A comparative analysis on the seismic behavior of buildings using inerter-based devices: Tuned Mass Damper Inerter (TMDI) and Tuned Inerter Damper (TID)

dc.contributor.advisorLara Valencia, Luis Augustospa
dc.contributor.advisorBlandon Valencia, John Jairospa
dc.contributor.authorCaicedo Diaz, Daniel Alejandrospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupCentro de Proyectos e Investigaciones Sísmicas (CPIS)spa
dc.date.accessioned2020-09-04T22:23:40Zspa
dc.date.available2020-09-04T22:23:40Zspa
dc.date.issued2020-06spa
dc.description.abstractTo accomplish an appropriate performance of tuned mass dampers (TMDs) in building structures subjected to earthquake excitations, considerable amounts of mass must be added at upper floors, which in occasions may result impractical or economically unfeasible, especially in tall buildings. Therefore, this investigation contemplates two possible alternatives for the passive control of buildings avoiding the addition of large masses through inerter-based devices, the Tuned Mass Damper Inerter (TMDI), and a variant-type of Tuned Inerter Damper (TID) proposed herein. The former couples the classic TMD with an inerter, a two-terminal mechanical device able to produce a force proportional to the relative acceleration between its terminals, acting as a TMD mass amplifier. The latter is based on the conventional TID scheme, with the main difference that its location is changed from the ground story-level to the last two levels of the structural system. A metaheuristic optimization algorithm based on the differential evolution method is used to solve the tuning problem of the control devices. Besides, eight different accelerograms of recorded earthquakes are considered to simulate the seismic loads during the optimization process, in which the mitigation of the seismic response is measured by the reduction of three objective functions: horizontal peak displacements, root mean square (RMS) response of displacements, and horizontal peak floor acceleration. Three case-studies are employed for the analysis, determined from actual buildings of Medellin city from low, medium to high rise (30 meters, 97 meters, and 144 meters respectively). In the TMDI analysis, the results show a clear trend in the amplification of displacements as inertance values increase, and consequently, a better behavior of the case-studies controlled via TMD is attained. On the contrary, the numerical results exhibited a clear enhancement of the seismic performance of the case-studies when the variant-type of the TID proposed herein is applied, better than conventional TIDs installed at the ground story level.spa
dc.description.abstractPara lograr un desempeño adecuado de amortiguadores de masa sintonizada (AMS) en edificaciones sometidas a excitaciones sísmicas, se deben agregar cantidades considerables de masa en los niveles superiores, lo que en ocasiones puede resultar poco práctico o económicamente inviable, especialmente para el caso de edificios altos. Por lo tanto, esta investigación contempla dos posibles alternativas para el control pasivo de edificios sin incluir grandes cantidades de masa, mediante dispositivos basados en el inerter, el amortiguador de masa sintonizado inerter (AMSI) y una variante del amortiguador sintonizado inerter (ASI) propuesto en este trabajo. El primero, combina el clásico AMS con un inerter, el cual es un dispositivo mecánico de dos terminales capaz de producir una fuerza proporcional a la aceleración relativa entre sus terminales, actuando como un amplificador de masa para el AMS. El segundo dispositivo está inspirado en el ASI convencional, con la diferencia principal de que su ubicación cambia del nivel de piso a los dos últimos niveles del sistema estructural. Ahora bien, un algoritmo de optimización metaheurística basado en el método de evolución diferencial se va a emplear para resolver el problema de ajuste de los dispositivos de control. Además, ocho acelerogramas de diferentes terremotos se emplean para representar las cargas sísmicas durante el proceso de optimización, en el que la mitigación de la respuesta sísmica se mide mediante la reducción de tres funciones objetivo: desplazamientos máximos horizontales, media cuadrática (valor eficaz) de la respuesta de desplazamientos y máxima aceleración horizontal de piso. Para el análisis se van a emplear tres casos de estudio, los cuales fueron determinados a partir de edificios reales de la ciudad de Medellín, de pequeña, mediana y gran altura (30 metros, 97 metros y 144 metros respectivamente). En el análisis del AMSI, los resultados muestran una clara tendencia en la amplificación de los desplazamientos a medida que aumentan los valores de inertance, observándose un mejor comportamiento de las edificaciones controladas mediante el AMS convencional. Por el contrario, los resultados numéricos exhiben una mejora significativa del desempeño sísmico de las edificaciones cuando su respuesta se controla mediante la variante de ASI propuesta en esta investigación, mejor que cuando se utilizó el ASI convencional instalado a nivel de piso.spa
dc.description.additionalResearch line: Structural control – Dynamics of structuresspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingenierías - Estructurasspa
dc.format.extentxix, 71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78399
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesA. Rothwell, The Conventional Design Process. In: Optimization Methods in Structural Design. Solid Mechanics and Its Applications, Vol 242. Springer, Cham. (2017).spa
dc.relation.referencesG. Buckle, Passive control of structures for seismic loads. Bull. N.Z. Natl. Soc. Earthq. Eng., 33(3), 209-221. (2000). https://doi.org/10.5459/bnzsee.33.3.209-221.spa
dc.relation.referencesA. M. Kaynia, D. Venerziano, J. M. Biggs, Seismic effectiveness of tuned mass dampers, J. Struct. Div. ASCE 107(8) (1981) 1465–1484spa
dc.relation.referencesJ. R. Sladek, R. E. Klinger, Effect of tune mass dampers of seismic response, J. Struct. Eng. ASCE 109 (1983) 2004–2009.spa
dc.relation.referencesM.C. Smith, Synthesis of mechanical networks: The inerter, IEEE Transactions on automatic control, 47(10), 1648-1662. (2002). https://doi.org/10.1109/TAC.2002.803532.spa
dc.relation.referencesX.S. Yang, G. Bekdaş, S.M. Nigdeli, Review and applications of metaheuristic algorithms in civil engineering. In Metaheuristics and Optimization in Civil Engineering, Springer, Cham. (2016) 1–24.spa
dc.relation.referencesA.Y.T. Leung, H. Zhang, C.C. Cheng, Y.Y. Lee, Particle swarm optimization of TMD by non-stationary base excitation during earthquake, Earthq. Eng. Struct. Dyn., 37(9), (2008) 1223–1246.spa
dc.relation.referencesA.Y.T. Leung, H. Zhang, Particle swarm optimization of tuned mass dampers, Eng. Struct. 31(3), (2009) 715–728.spa
dc.relation.referencesG. Bekdaş, S.M. Nigdeli, Estimating optimum parameters of tuned mass dampers using harmony search, Eng. Struct. 33(9), (2011) 2716–2723.spa
dc.relation.referencesG. Bekdaş, S.M. Nigdeli, Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction, Soil Dyn. Earthq. Eng. 92, (2017) 443–461.spa
dc.relation.referencesG. Bekdaş, S.M. Nigdeli, Optimization of tuned mass damper with harmony search. In: Gandomi Amir Hossein, Yang Xin-She, Alavi Amir Hossein, Talatahari Siamak, editors. Metaheuristic applications in structures and infrastructures, Elsevier, (2013) 345–371.spa
dc.relation.referencesA. Farshidianfar, S. Soheili, Optimization of TMD Parameters for Earthquake Vibrations of Tall Buildings Including Soil Structure Interaction, Iran University of Science & Technology, 3(3), Eng. (2013) 409–429.spa
dc.relation.referencesA. Farshidianfar, S. Soheili, Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction, Soil Dyn. Earthq. Struct. 51, (2013) 14–22.spa
dc.relation.referencesS.M. Nigdeli, G. Bekdaş, X.S. Yang, Optimum tuning of mass dampers for seismic structures using flower pollination algorithm. Int. J. Theor. Appl. Mech, 1, (2016) 264–268.spa
dc.relation.referencesS.M. Nigdeli, G. Bekdaş, X.S. Yang, Optimum tuning of mass dampers by using a hybrid method using harmony search and flower pollination algorithm. In International Conference on Harmony Search Algorithm Springer, Singapore, (2017). 222–231.spa
dc.relation.referencesG. Bekdaş, S.M. Nigdeli, X.S. Yang, A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures, Eng. Struct. (2018) 159, 89–98.spa
dc.relation.referencesS. Etedali, H. Rakhshani, Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations, Alex. Eng. J. 57(4), (2018) 3205–3218.spa
dc.relation.referencesS. Pourzeynali, S. Salimi, H.E. Kalesar, Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms, Sci. Iran. 20(2), (2013) 207–221.spa
dc.relation.referencesS. Pourzeynali, S. Salimi, Multi-objective optimization design of control devices to suppress tall buildings vibrations against earthquake excitations using fuzzy logic and genetic algorithms, in: Design Optimization of Active and Passive Structural Control Systems (2015) 180–215.spa
dc.relation.referencesS. Pal, D. Singh, V. Kumar, Hybrid SOMA: A tool for optimizing TMD parameters, in: Proc. of Sixth International Conference on Soft Computing for Problem Solving, Springer, Singapore. (2017) 35–41.spa
dc.relation.referencesM. Yucel, G. Bekdaş, S.M. Nigdeli, S. Sevgen, Estimation of optimum tuned mass damper parameters via machine learning, J. Build. Eng. 26, 100847 (2019).spa
dc.relation.referencesR. Storn, K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. Global Optim. 11(4), 341-359. (1997). https://doi.org/10.1023/A:1008202821328.spa
dc.relation.referencesB.F. Spencer Jr, S. Nagarajaiah, State of the art of structural control. Journal of structural engineering, 129(7), (2003). 845-856.spa
dc.relation.referencesY.M. Parulekar, G.R. Reddy, Passive response control systems for seismic response reduction: A state-of-the-art review. International Journal of Structural Stability and Dynamics, 9(01), (2009). 151-177.spa
dc.relation.referencesJ. M. Kelly, S. B. Hodder, Experimental study of lead and elastomeric dampers for base isolation system in laminated neoprene bearings, Bull. N.Z. Nat. Soc. Earthq. Eng. 15 (1982) 53–67.spa
dc.relation.referencesJ. M. Kelly, K. E. Beucke, A frictional damped base isolation system with fail-safe characteristics, Earthq. Eng. Struct. Dynam. 11 (1983) 33–56.spa
dc.relation.referencesJ. M. Kelly, Base isolation: Origins and development, EERC News 12(1) (1998).spa
dc.relation.referencesS. J. Tuholski, P. E. Rodler, San Francisco’s new Asian Art Museum, in 13th World Conf. Earthq. Eng., Canada (2004).spa
dc.relation.referencesR. S. Jangid, Optimum damping in a nonlinear base Isolation system, J. Sound Vib. 189(4) (1996) 477–487.spa
dc.relation.referencesT. W. Lin, C. C. Hone, Base isolation by free rolling rods under basement, Earthq. Eng. Struct. Dynam. 22 (1993) 261–273.spa
dc.relation.referencesR. S. Jangid, Y. B. Londhe, Effectiveness of elliptical rolling rods for base isolation, J. Struct Eng. ASCE 124 (1998) 469–472.spa
dc.relation.referencesC. S. Tsai, T. C. Chiang, B. J. Chen, Shaking table tests of a full scale steel structure isolated with MFPS, ASME Pressure Vessels and Piping Conference, Ohio, USA, Vol. 466 (2003) 41–47.spa
dc.relation.referencesR. S. Jangid, Computational numerical models for seismic response of structures isolated by sliding systems, Struct. Contr. Health Monitoring 12 (2005) 117–137.spa
dc.relation.referencesR. S. Jangid, Optimum lead–rubber isolation bearings for near-fault motions, Eng. Struct. 29 (2007) 2503–2513.spa
dc.relation.referencesF. Pakpour, H.A Beigi, C. Christopoulos, Development of low-cost Seismic Isolation Platform (SIP) for mass implementation in developing countries. surfaces, 7, 9.spa
dc.relation.referencesA. S. Pall, C. Marsh, P. Fazio, Friction joints for seismic control of large panel structures, J. Prestressed Concrete Inst. 6 (1980) 38–61.spa
dc.relation.referencesA. S. Pall, C. Marsh, Seismic response of friction damped braced frames, J. Struct. Div. ASCE 108(9) (1982) 1313–1323.spa
dc.relation.referencesA. S. Pall, V. Verganelakis, C. Marsh, Friction-dampers for seismic control of concordia university library building, in Proc. Fifth Can. Conf. Earthq. Eng., Ottawa (1987), pp. 191–200.spa
dc.relation.referencesC. Pasquin, A. N. Leboeuf, T. Pall, Friction dampers for seismic rehabilitation of Eaton Building, Montreal, in 4th Struct. Specialty Conf. Can. Soc. Civ. Eng. (2002).spa
dc.relation.referencesJ. M. Kelly, R. I. Skinner, A. J. Heine, Mechanisms of energy absorption in special devices for use in earthquake resistant structures, Bull. N.Z. Soc. Earthq. Eng. 5(3) (1972) 63–73.spa
dc.relation.referencesA. S. Whittaker, V. V. Bertero, C. L. Thompson, L. J. Alonso, Seismic testing of steel plate energy dissipation devices, Earthq. Spectra 7(4) (1991) 563–604.spa
dc.relation.referencesK. C. Tsai, H. W. Chen, C. P. Hong, Y. F. Su, Design of steel triangular plate energy absorbers for seismic-resistant construction, Earthq. Spectra 9(3) (1993) 505–528.spa
dc.relation.referencesR. I. Skinner, R. G. Tyler, A. J. Heine, W. H. Robinson, Hysteretic dampers for the protection of structures from earthquakes, Bull. N.Z. Soc. Earthq. Eng. 13(1) (1980) 22–36.spa
dc.relation.referencesT. Fujita, Seismic isolation and response control for nuclear and nonnuclear structures, in Special Issue of the 11th Int. Conf. SMiRT, Tokyo (1991).spa
dc.relation.referencesC. L. Perry, E. A. Fierro, H. Sedarat, R. E. Scholl, Seismic upgrade in San Francisco using energy dissipation devices, Earthq. Spectra 9(3) (1992) 559–579.spa
dc.relation.referencesC. S. Tsai, K. C. Tsai, TPEA Device as seismic damper for high rise buildings, J. Eng. Mech. 121(10) (1995) 1075–1081. Int. J. Str. Stab. Dyn. 2009.09:151-177. Downloaded from www.worldscientific.com by UNIVERSITY OF AUCKLAND LIBRARY - SERIALS UNIT on 10/16/14. For personal use only. Passive Response Control Systems for Seismic Response Reduction 173spa
dc.relation.referencesR. E. Scholl, Design criteria for yielding and friction energy dissipaters, in Proc. ATC 17-1 on Seismic Isolation, Energy Dissipation and Active Control 2, pp. 485–495.spa
dc.relation.referencesJ. C. De la Llera, C. Esguerra, J. L. Almazan, Earthquake behavior of structures with copper energy dissipators, Earthq. Eng. Struct. Dynam. 33 (2004) 329–358.spa
dc.relation.referencesM. C. Phocas, A. Pocanschi, Steel frames with bracing mechanism and hysteretic dampers, Earthq. Eng. Struct. Dynam. 32 (2003) 811–825.spa
dc.relation.referencesC. Zhong, J. Binder, O.S. Kwon, C. Christopoulos, Experimental and Numerical Characterization of Ultralow-Cycle Fatigue Behavior of Steel Castings. Journal of Structural Engineering, 146(2), 04019195. (2020).spa
dc.relation.referencesP. Mahmoodi, Structural dampers, J. Struct. Div. ASCE 95 (1969) 1661–1672.spa
dc.relation.referencesP. Mahmoodi, Design and analysis of viscoelastic vibration dampers for structures, in Proc. INOVA- -73 World Innovative Week Conference (Elsevier, London, 1974), pp. 25–39.spa
dc.relation.referencesK. C. Chang, T. T. Soong, S. T. Oh, M. L. Lai, Study of ambient temperature of viscoelastically damped structure, J. Struct. Eng. ASCE 118(7) (1992) 1955–1973.spa
dc.relation.referencesE. Elsesser, M. Jokerst, S. Naaseh, Historic upgrades in San Francisco, J. Civil. Eng. ASCE (1997).spa
dc.relation.referencesC. Christopoulos, M. Montgomery, Viscoelastic coupling dampers (VCDs) for enhanced wind and seismic performance of high‐rise buildings. Earthquake Engineering & Structural Dynamics 42.15 (2013): 2217-2233.spa
dc.relation.referencesR. MacKay-Lyons, C. Christopoulos, M. Montgomery, Viscoelastic Coupling Dampers for Enhanced Multiple Seismic Hazard Level Performance of High-Rise Buildings. Earthquake Spectra, 34(4), (2018). 1847-1867.spa
dc.relation.referencesN. Makris, M. C. Constantinou, Viscous dampers: Testing modeling and application in vibration and seismic isolation, Report No. NCEER-90-O028, Buffalo, New York, 1990.spa
dc.relation.referencesW. H. Lin, A. K. Chopra, Earthquake response of elastic SDF systems with nonlinear fluid viscous dampers, Earthq. Eng. Struct. Dynam. 31 (2002) 1623–1642.spa
dc.relation.referencesJ. W. Asher, R. P. Young, R. D. Ewing, Seismic isolation design of the San Bernardino County Medical Center replacement project, J. Struct. Des. Tall Bldg. 5 (1996) 265–279.spa
dc.relation.referencesY. Kitagawa, M. Midorikawa, Seismic isolation and passive response-control buildings in Japan, Smart Mater. Struct. 7 (1998) 581–587.spa
dc.relation.referencesG.P. Cimellaro, S. Marasco, Tuned-mass dampers, in: Introduction to Dynamics of Structures and Earthquake Engineering (pp. 421-438). Springer, Cham. (2018). https://doi.org/10.1007/978-3-319-72541-3_18.spa
dc.relation.referencesH. Frahm, Device for damping vibrations of bodies. U.S. Pat. No 989,958. (1911). https://doi.org/10.1016/j.tree.2005.10.010.spa
dc.relation.referencesJ. Ormondroyd, The theory of the dynamic vibration absorber. Trans., ASME, Applied Mechanics, 50, 9-22. (1928).spa
dc.relation.referencesJ.P. Den Hartog, Mechanical Vibrations. Fourth Edition. McGraw-Hill, New York, 1956. 67s. 6d., J. R. Aeronaut. Soc. (1957). https://doi.org/10.1017/s0368393100131049.spa
dc.relation.referencesG.B. Warburton, Optimum absorber parameters for various combinations of response and excitation parameters, Earthquake Engineering & Structural Dynamics, 10(3). (1982). 381-401. https://doi.org/10.1002/eqe.4290100304.spa
dc.relation.referencesF. Sadek, B. Mohraz, A.W. Taylor, R.M. Chung, A method of estimating the parameters of tuned mass dampers for seismic applications, Earthquake Engineering & Structural Dynamics, 26(6), 617-635. (1997). https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z.spa
dc.relation.referencesS.M. Nigdeli, G. Bekdaş, Optimum tuned mass damper design in frequency domain for structures. KSCE, J. Civ. Eng. 21(3), (2017) 912–922.spa
dc.relation.referencesL. Marian, A. Giaralis, Optimal design of inerter devices combined with TMDs for vibration control of buildings exposed to stochastic seismic excitations, S Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures-Proceedings of the 11th International Conference on Structural Safety and Reliability, ICOSSAR 2013 (pp. 1025-1032). CRC Press. (2013).spa
dc.relation.referencesC. Papageorgiou, M.C. Smith, Laboratory Experimental Testing of Inerters, in: Proc. of the 44th IEEE Conference on Decision and Control IEEE. (2005). 3351–3356.spa
dc.relation.referencesA. Giaralis, L. Marian, Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-story building: the Tuned Mass-Damper-Interter (TMDI), in: Active and Passive Smart Structures and Integrated Systems (Vol. 9799, p. 97991G). International Society for Optics and Photonics. (2016).spa
dc.relation.referencesJ. Salvi, A. Giaralis, Concept study of a novel energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) device for vibration control of harmonically-excited structures, in: Journal of Physics: Conference Series (Vol. 744, No. 1, p. 012082). IOP Publishing. (2016).spa
dc.relation.referencesA. Javidialesaadi, N. Wierschem, Seismic Performance Evaluation of Inerter-Based Tuned Mass Dampers. In 3RD Huixian International Forum on Earthquake Engineering for Young Researchers, University of Illinois, Urbana-Champaign, IL. (2017).spa
dc.relation.referencesM. Lazarek, P. Brzeski, P. Perlikowski, Design and identification of parameters of tuned mass damper with inerter which enables changes of inertance, Mech. Mach. Theory, 119, (2018) 161–173.spa
dc.relation.referencesL. Marian, A. Giaralis, Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems, Probabilistic Eng. Mech. 38, 156–164. 38 (2015) 156–164.spa
dc.relation.referencesL. Marian, A. Giaralis, The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting, Smart struct Syst. 19(6), (2017) 665–678.spa
dc.relation.referencesD. Pietrosanti, M. De Angelis, M. Basili, Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI), Earthq. Eng. Struct. Dyn., 46(8), (2017) 1367–1388.spa
dc.relation.referencesM. De Angelis, A. Giaralis, F. Petrini, D. & Pietrosanti, D. Optimal tuning and assessment of inertial dampers with grounded inerter for vibration control of seismically excited base-isolated systems. Eng. Struct. 196, 109250. (2019).spa
dc.relation.referencesA. Giaralis, A.A. Taflanidis, Reliability-based Design of Tuned Mass-Damper-Inerter (TMDI) Equipped Multi-storey Frame Buildings under Seismic Excitation, in: 2th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP. University of British Columbia Library. (2015).spa
dc.relation.referencesA. Giaralis, A.A. Taflanidis, Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria, Struct. Contr. Health Monit. 25(2), e2082. (2018) 1–22.spa
dc.relation.referencesL. Marian, The tuned mass damper inerter for passive vibration control and energy harvesting in dynamically excited structural systems. (Doctoral thesis, City University London) (2016).spa
dc.relation.referencesY. Shen, L. Chen, X. Yang, D. Shi, J. Yang, Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. J. Sound and Vib., 361, 148-158. (2016). https://doi.org/10.1016/j.jsv.2015.06.045.spa
dc.relation.referencesY. Hu, M. Z. Chen, Performance evaluation for inerter-based dynamic vibration absorbers. Int. J. Mech. Sci., 99, 297-307. (2015). https://doi.org/10.1016/j.ijmecsci.2015.06.003.spa
dc.relation.referencesF. C. Wang, C. W. Chen, M. K. Liao, M. F. Hong, Performance analyses of building suspension control with inerters. In 2007 46th IEEE Conference on Decision and Control (pp. 3786-3791). IEEE. (2007).spa
dc.relation.referencesF. C. Wang, M. F. Hong, C. W. Chen, Building suspensions with inerters. Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224(8), 1605-1616. (2010). https://doi.org/10.1243/09544062JMES1909.spa
dc.relation.referencesY.C. Chen, J. Y. Tu, F. C. Wang, Earthquake vibration control for buildings with inerter networks. In 2015 European Control Conference (ECC) (pp. 3137-3142). IEEE. (2015).spa
dc.relation.referencesI. F. Lazar, S. A. Neild, D. J. Wagg, Using an inerter‐based device for structural vibration suppression. Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. (2014). https://doi.org/10.1002/eqe.2390.spa
dc.relation.referencesI. F. Lazar, D. J. Wagg, S. A. Neild, An inerter vibration isolation system for the control of seismically excited structures, Int. In Conf. Urban Earthq. Eng. (2013).spa
dc.relation.referencesI. F. Lazar, S. A. Neild, D. J. Wagg, Inerter-based vibration suppression systems for laterally and base-excited structures. In Proceedings of EURODYN 2014 (pp. 1525-1530). Sheffield. (2014).spa
dc.relation.referencesY. Wen, Z. Chen, X. Hua, Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures. J. Struct. Eng., 143(4), 04016207. (2017).spa
dc.relation.referencesI. F. Lazar, S. A. Neild, D. J. Wagg, Design and performance analysis of inerter-based vibration control systems. In Dynamics of Civil Structures, Volume 4 (pp. 493-500). Springer, Cham. (2014).spa
dc.relation.referencesS. Y. Zhang, T. D. Lewis, J. Z. Jiang, S. A. Neild, Passive vibration suppression using multiple inerter-based devices for a multi-storey building structure. In Proceedings of the Sixth European Conference on Structural Control (EACS 2016) (pp. 1-11). Sheffield, England. (2016).spa
dc.relation.referencesL. Sun, D. Hong, L. Chen, Cables interconnected with tuned inerter damper for vibration mitigation. Eng. Struct., 151, 57-67. (2017). https://doi.org/10.1016/j.engstruct.2017.08.009.spa
dc.relation.referencesI. F. Lazar, S. A. Neild, D. J. Wagg, Vibration suppression of cables using tuned inerter dampers. Eng. Struct., 122, 62-71. (2016). https://doi.org/10.1016/j.engstruct.2016.04.017.spa
dc.relation.referencesC. Pan, R. Zhang, Design of structure with inerter system based on stochastic response mitigation ratio. Struct. Control Hlth., 25(6), e2169. (2018). https://doi.org/10.1002/stc.2169.spa
dc.relation.referencesW. Shen, A. Niyitangamahoro, Z. Feng, H. Zhu, Tuned Inerter Dampers for Civil Structures Subjected to Earthquake Ground Motions: optimum design and seismic performance. Eng. Struct., 198, 109470. (2019). https://doi.org/10.1016/j.engstruct.2019.109470.spa
dc.relation.referencesD. De Domenico, N. Impollonia, G. Ricciardi, Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper. Soil Dyn. Earthq. Eng., 105, 37-53. (2018). https://doi.org/10.1016/j.soildyn.2017.11.023.spa
dc.relation.referencesC. Papageorgiou, N. E. Houghton, M. C. Smith, Experimental testing and analysis of inerter devices. J. Dyn. Sys., Meas., Control. 131(1). (2009). https://doi.org/10.1115/1.3023120.spa
dc.relation.referencesX. Liu, J. Z. Jiang, B. Titurus, A. Harrison, Model identification methodology for fluid-based inerters. Mechanical Systems and Signal Processing, 106, 479-494. (2018). https://doi.org/10.1016/j.ymssp.2018.01.018.spa
dc.relation.referencesS. M. Elsayed, R. A. Sarker, D. L. Essam, Self-adaptive differential evolution incorporating a heuristic mixing of operators. Comput. Optim. Appl., 54(3), 771-790. (2013). https://doi.org/10.1007/s10589-012-9493-8.spa
dc.relation.referencesR. Ruiz, A.A. Taflanidis, A. Giaralis, D. Lopez-Garcia, Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures, Engineering Structures, 177, 836-850. (2018). https://doi.org/10.1016/j.engstruct.2018.08.074.spa
dc.relation.referencesA.K. Chopra, Dynamics of structures: Theory and applications to earthquake engineering. Englewood Cliffs, N.J: Prentice Hall, (1995).spa
dc.relation.referencesM. Ziyaeifar, H. Noguchi, Partial mass isolation in tall buildings. Earthq. Eng. Struct. Dyn.27(1), 49–65. (1998).spa
dc.relation.referencesZ. Tian, J Qian, L. Zhang, Slide roof system for dynamic response reduction. Earthq. Eng. Struct. Dyn. 37(4), 647–658. (2008). https://doi.org/10.1002/eqe.780.spa
dc.relation.referencesPacific Earthquake Engineering Research Center: Ground Motion Database. Available: http://peer.berkeley.edu/peer_ground_motion_databasespa
dc.relation.referencesThe MathWorks Inc. MATLAB R2019a. Natick, MA, USA. (2019).spa
dc.relation.referencesMinisterio de Ambiente, Vivienda y Desarrollo Territorial, Reglamento Colombiano de construcción sismo resistente. NSR-10, Segunda actualización, Bogotá, Asociación Colombiana de Ingeniería Sísmica. AIS, 2010.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.proposalTuned mass damper inertereng
dc.subject.proposalAmortiguador de masa sintonizada inerterspa
dc.subject.proposalTuned inerter dampereng
dc.subject.proposalamortiguador sintonizado inerterspa
dc.subject.proposaloptimización metaheurísticaspa
dc.subject.proposalPassive controleng
dc.subject.proposalMetaheuristic optimizationeng
dc.subject.proposalmétodo de evolución diferencialspa
dc.subject.proposalDifferential evolution methodeng
dc.subject.proposaldesempeño sísmicospa
dc.subject.proposalSeismic performanceeng
dc.titleA comparative analysis on the seismic behavior of buildings using inerter-based devices: Tuned Mass Damper Inerter (TMDI) and Tuned Inerter Damper (TID)spa
dc.title.alternativeUn análisis comparativo del comportamiento sísmico de edificaciones usando dispositivos basados en inerter: Amortiguador de Masa Sintonizado Inerter (AMSI) y Amortiguador Sintonizado Inerter (ASIspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
143540407.2020.pdf
Tamaño:
4.03 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Medellín - Minas - Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: