Segregación ecológica de reinitas (Aves: Parulidae) en sistemas agroforestales

dc.contributor.advisorColorado Zuluaga, Gabriel Jaime
dc.contributor.authorYepes Arcila, Natalia Andrea
dc.contributor.researchgroupEcología y Conservación de Fauna y Flora Silvestrespa
dc.coverage.countryColombia
dc.date.accessioned2023-08-01T17:03:12Z
dc.date.available2023-08-01T17:03:12Z
dc.date.issued2023-07-29
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractLa manera en que las especies cercanamente relacionadas segregan su hábitat y los mecanismos que permiten su coexistencia es un problema clave en la ecología de comunidades. Cuando el rango de varias especies se solapa, aquellas que ocupen la misma fracción de un recurso dado deberían diferir en otras dimensiones debido a la complementariedad de nicho o la partición de recursos. En las comunidades de aves, esto ocurre principalmente a través de diferencias en su uso del hábitat. En este trabajo evalué los patrones de segregación de nicho de seis especies de parúlidos Neotropicales (i.e. Cardellina canadensis, Leiothlypis peregrina, Setophaga castanea, S. cerulea, S. fusca y S. pitiayumi) en sistemas agroforestales al norte de la cordillera occidental de Los Andes en el departamento de Antioquia, Colombia. Encontré evidencias de segregación espacial (distribución altitudinal) y alimentaria (distribución vertical, altura y sustrato de alimentación) entre las especies estudiadas que, en conjunto, sugieren patrones de segregación ecológica. El alto grado de solapamiento de nicho en estas mismas variables indica que las interacciones interespecíficas (e.g. competencia) son determinantes para estructurar esta comunidad de parúlidos que coocurren. El gradiente altitudinal (localidad) fue la única de las categorías evaluadas que no presentó solapamiento entre las especies sugiriendo que, de las variables consideradas, esta dimensión espacial puede ser importante para reducir la competencia entre las especies a pesar de sus similitudes ecológicas. (Texto tomado de la fuente)spa
dc.description.abstractThe way in which closely related species segregate by habitat, and the mechanisms that allow their coexistence, is a central question in community ecology. When the ranges of several species overlap (i.e., they are sympatric), those that use the same food resources should differ in other niche dimensions due to niche complementarity or resource partitioning. In bird communities, this primarily occurs through differences in foraging behavior, diet specialization or composition, and habitat use. In this paper, we evaluated how six species of parulid New World warblers (Cardellina canadensis, Leiothlypis peregrina, Setophaga castanea, Setophaga cerulea, Setophaga fusca, and Setophaga pitiayumi) segregate their ecological niches across an elevational gradient of agroforestry systems in the Western Andes of Colombia. We found evidence of elevational and microhabitat segregation for the six warbler species, suggesting patterns of ecological niche partitioning. High levels of niche overlap among these variables indicated that interspecific interactions (e.g., competition) are key for structuring this co-occurring parulid community. In particular, the warblers exhibited a clear distributional pattern across the elevational gradient. This indicates that elevational segregation might be an important dimension in which these species reduce interspecific competition despite their ecological similarity. Our analysis of multiple niche dimensions (i.e., elevational and microhabitat parameters) revealed differential patterns of habitat use that can suggest niche partitioning in ecologically similar species.eng
dc.description.curricularareaÁrea Curricular en Bosques y Conservación Ambientalspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bosques y Conservación Ambientalspa
dc.format.extent49 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84394
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambientalspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlatalo, R.V. (1982). Multidimensional foraging niche organization of foliage-gleaning birds in northern Finland. Ornis Scandinavica, 13(1), 56-71. https://www.jstor.org/stable/3675974spa
dc.relation.referencesAlatalo, R.V. y Alatalo, R.H. (1979). Resource partitioning among a flycatcher guild in Finland. Oikos, 1, 46-54. https://doi.org/10.2307/3544510spa
dc.relation.referencesAltman, J. (1974). Observational study of behavior: sampling methods. Behaviour, 49, 227-267.spa
dc.relation.referencesAtienzar, F., Belda, E.J. y Barba, E. (2013). Coexistence of Mediterranean tits: a multidimensional approach. Ecoscience, 20, 40-47. http://doi.org/10.2980/20-1-3516spa
dc.relation.referencesBeltzer, A.H., Schnack, J.A., Quiroga, M.A., Ducommun, M.P., Virgolini, A.R. y Alessio, V. (2010). Trophic relationships and mechanisms of ecological segregation among heron species in the Parana River floodplain (Birds: Ardeidae). Nova Science Publishers, Hauppauge, New York, USA, 49-94.spa
dc.relation.referencesBhagwat, S.A., Willis, K.J., Birks, J.B. y Whittaker, R.J. (2008). Agroforestry: a refuge for tropical biodiversity? Trends in ecology & evolution, 23(5), 261-267. https://doi.org/10.1016/j.tree.2008.01.005spa
dc.relation.referencesBhardwaj, M., Uniya, V.P., Sanyal, A.K. y Singh, A.P. (2012). Butterfly communities along an elevational gradient in the Tons valley, Western Himalayas: Implications of rapid assessment for insect conservation. Journal of Asia-Pacific Entomology, 15, 207-217. https://doi.org/10.1016/j.aspen.2011.12.003spa
dc.relation.referencesBrehm, G., Colwell, R.K. y Kluge, J. (2007). The role of environment and mid-domain effect on moth species richness along tropical elevational gradient. Global Ecology and Biogeography, 16(2), 205-219. https://doi.org/10.1111/j.1466-8238.2006.00281.xspa
dc.relation.referencesBuckton, S.T. y Ormerod, S.J. (2002). Global patterns of diversity among the specialist birds of riverine landscapes. Freshwater Biology, 47(4), 695-709. https://doi.org/10.1046/j.1365-2427.2002.00891.xspa
dc.relation.referencesBuckton, S.T. y Ormerod, S.J. (2008). Niche segregation of Himalayan river birds. Journal of Field Ornithology, 79(2), 176-185. https://doi.org/10.1111/j.1557-9263.2008.00160.xspa
dc.relation.referencesChesson, P.L. y Warner, R.R. (1981). Environmental variability promotes coexistence in lottery competitive systems. The American Naturalist, 117(6), 923-943. https://doi.org/10.1086/283778spa
dc.relation.referencesChesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31(1), 343-366. https://doi.org/10.1146/annurev.ecolsys.31.1.343spa
dc.relation.referencesCody, M.L. (1968). On the methods of resource division in grassland bird communities. American Naturalist, 102, 107-147. https://doi.org/ 10.2307/2459081spa
dc.relation.referencesColorado, G.J. (2011). Ecology and conservation of Neotropical-Neartic migratory birds and mixed-species flocks in the Andes [Tesis de doctorado, The Ohio State University].spa
dc.relation.referencesColorado, G.J., Mehlman, D. y Valencia, G. (2016). Effects of floristic and structural features of shade agroforestry plantations on the migratory bird community in Colombia. Agroforestry Systems, 92(3), 677-691. doi:10.1007/s10457-016-0034-9spa
dc.relation.referencesColorado, G.J. y Rodewald, A.D. (2016). Patterns of change in body condition in wintering Neotropical-Neartic migratory birds in shaded plantations in the Andes. Agroforestry Systems, 91, 1129-1137.spa
dc.relation.referencesCraig, R.J. (1987). Divergent prey selection in two species of waterthrushes (Seiurus). The Auk, 104(2), 180-187. https://doi.org/10.1093/auk/104.2.180spa
dc.relation.referencesDavid, S. (2016). Foraging niche structure and coexistence in a highly diverse community of Amazonian antbirds (Thamnophilidae: Aves). [Tesis de maestría, The University of British Columbia]spa
dc.relation.referencesDe Clerck, F. y Negeros-Castilli, P. (2000). Plant species of traditional Mayan home-gardens of Mexico as analogs for mulistrata agroforests. Agroforestry Systems, 48(3), 303-317.spa
dc.relation.referencesDe la Zerda, S. y Stauffer, D. (1998). Habitat selection by Blackburnian Warblers wintering in Colombia. Journal of Field Ornithology, 69:457-465. https://doi.org/10.2307/4514343spa
dc.relation.referencesDouglass, J.G., France, K.E. y Duffy, J.E. (2010). Seasonal and interannual change in a Chesapeake Bay eelgrass community: insights into biotic and abiotic control of community structure. Limnology and Oceanography, 55(4), 1499-1520. https://doi.org/10.4319/lo.2010.55.4.1499spa
dc.relation.referencesEwert, D.N. y Askins, R.A. (1991). Flocking behavior of migratory warblers in winter in Virgin Islands. The Condor, 93(4), 864-868. https://doi.org/10.2307/3247721spa
dc.relation.referencesFreckleton, R. y Harvey, P.H. (2006). Detecting non-brownian trait evolution in adaptive radiations. PLoS Biology, 4(11), 365-373. https://doi.org/10.1371/journal.pbio.0040373spa
dc.relation.referencesFreeman, B.G. y Freeman, A.M.C. (2014). Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proceedings of the National Academy of Sciences, 111(12), 4490-4494. https://doi.org/10.1073/pnas.1318190111spa
dc.relation.referencesGarcía, J.T. y Arroyo, B.E. (2005) Food-niche differentiation in sympatric Hen Circus cyaneus and Montagu’s Harriers Circus pygargus. Ibis, 147, 144-154. https://doi.org/10.1111/j.1474-919x.2004.00377.xspa
dc.relation.referencesGokula, V. y Vijayan, L. (2000). Foraging pattern of birds during the breeding season in thorn forest of Mudumalai wildlife sanctuary, Tamil Nadu, Southern India. Tropical Ecology, 41(2), 195-208.spa
dc.relation.referencesGordon, C.E. (2000). The coexistence of species. Revista Chilena de Historia Natural, 73, 175-198. http://doi.org/10.4067/S0716-078X2000000100016spa
dc.relation.referencesGotelli, N.J., Graves, G.R. y Rahbek, C. (2010). Macroecological signals of species interactions in the Danish avifauna. Proceedings of the National Academy of Sciences, 107(11), 5030-5035. https://doi.org/10.1073/pnas.0914089107spa
dc.relation.referencesGotelli, N.J., Hart, E.M. y Ellison, A.M. (2015). EcoSimR: Null model analysis for ecological data. R package version 0.1.0. https://doi.org/10.5281/zenodo.16522spa
dc.relation.referencesGraves, G.R. (1987). A cryptic new species of antpitta (Formicariidae: Grallaria) from the Peruvian Andes. The Wilson Bulletin, 99(3), 313-321.spa
dc.relation.referencesGreenberg, R., Bichier, P. y Sterling, J. (1997). Bird populations in rustic and planted shade coffee plantations of eastern Chiapas, Mexico. Biotropica, 29(4), 501-514. https://doi.org/10.1111/j.1744-7429.1997.tb00044.xspa
dc.relation.referencesHamer, K.C., Newton, R.J., Edwards, F.A., Benedick, S., Bottrell, S.H. y Edwards, D.P. (2015). Impacts of selective logging on insectivorous birds in Borneo: the importance of trophic position, body size and foraging height. Biological Conservation, 188, 82-88. https://doi.org/10.1016/j.biocon.2014.09.026spa
dc.relation.referencesHammer, Ø., Harper, D.A. y Ryan, P.D. (2020). PAST: Paleontological Statistics software package for education and data analysis. (Versión 4.02). Windows. Palentología Electrónica.spa
dc.relation.referencesHart, P.J.B. (2003). Habitat use and feeding behavior in two closely related fish species, the three-spined and nine-spined stickleback: an experimental analysis. Journal of Animal Ecology, 72, 777-783. https://doi.org/10.1046/j.1365-2656.2003.00747.xspa
dc.relation.referencesHarvey, C.A. y Villalobos, J.A.G. (2007). Agroforestry systems conserve species-rich modified assemblages of tropical birds and bats. Biodiversity and Conservation, 16(8), 2257-2292.spa
dc.relation.referencesHolm, E. y Edney, E.B. (1973). Daily activity of Namib Desert arthropods in relation to climate. Ecology, 54, 45-56. https://doi.org/10.2307/1934373spa
dc.relation.referencesHsieh, F. y Chen, C.C. (2011). Does niche-overlap facilitate mixed-species flocking in birds?. Journal of Ornithology, 152(4), 955. https://doi.org/10.1007/s10336-011-0678-1spa
dc.relation.referencesHutchinson, G.E. (1959). Homage to Santa Rosalia, or why are there so many different kinds of animals? The American Naturalist, 93, 145-159. https://doi.org/10.2307/2458768spa
dc.relation.referencesHutchinson, G.E. (1961). The paradox of the plankton. The American Naturalist, 95(882), 137-145. https://doi.org/10.2307/2458386spa
dc.relation.referencesJohansson, F. y Brodin, T. (2003). Effects of fish predators and abiotic factors on dragonfly community structure. Journal of Freshwater Ecology, 18(3), 415-423. https://doi.org/10.1080/02705060.2003.9663977spa
dc.relation.referencesKovach, W.L. (2013). MVSP-A Multivariate Statistical Package (Versión 3.22). Windows. Wales: Kovach Computing Services.spa
dc.relation.referencesKrebs, C.J. (1989). Ecological methodology. Harper and Row, New York, USA.spa
dc.relation.referencesLabropoulou, M. y Eleftheriou, A. (2005). The foraging ecology of two pairs of congeneric demersal fish species: importance of morphological characteristics in prey selection. Journal of Fish Biology, 50(2), 324-340. https://doi.org/10.1111/j.1095-8649.1997.tb01361.xspa
dc.relation.referencesLangkilde, T. y Shine, R. (2004). Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia 140, 684-691. https://doi.org/10.1007/s00442-004-1640-1spa
dc.relation.referencesLara, C., Martínez-García, V., Ortiz-Pulido, R., Bravo-Cadena, J., Loranca, S. y Córdoba-Aguilar, A. (2011). Temporal-spatial segregation among hummingbirds foraging on honeydew in a temperate forest in Mexico. Current Zoology, 57(1), 56-62. https://doi.org/10.1093/czoolo/57.1.56spa
dc.relation.referencesLevine, J.M. y HilleRisLambers, J. (2009). The importance of niches for the maintenance of species diversity. Nature, 461, 254-257.spa
dc.relation.referencesLoyn, R.H. (2002). Patterns of ecological segregation among forest and woodland birds in south-eastern Australia. Ornithological Science, 1(1), 7-27. https://doi.org/10.2326/osj.1.7spa
dc.relation.referencesLovette, I.J. y Hochanchka, W.M. (2006). Simultaneous effects of phylogenetic niche conservatism and competition on avian community structure. Ecology, 87(7), S14-S28. https://doi.org/10.1890/0012-9658(2006)87[14:SEOPNC]2.0.CO;2spa
dc.relation.referencesLovette, I.J., Pérez-Emán, J.L., Sullivan, J.P., Banks, R.C., Fiorentino, I., Córdoba-Córdoba, S., Echeverry-Galvis, M., Barker, F.K., Burns, K.J., Klicka, J., Lanyon, S.M. y Bermingham, E. (2010). A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves). Molecular phylogenetics and evolution, 57(2), 753-770. https://doi.org/10.1016/j.ympev.2010.07.018spa
dc.relation.referencesMacArthur, R.H. (1958). Population ecology of some warblers of northeastern coniferous forests. Ecology, 39(4), 599-619. https://doi.org/10.2307/1931600spa
dc.relation.referencesMacArthur, R.H. (1972). Geographical ecology. Patterns in the distribution of species. Princeton University Press, Princeton.spa
dc.relation.referencesMacArthur, R.H. y Levins, R. (1964). Competition, hábitat selection and carácter displacement in a patchy environment. Proceedings of the National Academy of Sciences, 51, 1207-1210. https://doi.org/10.1073/pnas.51.6.1207spa
dc.relation.referencesMansor, M.S. y Mohd Sah, S.A. (2012). Foraging patterns reveal niche separation in tropical insectivorous birds. Acta Ornithologica, 47, 27-36. https://doi.org/ 10.3161/000164512X653890spa
dc.relation.referencesMansor, M.S. y Ramli, R. (2017). Foraging niche segregation in Malaysian babblers (Family: Timaliidae). PloS one, 12(3). 10.1371/journal.pone.0172836spa
dc.relation.referencesMcCoy, E.D. (1990). The distribution of insects along elevational gradients. Oikos, 58(3), 313-322.spa
dc.relation.referencesMiles, D.B. y Ricklefs, R.E. (1984). The correlation between ecology and morphology in deciduous forest passerine birds. Ecology, 9, 520-528. https://doi.org/10.2307/1939141spa
dc.relation.referencesMuñoz, J.M. y Colorado, G.J. (2012). Foraging ecology of the Cerulean Warbler (Setophaga cerulea) in Andean agroforestry ecosystems. Ornitologia Neotropical, 23, 359-366.spa
dc.relation.referencesNavarro, J., Votier, S.C., Aguzzi, J., Chiesa, J.J., Forero, M.G. y Phillips, R.A. (2013). Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PloS One, 8(4), e62897. https://doi.org/10.1371/journal.pone.0062897spa
dc.relation.referencesNewell, F.L., Beachy, T.A., Rodewald, A.D., Rengifo, C.G., Ausprey, I.J. y Rodewald, P.G. (2014). Foraging behavior of migrant warblers in mixed‐species flocks in Venezuelan shade coffee: interspecific differences, tree species selection, and effects of drought. Journal of Field Ornithology, 85(2), 134-151. https://doi.org/10.1111/jofo.12056spa
dc.relation.referencesNorris, D.R., Marra, P.P., Kyser, T.K., Sherry, T.W. y Ratcliffe, L.M. (2004). Tropical Winter hábitats limits reproductive success on the temperate breeding grounds in a migratory bird. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1534), 59-64. https://doi.org/10.1098/rspb.2003.2569spa
dc.relation.referencesNudds, T.D. y Bowlby, J.N. (1984). Predator-prey size relationships in North American dabbling ducks. Canadian Journal of Zoology, 63, 2002-2008. https://doi.org/10.1139/z84-293spa
dc.relation.referencesPaiva, V.H., Geraldes, P., Ramírez, I., Meirinho, A., Garthe, S. y Ramos, J.A. (2010). Oceanographic characteristics of areas used by Cory’s Shearwaters during short and long foraging trips in the North Atlantic. Marine Biology, 157:1385-1399.spa
dc.relation.referencesPaiva, V.H., Geraldes, P., Marques, V., Rodríguez, R., Garthe, S. y Ramos, J.A. (2013). Effects of environmental variability on different trophic levels of the North Atlantic food web. Marine Ecology Progress Series, 477, 15-28. https://doi.org/ 10.3354/meps10180spa
dc.relation.referencesPerfecto, I., Rice, R.A., Greenberg, R. y Van der Voort, M.E. (1996). Shade coffee: a disappearing refuge for biodiversity: shade coffee plantations can contain as much biodiversity as forest habitats. BioScience, 46(8), 598-608. https://doi.org/10.2307/1312989spa
dc.relation.referencesPetit, D.R., Lynch, J.F., Hutto, R.L. y Blake, J.G. (1995). Habitat Use And Conservation In The Neotropics. En T.E. Martin y D.M. Finch (Ed.), Ecology and management of Neotropical migratory birds: a synthesis and review of critical issues (pp. 145-197). Oxford University Press.spa
dc.relation.referencesPetit, L.J. y Petit, D.R. (2003). Evaluating the importance of human‐modified lands for Neotropical bird conservation. Conservation biology, 17(3), 687-694. https://doi.org/10.1046/j.1523-1739.2003.00124.xspa
dc.relation.referencesPianka, E.R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53-74. https://doi.org/10.1146/annurev.es.04.110173.000413spa
dc.relation.referencesR Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/spa
dc.relation.referencesRabosky, D.L. y Lovette, I.J. (2008). Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society, 275(1649), 2363-2371. https://doi.org/10.1098/rspb.2008.0630spa
dc.relation.referencesRandin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., Vittoz, P., Thuiller, W. y Guisan, A. (2009). Climate change and plant distribution: local models predict high‐elevation persistence. Global Change Biology, 15(6), 1557-1569. https://doi.org/10.1111/j.1365-2486.2008.01766.xspa
dc.relation.referencesRemsen, J.V. y Robinson, S.K. (1990). A classification scheme for foraging behavior of birds in terrestrial habitats. Studies in Avian Biology, 13, 144-160.spa
dc.relation.referencesRobertson, O.J., McAlpine, C., House, A. y Maron, M. Influence of interspecific competition and landscape structure on spatial homogenization of avian assemblages. PloS One, 28, 8(5), e65299. https://doi.org/10.1371/journal.pone.0065299spa
dc.relation.referencesRobinson, S.K. y Holmes, R.T. (1982). Foraging behavior of forest birds: the relationship among search tactics, diet and habitat structure. Ecology, 63, 1918-1931. https://doi.org/ 10.2307/1940130spa
dc.relation.referencesSæther, B.E. (1983). Habitat selection, foraging niches and horizontal spacing of Willow Warbler Phylloscopus trochilus and Chiffchaff P. collybita in an area of sympatry. Ibis, 125, 24-32. 10.1111/j.1474-919X.1983.tb03080.xspa
dc.relation.referencesSalewski, V., Bairlein, F. y Leisler, B. (2003). Niche partitioning of two Paleartic passerine migrants with Afrotropical residents in their West African winter quarters. Behavioral Ecology, 14(4), 493-502. https://doi.org/10.1093/beheco/arg021spa
dc.relation.referencesSalewski, V., Almasi, B., Heuman, A., Thoma, M. y Schlageter, A. (2007). Agonistic behaviour of Palaearctic passerine migrants at a stopover site suggests interference competition. Ostrich-Journal of African Ornithology, 78(2), 349-355. https://doi.org/10.2989/OSTRICH.2007.78.2.37.117spa
dc.relation.referencesSchall, R. (1991). Estimation in generalized linear models with random effects. Biometrika, 78, 4, 719-727. https://doi.org/10.2307/2336923spa
dc.relation.referencesSchuett, G.W. Hardy, D.L., Greene, H.W., Earley, R.L., Grober, M.S., Van Kirk, E.A. y Murdoch, W.J. (2005). Sympatric rattlesnakes with contrasting mating systems show differences in seasonal patterns of plasma sex steroids. Animal Behaviour 70(2), 257-266. https://doi.org/10.1016/j.anbehav.2004.09.028spa
dc.relation.referencesSchoener, T.W. (1974). Resource partitioning in ecological communities. Science, 185, 27-39. http://doi.org/10.2307/1738612spa
dc.relation.referencesSexton, J.P., McIntyre, P.J., Angert, A.L. y Rice, K.J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution and Systematics, 40, 415-436. https://doi.org/10.1146/annurev.ecolsys.110308.120317spa
dc.relation.referencesSmith, O. y Wassmer, T. (2016). An ethogram of commonly observed behaviors of the endangered Bridled White-eye (Zosterops conspicillatus) in a Zoo Setting. The Wilson Journal of Ornithology, 128(3), 647-653. https://doi.org/10.1676/1559-4491-128.3.647spa
dc.relation.referencesSodhi, N.S. y Paszkowski, C.A. (1995). Habitat Use and Foraging Behavior of Four Parulid Warblers in a Second-Growth Forest. Journal of Field Ornithology, 66(2), 277-288. https://www.jstor.org/stable/4514017spa
dc.relation.referencesSPSS Inc. (2017). SPSS Statistics (Version 25.0). Windows. Chicago: SPSS Inc.spa
dc.relation.referencesStenchly, K., Clough, Y., Tscharntke, T. (2012). Spider species richness in cocoa agroforestry systems, comparing vertical strata, local management and distance to forest. Agriculture, Ecosystems and Environment, 149, 189-194. https://doi.org/10.1016/j.agee.2011.03.021spa
dc.relation.referencesTilman, D. (1982). Resource competition and community structure. Princeton university press.spa
dc.relation.referencesVieira, E.M. y Port, D. (2007). Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. Journal of Zoology, 272, 57-63. https://doi.org/10.1111/j.1469-7998.2006.00237.xspa
dc.relation.referencesWebb, C.O., Ackerly, D.D., McPeek, M.A. y Donoghue, M.J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448spa
dc.relation.referencesWelsh, D.A. y Logheed, S.C. (1996). Relationships of bird community structure and species distribution to two environmental gradients in the northern boreal forest. Ecography, 19(2), 194-208. https://doi.org/10.1111/j.1600-0587.1996.tb00168.xspa
dc.relation.referencesWereszczuk, A. y Zalewski, A. (2015) Spatial niche segregation of sympatric Stone Marten and Pine Marten. Avoidance of competition or selection of optimal habitat? PloS One, 10(10), e0139852. https://doi.org/ 10.1371/journal.pone.0139852spa
dc.relation.referencesWesolowski, T. (2003). Bird community dynamics in a primaveral forest-is interspecific competition important. Ornis Hungarica, 12(13), 51-62.spa
dc.relation.referencesWilliams, W.T., Kikkawa, J. y Morris, D.K. (1972). A numerical study of agonistic behaviour in the greybreasted silvereye (Zosterops lateralis). Animal Behaviour, 20(1), 155-165. https://doi.org/10.1016/S0003-3472(72)80186-6spa
dc.relation.referencesWillis, E. O. (1980). Ecological roles of migratory and resident birds on Barro Colorado Island, Panama. En A. Keast y E.S. Morton (Ed.), Migrant birds in the Neotropics: ecology, behavior, distribution and conservation (pp. 205-225). Smithsonian Institution Press.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc590 - Animales::598 - Pájarosspa
dc.subject.lembAves - Habitat
dc.subject.lembGestión de vida silvestre
dc.subject.proposalSegregación ecológicaspa
dc.subject.proposalEcological segregationeng
dc.subject.proposalGradiente altitudinalspa
dc.subject.proposalAltitudinal gradienteng
dc.subject.proposalForaging substrateeng
dc.subject.proposalSustrato de alimentaciónspa
dc.subject.proposalForaging techniqueseng
dc.subject.proposalManiobras de alimentaciónspa
dc.subject.proposalPartición de nichospa
dc.subject.proposalNiche partitioningeng
dc.subject.proposalNiche overlapeng
dc.subject.proposalSolapamiento de nichospa
dc.subject.proposalZona de simpatríaspa
dc.subject.proposalSympatry zoneeng
dc.titleSegregación ecológica de reinitas (Aves: Parulidae) en sistemas agroforestalesspa
dc.title.translatedEcological segregation in Warblers (Aves: Parulidae) in agroforestry systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017156847.2020.pdf
Tamaño:
681.73 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bosques y Conservación Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: