Finding out tumor microenvironment characteristics associated with the progression of ovarian cancer
dc.contributor.advisor | Romero Castro, Edgar Eduardo | spa |
dc.contributor.author | Montoya Rodriguez, Eileen Tatiana | spa |
dc.contributor.researcher | Salguero Lopez, Jennifer | spa |
dc.contributor.researchgroup | Cim@Lab | spa |
dc.date.accessioned | 2024-09-18T15:31:29Z | |
dc.date.available | 2024-09-18T15:31:29Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | The tumor microenvironment (TME) encompasses the dynamic interactions between a tumor and surrounding tissues, playing a crucial role in cancer progression. Histological images provide valuable information about the characteristics of the TME. Computational pathology techniques have made significant advances in automating the identification and classification of these interactions; however, certain limitations still persist. The complexity and heterogeneity of the microenvironment make it difficult to identify and classify cellular interactions accurately. Additionally, large volumes of manually annotated data are required to train robust algorithms, and variability in sample staining can affect the consistency of results. Finally, the integration of histological data with other types of data remains a considerable technical and analytical challenge. In this study, we propose a novel approach to define the TME as the interaction zones between tumor, necrotic, and stroma tissues. These zones were classified using a Support Vector Machine (SVM) with an average classification accuracy of 80 %. To establish the relevance of the TME in ovarian cancer, we used its association with survival outcomes using Cox regression modeling. The cases were categorized into high and low-risk groups based on survival time. The results demonstrated a significant correlation using hand-crafted features extracted from the TME, the Cox regression exhibited a notable hazard ratio of 2, 59 (95 % CI: 1, 06 − 6, 3, p = 0,03), indicating a statistically significant impact between TME and survival rate. This methodology suggests that TME organization could serve as a predictive marker in serous carcinoma of the ovary, providing valuable insights into the role of the tumor microenvironment in disease development. | eng |
dc.description.abstract | El microambiente tumoral (TME) abarca las interacciones din´amicas entre un tumor y los tejidos circundantes, desempe˜nando un papel crucial en la progresi´on del c´ancer. Las im´agenes histol´ogicas proporcionan informaci´on valiosa sobre las caracter´ısticas del TME. Las t´ecnicas de patolog´ıa computacional han logrado avances significativos en la automatizaci´on de la identificaci´on y clasificaci´on de estas interacciones; sin embargo, a´un persisten ciertas limitaciones, como la complejidad y heterogeneidad del microambiente, lo que dificulta la identificaci´on y clasificaci´on de las interacciones celulares. Adem´as, se requiere de grandes vol´umenes de datos anotados manualmente para entrenar algoritmos robustos, y la variabilidad en la tinci´on de muestras puede afectar la consistencia de los resultados. Por ´ultimo, la integraci´on de datos histol´ogicos con otros tipos de datos sigue siendo un desaf´ıo t´ecnico y anal´ıtico considerable. En este estudio, proponemos un enfoque novedoso para definir el TME como las zonas de interacci´on entre los tejidos tumorales, necr´oticos y del estroma. Estas zonas se clasificaron utilizando una m´aquina de vectores de soporte (SVM) con una precisi´on de clasificaci´on promedio de 80 %. Para establecer la relevancia del TME en el c´ancer de ovario, utilizamos su asociaci´on con los resultados de supervivencia mediante la regresi´on de Cox. Los casos se clasificaron en grupos de alto y bajo riesgo seg´un el tiempo de supervivencia. Los resultados demostraron una correlaci´on significativa utilizando caracter´ısticas hechas a mano extra´ıdas del TME, la regresi´on de Cox mostr´o un ´ındice de riesgo notable de 2, 59 (95 % CI: 1, 06−6, 3, p = 0,03), lo que indica un impacto estad´ısticamente significativo entre el TME y la tasa de supervivencia. Esta metodolog´ıa sugiere que la organizaci´on TME podr´ıa servir como marcador predictivo en el carcinoma seroso de ovario, proporcionando informaci´on valiosa sobre el papel del microambiente tumoral en el desarrollo de la enfermedad (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería Biomédica | spa |
dc.description.methods | Manual annotation was performed on 30 whole slide images (WSIs) by a pathologist to classify tissues into three distinct classes: stroma (green), tumor (red), and necrotic (blue). From each WSI, Consecutive patches of size 224 × 224 pixels were selected for further analysis. These patches were chosen because they provide an optimal balance between computational efficiency and detailed tissue representation. The dataset was constructed by randomly selecting 20,000 patches per tissue type, resulting in a total of 60,000 patches, not overlaping. This dataset was then divided into training and test subsets using a 70-30 split: 70 % (21 patients) for training and 30 % (9 patients) for testing. Additionally, a 10-fold cross-validation was performed to ensure robustness and generalization of the models. | spa |
dc.description.researcharea | Patologia computacional | spa |
dc.format.extent | xi, 34 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.repo | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86841 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Ingeniería Biomédica | spa |
dc.relation.references | A. Ghoneum, Role of tumor microenvironment in ovarian cancer pathobiology, 27 April 2018. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978268 | spa |
dc.relation.references | I.J. Jacobs, «Progress and Challenges in Screening for Early Detection of Ovarian Cancer*, Molecular & Cellular Proteomics» [En línea]. Available: https://doi.org/10.1074/mcp.R400006-MCP200. | spa |
dc.relation.references | KM. Boehm. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nat Cancer. 2022 Jun;3(6):723-733. doi: 10.1038/s43018-022-00388-9. | spa |
dc.relation.references | Y. Yang. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. 11 August 2020. https://pubmed.ncbi.nlm.nih.gov/25271436/. | spa |
dc.relation.references | C. Lan. Quantitative histology analysis of the ovarian tumour microenvironment, 17 November 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647219 | spa |
dc.relation.references | Xu H., Machine Learning and Artificial Intelligence–driven Spatial Analysis of the Tumor Immune Microenvironment in Pathology Slides, European Urology Focus,Volume 7, Issue 4, 2021, Pages 706-709, ISSN 2405-4569, https://doi.org/10.1016/j.euf.2021.07.006. | spa |
dc.relation.references | S. Mittal. Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology, 4 Junio 2018. https://doi.org/10.1073/pnas.1719551115 | spa |
dc.relation.references | P. Ribeiro, Tumor microenvironment components: Allies of cancer progression, Pathology - Research and Practice, Volume 216, Issue 1, 2020, 152729, ISSN 0344-0338, https://doi.org/10.1016/j.prp.2019.152729 | spa |
dc.relation.references | S. Nawaz, Computational pathology: Exploring the spatial dimension of tumor ecology, Cancer Letters, Volume 380, Issue 1, 2016, Pages 296-303, ISSN 0304-3835, https://doi.org/10.1016/j.canlet.2015.11.018 | spa |
dc.relation.references | A. Heindl, Similarity and diversity of the tumor microenvironment in multiple metastases: critical implications for overall and progression-free survival of high-grade serous ovarian cancer, 2016. https://doi.org/10.18632/oncotarget.12106 | spa |
dc.relation.references | ZG Liu, Necroptosis, tumor necrosis and tumorigenesis. Cell Stress. 2019 Dec 19;4(1):1-8. doi: 10.15698/cst2020.01.208 | spa |
dc.relation.references | Zhao, Y., Stromal cells in the tumor microenvironment: accomplices of tumor progression?. Cell Death Dix 14, 587 (2023). https://doi.org/10.1038/s41419-023-06110-6 | spa |
dc.relation.references | American Cancer Society, Inc., Key Statistics for Ovarian Cancer, 12 January 2021. https://www.cancer.org/cancer/ovarian-cancer/about/key-statistics.html | spa |
dc.relation.references | F. Ning. Driving Immune Responses in the Ovarian Tumor Microenvironment, 15 January 2021. https://www.frontiersin.org/articles/10.3389/fonc.2020.604084/full | spa |
dc.relation.references | International Agency for Research on Cancer, Colombia Cancer Statistics, March 2021. https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf | spa |
dc.relation.references | R. Yigit. Ovarian cancer creates a suppressive microenvironment to escape immune elimination. May 2010. Available: https://doi.org/10.1016/j.ygyno.2010.01.019 | spa |
dc.relation.references | H. Sadeghi. Understanding the tumor microenvironment for effective immunotherapy. Med Res Rev. May 2021;41(3):1474-1498. doi: 10.1002/med.21765 | spa |
dc.relation.references | S. Sanegre. Integrating the Tumor Microenvironment into Cancer Therapy. Cancers (Basel). Jun 2020;12(6):1677. doi: 10.3390/cancers12061677 | spa |
dc.relation.references | S. Tiwari. INFORM: INFrared-based ORganizational Measurements of tumor and its microenvironment to predict patient survival. Febrary 2021 doi: 10.1126/sciadv.abb8292 | spa |
dc.relation.references | J. Breen. Artificial intelligence in ovarian cancer histopathology: a systematic review. August 2023 doi: https://doi.org/10.1038/s41698-023-00432-6 | spa |
dc.relation.references | LK. Hema. Region-Based Segmentation and Classification for Ovarian Cancer Detection Using Convolution Neural Network. November 2022 doi: 10.1155/2022/5968939 | spa |
dc.relation.references | CW Wang. Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images. July 2022 doi: 10.1016/j.compmedimag.2022.102093 | spa |
dc.relation.references | M Wu. Exploring prognostic indicators in the pathological images of ovarian cancer based on a deep survival network. Jan 2023 doi: 10.3389/fgene.2022.1069673 | spa |
dc.relation.references | Tiwari S. INFORM: INFrared-based ORganizational Measurements of tumor and its microenvironment to predict patient survival. Sci Adv. 2021 Feb 3;7(6):eabb8292. doi: 10.1126/sciadv.abb8292 | spa |
dc.relation.references | CR Stoltzfus. CytoMAP: A Spatial Analysis Toolbox Reveals Features of Myeloid Cell Organization in Lymphoid Tissues. Cell Rep. 2020 Apr 21;31(3):107523. doi: 10.1016/j.celrep.2020.107523 | spa |
dc.relation.references | CM Schürch. Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front. Cell. 2020 Sep 3;182(5):1341-1359.e19. doi: 10.1016/j.cell.2020.07.005 | spa |
dc.relation.references | AK Casasent. Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing. Cell. 2018 Jan 11;172(1-2):205-217.e12. doi: 10.1016/j.cell.2017.12.007 | spa |
dc.relation.references | MA Lisio. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int J Mol Sci. 2019 Feb 22;20(4):952. doi: 10.3390/ijms20040952 | spa |
dc.relation.references | S Huh. Novel Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Uncovered by Data-Independent Acquisition Mass Spectrometry. J Proteome Res. 2022 Sep 2;21(9):2146-2159. doi: 10.1021/acs.jproteome.2c00218 | spa |
dc.relation.references | R. Zhou. Survival prediction of ovarian serous carcinoma based on machine learning combined with pathological images and clinical information. 2024 April. AIP Advances 14, 045324. doi: 10.1063/5.0196414 | spa |
dc.relation.references | CW. Wang. A Weakly Supervised Deep Learning Method for Guiding Ovarian Cancer Treatment and Identifying an Effective Biomarker. Cancers (Basel). 2022 Mar 24;14(7):1651. doi: 10.3390/cancers14071651 | spa |
dc.relation.references | A. Gockley. Outcomes of Women With High-Grade and Low-Grade Advanced-Stage Serous Epithelial Ovarian Cancer. Obstet Gynecol. 2017 Mar;129(3):439-447. doi: 10.1097/AOG.0000000000001867 | spa |
dc.relation.references | K. Yoshihara: "Gene expression profile for predicting survival in advanced-stage serous ovarian cancer across two independent datasets." PLoS One. 2010 Mar 10;5(3). doi: 10.1371/journal.pone.0009615 | spa |
dc.relation.references | The Cancer Genome Atlas Research Network: "Integrated genomic analyses of ovarian carcinoma." Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Microambiente Tumoral | spa |
dc.subject.decs | Tumor Microenvironment | eng |
dc.subject.decs | Neoplasias Ováricas | spa |
dc.subject.decs | Ovarian Neoplasms | eng |
dc.subject.decs | Técnicas Histológicas | spa |
dc.subject.decs | Histological Techniques | eng |
dc.subject.decs | Células del Estroma | spa |
dc.subject.decs | Stromal Cells | eng |
dc.subject.proposal | Microambiente tumoral | spa |
dc.subject.proposal | Carcinoma seroso de ovario | spa |
dc.subject.proposal | Riesgo de supervivencia | spa |
dc.subject.proposal | Histopatología computacional | spa |
dc.subject.proposal | Tumor microenvironment | eng |
dc.subject.proposal | Serous carcinomas cancer ovary | eng |
dc.subject.proposal | Survival risk | eng |
dc.subject.proposal | Computational histopathology | eng |
dc.title | Finding out tumor microenvironment characteristics associated with the progression of ovarian cancer | eng |
dc.title.translated | Determinación de características del microambiente tumoral asociadas con la progresión del cáncer de ovario | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1014260389_2024.pdf
- Tamaño:
- 3.72 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestria en Ingenieria Biomedica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: