Esquema de control para múltiples microrredes que prestan servicios a una red de distribución con baja confiabilidad

dc.contributor.advisorCortés Guerrero, Camilo Andresspa
dc.contributor.advisorRomero Quete, David Fernandospa
dc.contributor.authorMartínez Polo, Dagobertospa
dc.contributor.orcidMartínez Polo, Dagoberto [0009000778406851]spa
dc.contributor.researchgroupGrupo de Investigación Emc-Unspa
dc.date.accessioned2025-03-14T17:41:40Z
dc.date.available2025-03-14T17:41:40Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractHistóricamente, los Sistemas Eléctricos de Potencia (SEP) se han caracterizado por ser jerárquicos, con un flujo de potencia unidireccional, donde la energía se genera en grandes centrales alejadas de los centros de consumo y se distribuye hacia los usuarios finales. Este modelo ha llevado a la existencia de zonas no interconectadas (ZNI) debido a los altos costos de inversión en infraestructura de transporte de energía hacia regiones remotas e inaccesibles. En años recientes, la evolución de los sistemas de potencia hacia redes inteligentes bidireccionales con agentes distribuidos activos, es inminente. Este cambio, impulsado por el desarrollo de interfaces de electrónica de potencia que facilitan la conexión de sistemas de generación a partir de fuentes renovables no convencionales de energía y sistemas de almacenamiento, permite la creación de microrredes (MG) compuestas de cargas, generadores distribuidos y sistemas de almacenamiento, las cuales tienen la capacidad de actuar como agentes autónomos en la red. La integración generalizada de MG se presenta como una oportunidad para mejorar la calidad del suministro de energía en sistemas débiles de baja confiabilidad e inercia como las ZNI. De esta forma, el control y la gestión eficaz de las MG es indispensable para asegurar la estabilidad y la calidad del suministro eléctrico, especialmente cuando se conectan a sistemas de potencia débiles. Los desafíos asociados a la baja inercia de estos sistemas motivan el desarrollo de algoritmos de control avanzados que puedan responder de manera rápida y eficiente a las fluctuaciones de la demanda y la generación de energía. \\ Esta tesis se enfoca en el diseño y la implementación de un algoritmo de control para la regulación primaria de frecuencia en sistemas de múltiples microrredes (MMG) dentro de un marco de gestión de energía peer-to-peer (P2P). Basado en la teoría del consumidor, el algoritmo propuesto busca mejorar la eficiencia de la respuesta ante variaciones en la frecuencia, priorizando a los sistemas de almacenamiento y minimizando el vertimiento de generación renovable. El esquema es validado por medio de simulaciones dinámicas en el dominio del tiempo y comparado con el método de regulación primaria tradicional (Texto tomado de la fuente).spa
dc.description.abstractHistorically, Electrical Power Systems (SEP) have been characterized by their hierarchical structure and unidirectional power flow, where energy is generated in large power plants located far from consumption centers and distributed to end users. This model has led to the existence of non-interconnected zones (ZNI) due to the high investment costs in energy transportation infrastructure to remote and inaccessible regions. In recent years, the evolution of power systems towards bidirectional smart grids with active distributed agents has become imminent. This change, driven by the development of power electronics interfaces that facilitate the connection of generation systems based on unconventional renewable energy sources and storage systems, enables the creation of microgrids (MG) composed of loads, distributed generators, and storage systems, which have the capacity to act as autonomous agents within the grid. The widespread integration of MG represents an opportunity to improve the quality of power supply in weak, low-reliability, and low-inertia systems such as ZNI. Thus, effective control and management of MG are essential to ensure the stability and quality of the power supply, especially when connected to weak power systems. The challenges associated with the low inertia of these systems drive the development of advanced control algorithms that can quickly and efficiently respond to fluctuations in demand and energy generation. This thesis focuses on the design and implementation of a control algorithm for primary frequency regulation in multiple microgrid systems (MMG) within a peer-to-peer (P2P) energy management framework. Based on consumer theory, the proposed algorithm seeks to improve the efficiency of the response to frequency variations, prioritizing storage systems and minimizing the curtailment of renewable generation. The scheme is validated through dynamic time-domain simulations and compared with the traditional primary regulation method.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Ingeniería eléctricaspa
dc.description.researchareaDistribución y sistemas de potencia.spa
dc.format.extentxviii, 68 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87655
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesA. Kwasinski, W. Weaver, and R. S. Balog, Microgrids and other local area power and energy systems. Cambridge University Press, 7 2016.spa
dc.relation.referencesJ. A. Villanueva-Rosario, F. Santos-García, M. E. Aybar-Mejía, P. Mendoza-Araya, and A. Molina-García, “Coordinated ancillary services, market participation and communication of multi-microgrids: A review,” Applied Energy, vol. 308, p. 118332, 2 2022.spa
dc.relation.referencesS. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access, vol. 3, pp. 890–925, 6 2015.spa
dc.relation.referencesP. Tielens and D. V. Hertem, “The relevance of inertia in power systems,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 999–1009, 3 2016.spa
dc.relation.referencesF. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbic, “Foundations and challenges of low-inertia systems (invited paper),” in 2018 Power Systems Computation Conference(PSCC), 2018,p. 1–25.spa
dc.relation.referencesG. de investigación XUÉ and S. de investigación BARIÓN, “Estado de la cobertura eléctrica y las zonas no interconectadas en la región central,” 2020.spa
dc.relation.referencesS. de Servicios Públicos Domiciliarios, “Informe sectorial de la prestaci ón de energía eléctrica 2021,” 2021.spa
dc.relation.referencesD. T. Ton and M. A. Smith, “The u.s. department of energy’s microgrid initiative,” Electricity Journal, vol. 25, pp. 84–94, 10 2012.spa
dc.relation.referencesX. Xing and L. Jia, “Energy management in microgrid and multi-microgrid,” IET Renewable Power Generation, 2023.spa
dc.relation.referencesM. Hamidieh and M. Ghassemi, “Microgrids and resilience: A review,” IEEE Access, vol. 10, pp. 106 059–106 080, 2022.spa
dc.relation.referencesA. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews, 2018.spa
dc.relation.referencesS. Shahzad, M. A. Abbasi, H. Ali, M. Iqbal, R. Munir, and H. Kili¸c, “Possibilities, challenges, and future opportunities of microgrids: A review,” Sustainability, 2023.spa
dc.relation.referencesK. Gao, T. Wang, C. Han, J. Xie, Y. Ma, and R. Peng, “A review of optimization of microgrid operation,” Energies, vol. 14, p. 2842, 2021.spa
dc.relation.referencesM. A. Jirdehi, V. S. Tabar, S. G. Zadeh, and S. Tohidi, “Different aspects of microgrid management: A comprehensive review,” Journal of energy storage, vol. 30, p. 101457, 2020.spa
dc.relation.referencesD. E. Olivares, A. Mehrizi-Sani, A. Etemadi, C. Cañizares, R. Iravani, M. Kazerani, A. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. Jim´enez-Estévez, and N. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, pp. 1905–1919, 2014.spa
dc.relation.referencesK. Cabana-Jiménez, J. Candelo-Becerra, and V. S. Santos, “Comprehensive analysis of microgrids configurations and topologies,” Sustainability, 2022.spa
dc.relation.referencesN. Hatziargyriou, Microgrids:Architectures and Control, 1st ed. John Wiley and Sons Ltd, 2014.spa
dc.relation.referencesB. Zhou, J. Zou, C. Y. Chung, H. Wang, N. Liu, N. Voropai, and D. Xu, “Multimicrogrid energy management systems: Architecture, communication, and scheduling strategies,” Journal of Modern Power Systems and Clean Energy, vol. 9, pp. 463–476, 5 2021.spa
dc.relation.referencesM. J. Bordbari and F. Nasiri, “Networked microgrids: A review on configuration, operation, and control strategies,” Energies, vol. 17, 2 2024.spa
dc.relation.referencesM. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked microgrids: State-of-the-art and future perspectives,” IEEE Transactions on Industrial Informatics, vol. 15, pp. 1238–1250, 2019.spa
dc.relation.referencesZ. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab, and Y. Al-Turki, “Networked microgrids for enhancing the power system resilience,” Proceedings of the IEEE, vol. 105, pp. 1289–1310, 2017.spa
dc.relation.referencesL. Che, X. Zhang, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “Optimal interconnection planning of community microgrids with renewable energy sources,” IEEE Transactions on Smart Grid, vol. 8, pp. 1054–1063, 2017.spa
dc.relation.referencesZ. Mi, “Characteristic analysis of multi-microgrids and a pilot project design,” Power system technology, 2015.spa
dc.relation.referencesW.-Y. Chiu, H. Sun, and H. Poor, “A multiobjective approach to multimicrogrid system design,” IEEE Transactions on Smart Grid, vol. 6, pp. 2263–2272, 2015.spa
dc.relation.referencesD. Xu, B. Zhou, K. Chan, C. Li, Q. Wu, B. Chen, and S. Xia, “Distributed multienergy coordination of multimicrogrids with biogas-solar-wind renewables,” IEEE Transactions on Industrial Informatics, vol. 15, pp. 3254–3266, 2019.spa
dc.relation.referencesM. M. Esfahani, A. Hariri, and O. Mohammed, “A multiagent-based game-theoretic and optimization approach for market operation of multimicrogrid systems,” IEEE Transactions on Industrial Informatics, vol. 15, pp. 280–292, 2019.spa
dc.relation.referencesY. Li, T. Zhao, P. Wang, H. Gooi, L. Wu, Y. Liu, and J. Ye, “Optimal operation of multimicrogrids via cooperative energy and reserve scheduling,” IEEE Transactions on Industrial Informatics, vol. 14, pp. 3459–3468, 2018.spa
dc.relation.referencesA. Kumar, A. R. Singh, L. P. Raghav, Y. Deng, X. He, R. C. Bansal, P. Kumar, and R. M. Naidoo, “State-of-the-art review on energy sharing and trading of resilient multi microgrids,” 4 2024.spa
dc.relation.referencesH. Zou, S. Mao, Y. Wang, F. Zhang, X. Chen, and L. Cheng, “A survey of energy management in interconnected multi-microgrids,” IEEE Access, vol. 7, pp. 72 158–72 169, 2019.spa
dc.relation.referencesM. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, “Stability and control aspects of microgrid architectures-a comprehensive review,” pp. 144 730–144 766, 2020.spa
dc.relation.referencesJ. Xu, K. Li, and M. Abusara, “Preference based multi-objective reinforcement learning for multi-microgrid system optimization problem in smart grid,” Memetic Computing, vol. 14, pp. 225–235, 6 2022.spa
dc.relation.referencesX. Du, L. Wang, J. Zhao, Y. He, and K. Sun, “Power dispatching of multi-microgrid based on improved cs aiming at economic optimization on source-network-load-storage,” Electronics (Switzerland), vol. 11, 9 2022.spa
dc.relation.referencesH. Wang, X. Wu, K. Sun, and Y. He, “Research on the optimal economic power dispatching of a multi-microgrid cooperative operation,” Energies, vol. 15, 11 2022.spa
dc.relation.referencesN. O. Song, J. H. Lee, H. M. Kim, Y. H. Im, and J. Y. Lee, “Optimal energy management of multi-microgrids with sequentially coordinated operations,” Energies, vol. 8, pp. 8371–8390, 8 2015.spa
dc.relation.referencesJ. Chen, C. Chen, and S. Duan, “Cooperative optimization of electric vehicles and renewable energy resources in a regional multi-microgrid system,” Applied Sciences (Switzerland), vol. 9, 6 2019.spa
dc.relation.referencesS. A. Arefifar, M. Ordonez, and Y. A. R. I. Mohamed, “Energy management in multimicrogrid systems - development and assessment,” IEEE Transactions on Power Systems, vol. 32, pp. 910–922, 3 2017.spa
dc.relation.referencesF. Kamal, B. H. Chowdhury, and C. Lim, “Networked microgrid scheduling for resilient operation,” IEEE Transactions on Industry Applications, vol. 60, pp. 2290–2301, 2023.spa
dc.relation.referencesJ. Xu and Y. Yi, “Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A nash bargaining approach,” Energy, vol. 263, 1 2023.spa
dc.relation.referencesK. yong Hu, W. juan Li, L. dong Wang, S. hua Cao, F. ming Zhu, and Z. xiang Shou, “Energy management for multi-microgrid system based on model predictive control,” Frontiers of Information Technology and Electronic Engineering, vol. 19, pp. 1340–1351, 11 2018.spa
dc.relation.referencesJ. Chen and Q. Zhu, “A stackelberg game approach for two-level distributed energy management in smart grids,” IEEE Transactions on Smart Grid, vol. 9, pp. 6554–6565, 11 2018.spa
dc.relation.referencesZ. Li, L. Wu, Y. Xu, L. Wang, and N. Yang, “Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids,” Applied Energy, vol. 331, 2 2023.spa
dc.relation.referencesJ. Lee, J. Guo, J. K. Choi, and M. Zukerman, “Distributed energy trading in microgrids: A game-theoretic model and its equilibrium analysis,” IEEE Transactions on Industrial Electronics, vol. 62, pp. 3524–3533, 6 2015.spa
dc.relation.referencesZ. Xiaohui, G. Wenbo, and Z. Jiaqing, “Decentralized economic dispatching of multimicro grid considering wind power and photovoltaic output uncertainty,” IEEE Access, vol. 9, pp. 104 093–104 103, 2021.spa
dc.relation.referencesH. Gao, J. Liu, L. Wang, and Z. Wei, “Decentralized energy management for networked microgrids in future distribution systems,” IEEE Transactions on Power Systems, vol. 33, pp. 3599–3610, 7 2018.spa
dc.relation.referencesX. He, J. Yu, T. Huang, and C. Li, “Distributed power management for dynamic economic dispatch in the multimicrogrids environment,” IEEE Transactions on Control Systems Technology, vol. 27, pp. 1651–1658, 7 2019.spa
dc.relation.referencesR. Hao, Q. Ai, Y. Zhu, and Z. Jiang, “Decentralized self-discipline scheduling strategy for multi-microgrids based on virtual leader agents,” Electric Power Systems Research, vol. 164, pp. 230–242, 11 2018.spa
dc.relation.referencesY. Xu, J. Zhang, P. Wang, and M. Lu, “Research on the bi-level optimization model of distribution network based on distributed cooperative control,” IEEE Access, vol. 9, pp. 11 798–11 810, 2021.spa
dc.relation.referencesY. Wang, T. L. Nguyen, Y. Xu, Q. T. Tran, and R. Caire, “Peer-to-peer control for networked microgrids: Multi-layer and multi-agent architecture design,” IEEE Transactions on Smart Grid, vol. 11, pp. 4688–4699, 11 2020.spa
dc.relation.referencesH. Bevrani, H. Golpˆıra, A. R. Messina, N. Hatziargyriou, F. Milano, and T. Ise, “Power system frequency control: An updated review of current solutions and new challenges,” Electric Power Systems Research, vol. 194, p. 107114, 2021.spa
dc.relation.referencesR. Rajan, F. M. Fernandez, and Y. Yang, “Primary frequency control techniques for large-scale pv-integrated power systems: A review,” Renewable and Sustainable Energy Reviews, vol. 144, p. 110998, 2021.spa
dc.relation.referencesA. J. Veronica and N. S. Kumar, “Control strategies for frequency regulation in microgrids: A review,” Wind Engineering, vol. 45, pp. 107 – 122, 2019.spa
dc.relation.referencesH. Xin, Y. Liu, Z. Wang, D. Gan, and T. Yang, “A new frequency regulation strategy for photovoltaic systems without energy storage,” IEEE Transactions on Sustainable Energy, vol. 4, pp. 985–993, 2013.spa
dc.relation.referencesC. A. Macana, E. Mojica-Nava, H. R. Pota, J. Guerrero, and J. C. Vasquez, “A distributed real-time energy management system for inverter-based microgrids,” Electric Power Systems Research, vol. 213, p. 108753, 2022.spa
dc.relation.referencesA. A. K. Arani, G. B. Gharehpetian, and M. Abedi, “Decentralised primary and secondary control strategies for islanded microgrids considering energy storage systems characteristics,” IET Generation, Transmission and Distribution, vol. 13, pp. 2986–2992, 7 2019.spa
dc.relation.referencesR. de Azevedo, M. H. Cintuglu, T. Ma, and O. A. Mohammed, “Multiagent-based optimal microgrid control using fully distributed diffusion strategy,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1997–2008, 2017.spa
dc.relation.referencesJ. Lu, J. Hu, J. Yu, and J. Cao, “A dynamic demand response control strategy for isolated microgrid with primary frequency regulation,” Electric Power Systems Research, vol. 224, p. 109691, 2023.spa
dc.relation.referencesC. Gouveia, J. Moreira, C. L. Moreira, and J. A. P. Lopes, “Coordinating storage and demand response for microgrid emergency operation,” IEEE Transactions on Smart Grid, vol. 4, pp. 1898–1908, 12 2013.spa
dc.relation.referencesA. Etxegarai, P. Eguia, E. Torres, G. Buigues, and A. Iturregi, “Evaluation of shortterm frequency control in isolated power grids with increasing penetration of renewable energy sources,” in 2016 IEEE PES PowerAfrica, 2016, pp. 213–217.spa
dc.relation.referencesA. Teawnarong and P. Chirapongsananurak, “Providing frequency response in isolated microgrids using battery energy storage systems,” in 2020 8th International Electrical Engineering Congress (iEECON), 2020, pp. 1–4.spa
dc.relation.referencesS. Dinkhah, J. Salazar Cuellar, and M. Khanbaghi, “Optimal power and frequency control of microgrid cluster with mixed loads,” IEEE Open Access Journal of Power and Energy, vol. 9, pp. 143–150, 2022.spa
dc.relation.referencesH. Golpîra, A. R. Messina, and H. Bevrani, “Emulation of virtual inertia to accommodate higher penetration levels of distributed generation in power grids,” IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3384–3394, 2019.spa
dc.relation.referencesS. D’Arco, J. A. Suul, and O. B. Fosso, “A virtual synchronous machine implementation for distributed control of power converters in smartgrids,” Electric Power Systems Research, vol. 122, pp. 180–197, 2015.spa
dc.relation.referencesC. Zhong, Y. Zhou, and G. Yan, “Power reserve control with real-time iterative estimation for pv system participation in frequency regulation,” International Journal of Electrical Power & Energy Systems, vol. 124, p. 106367, 2021.spa
dc.relation.referencesE. Sorin, L. Bobo, and P. Pinson, “Consensus-based approach to peer-to-peer electricity markets with product differentiation,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 994–1004, 2019.spa
dc.relation.referencesD. Martinez-Polo, D. Romero-Quete, and C. A. Cortes, “Consumer theory-based primary frequency regulation in multi-microgrid systems within a p2p energy management framework,” Sustainability, vol. 16, no. 15, 2024.spa
dc.relation.referencesM. Dreidy, H. Mokhlis, and S. Mekhilef, “Inertia response and frequency control techniques for renewable energy sources: A review,” pp. 144–155, 3 2017.spa
dc.relation.referencesP. Kundur, Power System Stability And Control, ser. EPRI power system engineering series. McGraw-Hill, 1994.spa
dc.relation.referencesE. Mojica-Nava, Optimizaci´on y control en grafos. Editorial UN, 2022.spa
dc.relation.referencesJ. Levin and P. Milgrom, “Consumer theory,” 2004.spa
dc.relation.referencesP. R. Krugman and R. Wells, Economics, 4th ed. Worth Publishers, a Macmillan Education imprint, 2015.spa
dc.relation.referencesY. Xu and Z. Li, “Distributed optimal resource management based on the consensus algorithm in a microgrid,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2584–2592, 2015.spa
dc.relation.referencesW. Shi, N. Li, C.-C. Chu, and R. Gadh, “Real-time energy management in microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 228–238, 2017.spa
dc.relation.referencesH. Afrakhte and P. Bayat, “A contingency based energy management strategy for multimicrogrids considering battery energy storage systems and electric vehicles,” Journal of Energy Storage, vol. 27, p. 101087, 2020.spa
dc.relation.referencesL. Thurner, A. Scheidler, F. Sch¨afer, J. Menke, J. Dollichon, F. Meier, S. Meinecke, and M. Braun, “pandapower — an open-source python tool for convenient modeling, analysis, and optimization of electric power systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–6521, Nov 2018.spa
dc.relation.referencesA. Ellis, M. R. Behnke, and R. T. Elliott, “Generic solar photovoltaic system dynamic simulation model specification,” 10 2013.spa
dc.relation.referencesCREG, “Resolución creg 060 de 2019,” 2019.spa
dc.relation.referencesX. Xu, M. Bishop, and D. Oikarinen, “Modeling and simulation of battery energy storage systems for grid frequency regulation.”spa
dc.relation.referencesD.Ramasubramanian, “Model user guide for generic renewable energy system models,”2023.spa
dc.relation.referencesIEEE, “Dynamic models for turbine-governors in power system studies,” 2013.spa
dc.relation.referencesF. Spescha and F. Koehler, “Cigre session 2022 guide on the assessment, specification and design of synchronous condenser for power system with predominance of low or zero inertia generators a1/c4 wg, jwg66,” 2022.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc621.31spa
dc.subject.lembDISTRIBUCION DE ENERGIA ELECTRICAspa
dc.subject.lembElectric power distributioneng
dc.subject.lembANALIZADORES DE REDES ELECTRICASspa
dc.subject.lembElectric network analyzerseng
dc.subject.lembSISTEMAS DE INTERCONEXION ELECTRICA-AUTOMATIZACIONspa
dc.subject.lembInterconnected electric utility systems -- Automationeng
dc.subject.lembINDUSTRIA ENERGETICAspa
dc.subject.lembEnergy industryeng
dc.subject.lembGENERACION DE ENERGIAspa
dc.subject.lembPower generationeng
dc.subject.lembCALCULO DE VARIACIONESspa
dc.subject.lembCalculus of variationseng
dc.subject.proposalGestión de la energíaspa
dc.subject.proposalMercado peer-to-peerspa
dc.subject.proposalMicrorredesspa
dc.subject.proposalRegulación de frecuenciaspa
dc.subject.proposalSistemas de almacenamiento de energíaspa
dc.subject.proposalSistemas de generación fotovoltaicosspa
dc.subject.proposalTeoría del consumidorspa
dc.subject.proposalEnergy storage systemseng
dc.subject.proposalConsumer theoryeng
dc.subject.proposalEnergy management systemeng
dc.subject.proposalFrequency regulationeng
dc.subject.proposalMicrogridseng
dc.subject.proposalPeer-to-peer marketeng
dc.subject.proposalPhotovoltaic systemseng
dc.titleEsquema de control para múltiples microrredes que prestan servicios a una red de distribución con baja confiabilidadspa
dc.title.translatedControl scheme for multiple microgrids providing services to a low-reliability distribution networkeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Cienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018490742.2024.pdf
Tamaño:
1.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: