Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas

dc.contributor.advisorRivera Rodríguez, Sergio Raúl
dc.contributor.authorRodríguez Fajardo, Fabián Andrés
dc.contributor.researchgroupGrupo de Investigación EMC-UNspa
dc.date.accessioned2021-07-27T20:50:20Z
dc.date.available2021-07-27T20:50:20Z
dc.date.issued2020-12-10
dc.descriptionilustraciones, tablasspa
dc.description.abstractUna de las características más importantes de las microredes y su inclusión en los sistemas de distribución eléctricos es que tienen la posibilidad de mejorar significativamente la confiabilidad del sistema gracias a su capacidad de reconfiguración ante eventos y de poder operar aisladas de la red, entre muchas otras ventajas. En tal virtud, existe un gran potencial en las microredes conectadas a los sistemas de distribución de ser aprovechadas con el fin de lograr los requerimientos regulatorios de calidad del servicio que cada día son más exigentes, además de poder optimizar los ingresos de los operadores de red al aumentar los incentivos por mejoramiento de los índices de calidad. En este trabajo se propone una metodología de evaluación de los puntos de conexión de múltiples microredes en un sistema de distribución que mejoran la confiabilidad de todo el sistema, basándose en el análisis de redes complejas (CNA), una perspectiva de los sistemas de potencia que permite evaluar un sistema eléctrico como un grafo. Para ello se modela un sistema de prueba desde el punto de vista de CNA utilizando el software MATLAB y posteriormente, como validación de la propuesta de este trabajo, se evalúa la confiabilidad del sistema conectando múltiples microredes en nodos críticos provistos por el CNA haciendo uso la herramienta NEPLAN de simulación de sistemas de potencia. (Texto tomado de la fuente)spa
dc.description.abstractOne of the most important characteristics of microgrids and their inclusion in electrical distribution systems is that microgrids have the possibility of significantly improving the reliability of the system thanks to their ability to reconfigure in the event of failures and to be able to operate in island mode, among other advantages. Therefore, there is great potential in the multiple microgrids connected to distribution systems to be used in order to achieve the regulatory requirements for quality of service that are becoming more demanding every day, as well as being able to optimize the income of network operators by increasing incentives for improving quality indexes. In this work, a methodology for evaluating the connection points of multiple microgrids in a distribution system that improve the reliability of the entire system is proposed, based on the Complex Networks Analysis (CNA), a perspective of power systems that allows to make an evaluation of an electrical system as a graph. To achieve this, a test system is modeled from the CNA perspective using MATLAB software and subsequently, in order to validate the method proposed in this work, the reliability of the system is evaluated by connecting multiple microgrids at critical nodes provided by the CNA using the NEPLAN power system simulation tool. (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaGrupo de trabajo en Inteligencia Computacional Aplicada al Sector Eléctricospa
dc.description.researchareaAnálisis de Sistemas de Potenciaspa
dc.format.extent81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79855
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[1] A. A. Chowdhury and D. O. Koval, Power Distribution System Reliability. Hoboken, NJ, USA: John Wiley & Sons, Inc., 3 2009. [Online]. Available: https://ieeexplore.ieee.org/book/5361031http://doi.wiley.com/10.1002/9780470459355spa
dc.relation.references[2] R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems, 2nd ed. Boston, MA: Springer US, 1996. [Online]. Available: http://link.springer.com/10. 1007/978-1-4899-1860-4spa
dc.relation.references[3] R. Allan, R. Billinton, A. Breipohl, and C. Grigg, “Bibliography on the application of probability methods in power system reliability evaluation,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 51–57, 1999. [Online]. Available: http://ieeexplore.ieee.org/document/744483/spa
dc.relation.references[4] P. Jahangiri and M. Fotuhi-Firuzabad, “Reliability assessment of distribution system with distributed generation,” in 2008 IEEE 2nd International Power and Energy Conference. IEEE, 12 2008, pp. 1551–1556. [Online]. Available: http://ieeexplore.ieee.org/document/4762728/spa
dc.relation.references[5] M. Makandar, C. S. R. Atla, and S. Velamuri, “Reliability assessment of distribution system with renewable Distributed Generation,” in 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE). IEEE, 1 2016, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/document/ 7516365/spa
dc.relation.references[6] S. Xin, C. Yan, Z. Xingyou, and W. Chuanzhi, “A novel multi-microgrids system reliability assessment algorithm using parallel computing,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 11 2017, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/document/8245363/spa
dc.relation.references[7] M. A. Al-Shehri, Y. Guo, and G. Lei, “A Systematic Review of Reliability Studies of Grid-Connected Renewable Energy Microgrids,” in 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), no. June. IEEE, 6 2020, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9179273/spa
dc.relation.references[8] Z. Bie, P. Zhang, G. Li, B. Hua, M. Meehan, and X. Wang, “Reliability Evaluation of Active Distribution Systems Including Microgrids,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2342–2350, 11 2012. [Online]. Available: http://ieeexplore.ieee.org/document/6238340/spa
dc.relation.references[9] P. M. Costa and M. A. Matos, “Assessing the contribution of microgrids to the reliability of distribution networks,” Electric Power Systems Research, vol. 79, no. 2, pp. 382–389, 2 2009. [Online]. Available: https://linkinghub.elsevier.com/retrieve/ pii/S0378779608002058spa
dc.relation.references[10] F. Tooryan and E. R. Collins, “Optimum size and placement of distributed generators in microgrid based on reliability concept,” in 2018 IEEE Power and Energy Conference at Illinois (PECI), vol. 2018-Janua. IEEE, 2 2018, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/8334992/spa
dc.relation.references[11] T. Adefarati and R. Bansal, “Reliability assessment of distribution system with the integration of renewable distributed generation,” Applied Energy, vol. 185, pp. 158–171, 1 2017. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2016.10.087https://linkinghub.elsevier.com/retrieve/pii/S0306261916315318spa
dc.relation.references[12] Comisión de Regulación de Energía y Gas CREG, Ministerio de Minas y Energía, and Republica de Colombia, “Resolución CREG No. 015 de 2018,” p. 239, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/65f1aaf1d57726a9025822900064dac?OpenDocumentspa
dc.relation.references[13] M. Castaño-Gómez and J.J. García-Rendón, “Análisis de los incentivos económicos en la capacidad instalada de energía solar fotovoltaica en Colombia,” Lecturas de Economía, no. 93, pp. 23–64, 7 2020. [Online]. Available: https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/338727spa
dc.relation.references[14] Comisión de Regulación de Energía y Gas CREG; Ministerio de Minas y Energía; Republica de Colombia, “Resolución CREG No. 030 de 2018,” p. 13, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191/$FILE/Creg030-2018.pdfspa
dc.relation.references[15] Comisión de Regulación de Energía y Gas CREG; Ministerio de Minas y Energía; Republica de Colombia, “Resolución CREG No. 038 de abril de 2018,” p. 20, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/71e64d5b21da40e8052582830078b66e/$FILE/Creg038-2018.pdfspa
dc.relation.references[16] R. Kaduru and N. S. Gondlala, “Distribution System Reliability with Distributed Generation Based on Customer Scattering,” Advances in Electrical and Electronic Engineering, vol. 13, no. 2, 6 2015. [Online]. Available: http://advances.utc.sk/index.php/AEEE/article/view/1025spa
dc.relation.references[17] Ke Sun, “Complex Networks Theory: A New Method of Research in Power Grid,” in 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, vol. 2005. IEEE, 2005, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/1547099/spa
dc.relation.references[18] B. Liu, Z. Li, X. Chen, Y. Huang, and X. Liu, “Recognition and Vulnerability Analysis of Key Nodes in Power Grid Based on Complex Network Centrality,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 3, pp. 346–350, 2018.spa
dc.relation.references[19] Y. Nurdin, “Understanding the Cascading Failures in Indonesian Power Grids with Complex Network Theory,” in 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). IEEE, 8 2019, pp. 50–55. [Online]. Available: https://ieeexplore.ieee.org/document/8875659/spa
dc.relation.references[20] A. B. Nasiruzzaman and H. R. Pota, “Transient stability assessment of smart power system using complex networks framework,” in IEEE Power and Energy Society General Meeting, 2011.spa
dc.relation.references[21] A. Dwivedi, X. Yu, and P. Sokolowski, “Identifying vulnerable lines in a power network using complex network theory,” in 2009 IEEE International Symposium on Industrial Electronics, no. ISlE. IEEE, 7 2009, pp. 18–23. [Online]. Available: http://ieeexplore.ieee.org/document/5214082/spa
dc.relation.references[22] A. T. Alexandridis and P. C. Papageorgiou, “A complex network deployment suitable for modern power distribution analysis at the primary control level,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 9186–9191, 2017. [Online]. Available: https://doi.org/10.1016/j.ifacol.2017.08.1272spa
dc.relation.references[23] M. Saleh, Y. Esa, N. Onuorah, and A. A. Mohamed, “Optimal microgrids placement in electric distribution systems using complex network framework,” 2017 6th International Conference on Renewable Energy Research and Applications, ICRERA 2017, vol. 2017-Janua, pp. 1036–1040, 2017.spa
dc.relation.references[24] EPRI, “Strategic Insights on Security, Quality, Reliability, and Availability,” EPRI, Tech. Rep., 2005. [Online]. Available: https://www.epri.com/research/products/ 000000000001008566spa
dc.relation.references[25] R. Billinton and R. Allan, “Power-system reliability in perspective,” Electronics and Power, vol. 30, no. 3, p. 231, 1984. [Online]. Available: https://digital-library.theiet. org/content/journals/10.1049/ep.1984.0118spa
dc.relation.references[26] R. Billinton and R. N. Allan, Reliability Evaluation of Engineering Systems, 2nd ed. Boston, MA: Springer US, 1992, vol. 43, no. 4. [Online]. Available: http://link.springer.com/10.1007/978-1-4899-0685-4spa
dc.relation.references[27] M. A. Bucher, M. Vrakopoulou, and G. Andersson, “Probabilistic N-1 security assessment incorporating dynamic line ratings,” in IEEE Power and Energy Society General Meeting, 2013.spa
dc.relation.references[28] EPRI, “Value Modeling for Reliability of Distribution and Transmission Systems,” Tech. Rep. 3, 2006. [Online]. Available: https://www.epri.com/research/products/ 000000000001012501spa
dc.relation.references[29] G. C. Loehr, “The “good” Blackout: The Northeast Power Failure of 9 November 1965 [History],” pp. 84–96, 5 2017.spa
dc.relation.references[30] J. McCalley, S. Asgarpoor, L. Bertling, R. Billinton, H. Chao, J. Chen, J. Endrenyi, R. Fletcher, A. Ford, C. Grigg, G. Hamoud, D. Logan, A. P. Meliopoulos, M. Ni, N. Rau, L. Salvaderi, M. Schilling, Y. Schlumberger, A. Schneider, and C. Singh, “Probabilistic security assessment for power system operations,” in 2004 IEEE Power Engineering Society General Meeting, vol. 1, 2004, pp. 212–220.spa
dc.relation.references[31] W. Li and J. Zhou, “Probabilistic reliability assessment of power system operations,” Electric Power Components and Systems, vol. 36, no. 10, pp. 1102–1114, 10 2008.spa
dc.relation.references[32] Y. Sun, L. Cheng, X. Ye, J. He, and P. Wang, “Overview of power system operational reliability,” in 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2010, 2010, pp. 166–171.spa
dc.relation.references[33] W. Li, “Evaluating Mean Life of Power System Equipment with Limited End-of-Life Failure Data,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 236–242, 2 2004.spa
dc.relation.references[34] R. Billinton and W. Li, Reliability Assessment of Electric Power Systems Using Monte Carlo Methods, 1st ed. Boston, MA: Springer US, 1994. [Online]. Available: http://link.springer.com/10.1007/978-1-4899-1346-3spa
dc.relation.references[35] R. Billinton and A. Jonnavithula, “Variance reduction techniques for use with sequential Monte Carlo simulation in bulk power system reliability evaluation,” in Canadian Conference on Electrical and Computer Engineering, vol. 1. IEEE, 1996, pp. 416–419.spa
dc.relation.references[36] Y. Wang, C. Guo, Q. Wu, and S. Dong, “Adaptive sequential importance sampling technique for short-term composite power system adequacy evaluation,” IET Generation, Transmission and Distribution, vol. 8, no. 4, pp. 730–741, 2014.spa
dc.relation.references[37] Q. Chen and L. Mili, “Composite power system vulnerability evaluation to cascading failures using importance sampling and antithetic variates,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2321–2330, 2013.spa
dc.relation.references[38] P. Jirutitijaroen and C. Singh, “Comparison of simulation methods for power system reliability indexes and their distributions,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 486–493, 5 2008.spa
dc.relation.references[39] R. H. Lasseter, “Smart distribution: Coupled microgrids,” in Proceedings of the IEEE, vol. 99, no. 6. Institute of Electrical and Electronics Engineers Inc., 2011, pp. 1074– 1082.spa
dc.relation.references[40] N. D. Hatziargyriou, A. Dimeas, A. G. Tsikalakis, J. A. Pecas Lopes, G. Kariniotakis, and J. Oyarzabal, “Management of microgrids in market environment,” in 2005 International Conference on Future Power Systems, vol. 2005. IEEE Computer Society, 2005.spa
dc.relation.references[41] P. M. Costa and M. A. Matos, “Economic analysis of microgrids including reliability aspects,” in 2006 9th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS, 2006.spa
dc.relation.references[42] A. Abdulkarim, N. Faruk, A. O. Oloyede, L. A. Olawoyin, M. F. Akorede, I. S. Madugu, S. M. Abdelkader, J. D. Morrow, and Y. A. Adediran, “Reliability Study of Stand-alone Hybrid Renewable Energy Microgrids,” Iranian Journal of Science and Technology - Transactions of Electrical Engineering, vol. 43, no. 1, pp. 411–425, 7 2019. [Online]. Available: https://link.springer.com/article/10.1007/s40998-018-0119-8spa
dc.relation.references[43] E. Zio, “Reliability Analysis of Complex Network Systems: Research and Practice in Need,” IEEE Transactions on Reliability, vol. 57, no. 3, pp. 1–4, 2008.spa
dc.relation.references[44] J. Huang, Y. Feng, and S. Zhang, “Research of complex system theory application on reliability analysis of network system,” Proceedings of 2009 8th International Conference on Reliability, Maintainability and Safety, ICRMS 2009, pp. 1141–1145, 2009.spa
dc.relation.references[45] M. Newman, Networks: An Introduction. Oxford University Press, 3 2010. [Online]. Available: https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650spa
dc.relation.references[46] M. E. J. Newman, “The Structure and Function of Complex Networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 1 2003. [Online]. Available: http://epubs.siam.org/doi/10.1137/S003614450342480http://arxiv.org/abs/condmat/0303516http://dx.doi.org/10.1137/S003614450342480spa
dc.relation.references[47] R. Shields, “Cultural Topology: The Seven Bridges of Königsburg, 1736,” Theory, Culture & Society, vol. 29, no. 4-5, pp. 43–57, 7 2012. [Online]. Available: http://journals.sagepub.com/doi/10.1177/0263276412451161spa
dc.relation.references[48] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97, 1 2002. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.74.47spa
dc.relation.references[49] J. Kim and T. Wilhelm, “What is a complex graph?” Physica A: Statistical Mechanics and its Applications, vol. 387, no. 11, pp. 2637–2652, 2008.spa
dc.relation.references[50] A. B. Nasiruzzaman and H. R. Pota, “Critical node identification of smart power system using complex network framework-based centrality approach,” in NAPS 2011 - 43rd North American Power Symposium, 2011.spa
dc.relation.references[51] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton University Press, 12 2010. [Online]. Available: https://www.degruyter.com/document/doi/10.1515/9781400835355/htmlspa
dc.relation.references[52] L. A. Machuca Moreno, “Análisis de estabilidad transitoria basado en teoría de redes complejas y el fenómeno de percolación,” Universidad Nacional de Colombia, 2017. [Online]. Available: http://bdigital.unal.edu.co/61221/spa
dc.relation.references[53] R. Christie, “Power Systems Test Case Archive - 30 Bus Power Flow Test Case,” 1993. [Online]. Available: http://labs.ece.uw.edu/pstca/pf30/pg tca30bus.htmspa
dc.relation.references[54] G. Zhang, C. Wang, J. Zhang, J. Yang, Y. Zhang, and M. Duan, “Vulnerability assessment of bulk power grid based on complex network theory,” 3rd International Conference on Deregulation and Restructuring and Power Technologies, DRPT 2008, no. April, pp. 1554–1558, 2008.spa
dc.relation.references[55] G. Chen, Z. Y. Dong, D. J. Hill, and G. H. Zhang, “An improved model for structural vulnerability analysis of power networks,” Physica A: Statistical Mechanics and its Applications, vol. 388, no. 19, pp. 4259–4266, 10 2009. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378437109004804spa
dc.relation.references[56] I. Rajasingh, B. Rajan, and I. D. Florence, “Betweeness-centrality of grid networks,” in ICCTD 2009 - 2009 International Conference on Computer Technology and Development, vol. 1, 2009, pp. 407–410.spa
dc.relation.references[57] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7821–7826, 12 2001. [Online]. Available: http://arxiv.org/abs/condmat/0112110http://dx.doi.org/10.1073/pnas.122653799spa
dc.relation.references[58] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social Networks, vol. 1, no. 3, pp. 215–239, 1 1978.spa
dc.relation.references[59] The Grainger College of Engineering and University of Illinois at Urbana- Champaign, “Illinois Center for a Smarter Electric Grid (ICSEG). IEEE 30-Bus System,” Illinois Center for a Smarter Electric Grid (ICSEG), Tech. Rep., 2013. [Online]. Available: https://icseg.iti.illinois.edu/ieee-30-bus-system/spa
dc.relation.references[60] “IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems,” IEEE Std 493-2007 (Revision of IEEE Std 493-1997), pp. 1– 383, 2007. [Online]. Available: https://ieeexplore.ieee.org/servlet/opac?punumber=4264698spa
dc.relation.references[61] Comisión de Regulación de Energía y Gas CREG; Ministerio de Minas y Energía; Republica de Colombia, “Resolución CREG No. 025 de 1995,” 1955. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/3a940408d14bf2e80525785a007a653b/$FILE/Cr025-95.pdfspa
dc.relation.references[62] S. Peyghami, M. Fotuhi-Firuzabad, and F. Blaabjerg, “Reliability Evaluation in Microgrids With Non-Exponential Failure Rates of Power Units,” IEEE Systems Journal, vol. 14, no. 2, pp. 2861–2872, 6 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8892731/spa
dc.relation.references[63] Z. Bie, P. Zhang, G. Li, B. Hua, M. Meehan, and X. Wang, “Reliability evaluation of active distribution systems including microgrids,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2342–2350, 2012.spa
dc.relation.references[64] David Gleich, “MatlabBGL,” 2021. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/10922-matlabbglspa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.otherRed eléctrica
dc.subject.otherElectrical network
dc.subject.otherRedes de distribución de energía
dc.subject.otherPower distribution networks
dc.subject.otherRedes complejas
dc.subject.otherComplex networks
dc.subject.proposalSistemas de potenciaspa
dc.subject.proposalSistemas de distribuciónspa
dc.subject.proposalConfiabilidad de sistemas de potenciaspa
dc.subject.proposalMicroredesspa
dc.subject.proposalRedes complejasspa
dc.subject.proposalConfiabilidad de microredesspa
dc.subject.proposalSimulación de confiabilidadspa
dc.subject.proposalIndicadores de calidad del serviciospa
dc.subject.proposalPower systemseng
dc.subject.proposalDistribution systemseng
dc.subject.proposalPower system reliabilityeng
dc.subject.proposalMicrogridseng
dc.subject.proposalComplex Networkseng
dc.subject.proposalMicrogrid Reliabilityeng
dc.subject.proposalReliability simulationeng
dc.subject.proposalService quality indexeseng
dc.titleAnálisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejasspa
dc.title.translatedReliability analysis of multiple microgrids in distribution systems based on complex network theoryeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030547290.2020.pdf
Tamaño:
1.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: