historical review, 29, 591–606. https://doi.org/10.1016/j.soildyn.2008.05.011 | spa |
dc.relation.references | Youd, T. L., Hansen, C. M., & Bartlett, S. F. (2002). Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement, (December), 1007–1017. | spa |
dc.relation.references | Kempton, J. J., Stewart, J. P., & Eeri, M. (2006). Prediction Equations for Significant Duration of Earthquake Ground Motions Considering Site and Near-Source Effects, 22(4), 985–1013. https://doi.org/10.1193/1.2358175 | spa |
dc.relation.references | Puerto, G., Losada, L., Díaz, F. J., & Rodríguez, G. A. (2010). SISMO RESISTENTE DE EDIFICACIONES INFORME FINAL VOLUMEN 1 ORIGINAL COORDINACIÓN DE INVESTIGACIÓN Y DESARROLLO OCTUBRE DE 2010 Subdirección de Técnica y de Gestión. | spa |
dc.relation.references | Stewart, J. P., Bray, J. D., Stewart, J. P., & Bray, J. D. (n.d.). Ground Motion Evaluation Procedures for Performance-Based Design Ground Motion Evaluation Procedures for Performance-Based Design, (September 2001). | spa |
dc.relation.references | Trifunac, M. D. anniversary of strong motion observation — A. historical review. (2009). 75th anniversary of strong motion observation — A historical review, 29, 591–606. https://doi.org/10.1016/j.soildyn.2008.05.011 | spa |
dc.relation.references | Puerto, G., Losada, L., Díaz, F. J., & Rodríguez, G. A. (2010). SISMO RESISTENTE DE EDIFICACIONES INFORME FINAL VOLUMEN 1 ORIGINAL COORDINACIÓN DE INVESTIGACIÓN Y DESARROLLO OCTUBRE DE 2010 Subdirección de Técnica y de Gestión. | spa |
dc.relation.references | Correia, A., Crowley, H., Pinho, R., & Cavalieri, F. (2020). Dynamic soil-structure interaction models for fragility characterization of buildings with shallow foundations, 132(December 2019). https://doi.org/10.1016/j.soildyn.2019.106004 | spa |
dc.relation.references | Godinho, L., Amado-mendes, P., Pereira, A., & Jr, D. S. (2013). A coupled MFS – FEM model for 2-D dynamic soil – structure interaction in the frequency domain, 129, 74–85. https://doi.org/10.1016/j.compstruc.2013.08.010 | spa |
dc.relation.references | Liang, J., Han, B., Fu, J., & Liu, R. (2018). In fl uence of site dynamic characteristics on dynamic soil-structure interaction : Comparison between 3D model and 2D models. Soil Dynamics and Earthquake Engineering, 108(January), 79–95. https://doi.org/10.1016/j.soildyn.2018.02.011 | spa |
dc.relation.references | Yazdchi, M., Khalili, N., & Valliappan, S. (1999). Dynamic soil – structure interaction analysis via coupled finite-element – boundary-element method, 18, 499–517. | spa |
dc.relation.references | Buildings, M. (2018). J estr. https://doi.org/10.25103/jestr.113.08 | spa |
dc.relation.references | Karahan, N. (2012). Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction, 3495–3505. https://doi.org/10.5194/nhess-12-3495-2012 | spa |
dc.relation.references | Kodama, N., & Komiya, K. (2012). Model tests and FE - modelling of dynamic soil - structure interaction, 19, 1061–1069. https://doi.org/10.3233/SAV-2012-0712 | spa |
dc.relation.references | Sarrazin, M., & Whitman, R. V. (1972). Dynamic soil-structure interaction. Journal of the Structural Division. https://doi.org/10.1016/S0267-7261(99)00019-6 | spa |
dc.relation.references | Field and Laboratory determination of dynamic propieties of natural soil deposit.pdf. (n.d.). | spa |
dc.relation.references | Brennan, A. J., Thusyanthan, N. I., & Madabhushi, S. P. G. (2005). Evaluation of Shear Modulus and Damping, (December), 1488–1497 | spa |
dc.relation.references | CYCLIC BEHAVIOUR AND DYNAMIC PROPERTIES OF SOILS : A CASE OF JIMMA TOWN TESHOME BIRHANU KEBEDE MASTER OF SCIENCE ADDIS ABABA SCIENCE AND TECHNOLOGY JANUARY 2019. (2019), (January). | spa |
dc.relation.references | Dobry, R., Vucetic, M., & Angeles, L. (2014). Dynamic properties and seismic response of soft clay deposits, (May). | spa |
dc.relation.references | Hardin, B. O., & Kalinski, M. E. (2005). Estimating the Shear Modulus of Gravelly Soils, (July), 867–875. | spa |
dc.relation.references | Jia, J., & Solutions, A. (2019). Chapter 2 Dynamic and Cyclic Properties of Soils. https://doi.org/10.1007/978-3-319-40358-8 | spa |
dc.relation.references | Kumar, P., Murali, A., Bhattacharya, S., & Nikitas, G. (2017). Dynamic soil properties for seismic ground response studies in Northeastern India. Soil Dynamics and Earthquake Engineering, 100(February), 357–370. https://doi.org/10.1016/j.soildyn.2017.06.003 | spa |
dc.relation.references | Okur, V., & Akinci, K. (2018). Dynamic Behavior of Soft Subgrade Soils Treated with, 2018. | spa |
dc.relation.references | Zhang, Z. (2017). Dynamics stress – strain behavior of Tianshui soils, (February 2016), 323–335. https://doi.org/10.1007/s10346-016-0694-6 | spa |
dc.relation.references | Pasquali, R., Lai, C. G., & Corigliano, M. (2010). Some Issues in Seismic Analysis and Design of Blockwork Wharves, (December 2008), 102–130. https://doi.org/10.1080/13632460902988992 | spa |
dc.relation.references | Stokoe, K. H., Darendeli, M. B., Gilbert, R. B., Menq, F., & Choi, W. K. (n.d.). Development of a New Family of Normalized Modulus Reduction and Material Damping Curves, 1–10. | spa |
dc.relation.references | Zhang, J., Andrus, R. D., & Juang, C. H. (2005). Normalized Shear Modulus and Material Damping Ratio Relationships, (April), 453–464. | spa |
dc.relation.references | Zhang, J., Andrus, R. D., & Juang, C. H. (2008). Model Uncertainty in Normalized Shear Modulus and Damping Relationships, (January), 24–36. | spa |
dc.relation.references | Miguel, P., Suarez, B. S. B., Cervera, M., & Canet, J. M. (1998). Plate 1 Three dimensional non-linear analysis of a dam. | spa |
dc.relation.references | Num, I. J., & Eng, M. (1993). Plate 1 Analysis of subsonic flow around an aircraft ( Dassault Falkon ) Courtesy of Prof . Ken Morgan , School of Engineering , University ofWales | spa |
dc.relation.references | Carlton, B. (2014). UC Berkeley UC Berkeley Electronic Theses and Dissertations An Improved Description of the Seismic Response of Sites with High Plasticity Soils , Organic Clays , and Deep Soft Soil Deposits by. | spa |
dc.relation.references | D, P. (2009). DE CONTROL DE RESPUESTA SÍSMICA EN COLOMBIA J uan A ndrés O viedo * STATUS OF SEISMIC RESPONSE CONTROL TECHNIQUES IN COLOMBIA, 113–124. | spa |
dc.relation.references | Gallego, M., & Yamin, L. (1999). A MENAZA S ÍSMICA DE C OLOMBIA ”, 12–27. | spa |
dc.relation.references | López-almansa, F., & Montaña, M. A. (2014). Numerical seismic vulnerability analysis of mid-height steel buildings in Bogotá, Colombia. JCSR, 92, 1–14. https://doi.org/10.1016/j.jcsr.2013.09.002 | spa |
dc.relation.references | Rezaeian, S., & Campbell, K. (2012). PACIFIC EARTHQUAKE ENGINEERING Spectral Damping Scaling Factors for Shallow Crustal Earthquakes in Active Tectonic Regions, (July). | spa |
dc.relation.references | Yamin, L. E., Hurtado, A., Rincon, R., Dorado, J. F., & Reyes, J. C. (2017). Probabilistic seismic vulnerability assessment of buildings in terms of economic losses. Engineering Structures, 138, 308–323. https://doi.org/10.1016/j.engstruct.2017.02.013 | spa |
dc.relation.references | Baquero, A. E. (2003). La sismicidad histórica en Colombia, 44(2), 271–283. | spa |
dc.relation.references | Caneva, A., Centro, R., Nariño, U. A., Jesús, E. De, Hurtado, S., Geografía, D. De, & Valle, U. (2004). DE LA AMENAZA SÍSMICA PARA BOGOTÁ. | spa |
dc.relation.references | Geogr, S., Correspondiente, M., Geogr, S., & Exactas, C. (2004). Historia sísmica de bogotá, 1–10. | spa |
dc.relation.references | Guillermo, H., & Avendaño, C. (2010). Análisis histórico de los sismos ocurridos en 1785 y en 1917 en el centro de Colombia and 1917 in the center of Colombia, 153–162. | spa |
dc.relation.references | Iv, O., & Hern, S. (2015). Evaluación de amenaza sísmica en municipios del departamento de Cundinamarca. | spa |
dc.relation.references | La, S. D. E., & Frontal, F. (2011). Estudios de escenarios de daños Enfoque conceptual del problema Sistema de Evaluación de Daños para Análisis de Riesgo - SEDAR. | spa |
dc.relation.references | Carlos, J., & Guarín, O. (2009). ESPECTROS DE DISEÑO CONSIDERANDO INTERACCIÓN DINÁMICA SUELO-ESTRUCTURA. | spa |
dc.relation.references | Erden, A., & Özgenç, B. (2018). The investigation of soil – structure resonance of historical buildings using seismic refraction and ambient vibrations HVSR measurements : a case study from Trabzon in Turkey. Acta Geophysica, (0123456789). https://doi.org/10.1007/s11600-018-0208-0 | spa |
dc.relation.references | Herrera, L. (2013). EVALUACIÓN DE LA INTERACCIÓN DINAMICA SUELO-ESTRUCTURA DE EDIFICACIONES CONSTRUIDAS EN LADERA. | spa |
dc.relation.references | Juan, C., & Santos, N. (2017). Vulnerabilidad de edificios ante resonancia sísmica en Guadalajara y Zapopan por el sismo del 11 de mayo de 2016 MW = 4 . 9. | spa |
dc.relation.references | Wang, Y., Asce, M., Rourke, T. D. O., & Asce, M. (2007). Interpretation of Secant Shear Modulus Degradation Characteristics from Pressuremeter Tests, (December), 1556–1567. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.lemb | Seismic risk | eng |
dc.subject.lemb | Riesgo sísmico | spa |
dc.subject.lemb | Earthquake engineering | eng |
dc.subject.lemb | Ingeniería sísmica | spa |
dc.subject.proposal | Vulnerabilidad sísmica | spa |
dc.subject.proposal | Método elementos finitos | spa |
dc.subject.proposal | Función de transferencia | spa |
dc.subject.proposal | Factor de amplificación | spa |
dc.subject.proposal | Modelo numérico | spa |
dc.subject.proposal | Resonancia sísmica | spa |
dc.subject.proposal | Seismic Resonance | eng |
dc.subject.proposal | Seismic vulnerability | eng |
dc.subject.proposal | Finite element method | eng |
dc.subject.proposal | Transfer function | eng |
dc.subject.proposal | Amplification factor | eng |
dc.subject.proposal | Numerical model | eng |
dc.subject.unesco | Edificio | spa |
dc.subject.unesco | Buildings | eng |
dc.title | Análisis de interacción sísmica suelo- estructura para evaluar vulnerabilidad por resonancia sísmica en edificios entre 3 y 7 pisos en un sector de la localidad de Chapinero- Bogotá | spa |
dc.title.translated | Seismic soil-structure interaction analysis to evaluate seismic resonance vulnerability in buildings between 3 and 7 stories in a sector of the Chapinero-Bogota area | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1024540840.2021.pdf
- Tamaño:
- 32.87 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: