Esquema de control para múltiples microrredes que prestan servicios a una red de distribución con baja confiabilidad
dc.contributor.advisor | Cortés Guerrero, Camilo Andres | spa |
dc.contributor.advisor | Romero Quete, David Fernando | spa |
dc.contributor.author | Martínez Polo, Dagoberto | spa |
dc.contributor.orcid | Martínez Polo, Dagoberto [0009000778406851] | spa |
dc.contributor.researchgroup | Grupo de Investigación Emc-Un | spa |
dc.date.accessioned | 2025-03-14T17:41:40Z | |
dc.date.available | 2025-03-14T17:41:40Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | Históricamente, los Sistemas Eléctricos de Potencia (SEP) se han caracterizado por ser jerárquicos, con un flujo de potencia unidireccional, donde la energía se genera en grandes centrales alejadas de los centros de consumo y se distribuye hacia los usuarios finales. Este modelo ha llevado a la existencia de zonas no interconectadas (ZNI) debido a los altos costos de inversión en infraestructura de transporte de energía hacia regiones remotas e inaccesibles. En años recientes, la evolución de los sistemas de potencia hacia redes inteligentes bidireccionales con agentes distribuidos activos, es inminente. Este cambio, impulsado por el desarrollo de interfaces de electrónica de potencia que facilitan la conexión de sistemas de generación a partir de fuentes renovables no convencionales de energía y sistemas de almacenamiento, permite la creación de microrredes (MG) compuestas de cargas, generadores distribuidos y sistemas de almacenamiento, las cuales tienen la capacidad de actuar como agentes autónomos en la red. La integración generalizada de MG se presenta como una oportunidad para mejorar la calidad del suministro de energía en sistemas débiles de baja confiabilidad e inercia como las ZNI. De esta forma, el control y la gestión eficaz de las MG es indispensable para asegurar la estabilidad y la calidad del suministro eléctrico, especialmente cuando se conectan a sistemas de potencia débiles. Los desafíos asociados a la baja inercia de estos sistemas motivan el desarrollo de algoritmos de control avanzados que puedan responder de manera rápida y eficiente a las fluctuaciones de la demanda y la generación de energía. \\ Esta tesis se enfoca en el diseño y la implementación de un algoritmo de control para la regulación primaria de frecuencia en sistemas de múltiples microrredes (MMG) dentro de un marco de gestión de energía peer-to-peer (P2P). Basado en la teoría del consumidor, el algoritmo propuesto busca mejorar la eficiencia de la respuesta ante variaciones en la frecuencia, priorizando a los sistemas de almacenamiento y minimizando el vertimiento de generación renovable. El esquema es validado por medio de simulaciones dinámicas en el dominio del tiempo y comparado con el método de regulación primaria tradicional (Texto tomado de la fuente). | spa |
dc.description.abstract | Historically, Electrical Power Systems (SEP) have been characterized by their hierarchical structure and unidirectional power flow, where energy is generated in large power plants located far from consumption centers and distributed to end users. This model has led to the existence of non-interconnected zones (ZNI) due to the high investment costs in energy transportation infrastructure to remote and inaccessible regions. In recent years, the evolution of power systems towards bidirectional smart grids with active distributed agents has become imminent. This change, driven by the development of power electronics interfaces that facilitate the connection of generation systems based on unconventional renewable energy sources and storage systems, enables the creation of microgrids (MG) composed of loads, distributed generators, and storage systems, which have the capacity to act as autonomous agents within the grid. The widespread integration of MG represents an opportunity to improve the quality of power supply in weak, low-reliability, and low-inertia systems such as ZNI. Thus, effective control and management of MG are essential to ensure the stability and quality of the power supply, especially when connected to weak power systems. The challenges associated with the low inertia of these systems drive the development of advanced control algorithms that can quickly and efficiently respond to fluctuations in demand and energy generation. This thesis focuses on the design and implementation of a control algorithm for primary frequency regulation in multiple microgrid systems (MMG) within a peer-to-peer (P2P) energy management framework. Based on consumer theory, the proposed algorithm seeks to improve the efficiency of the response to frequency variations, prioritizing storage systems and minimizing the curtailment of renewable generation. The scheme is validated through dynamic time-domain simulations and compared with the traditional primary regulation method. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería - Ingeniería eléctrica | spa |
dc.description.researcharea | Distribución y sistemas de potencia. | spa |
dc.format.extent | xviii, 68 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87655 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | A. Kwasinski, W. Weaver, and R. S. Balog, Microgrids and other local area power and energy systems. Cambridge University Press, 7 2016. | spa |
dc.relation.references | J. A. Villanueva-Rosario, F. Santos-García, M. E. Aybar-Mejía, P. Mendoza-Araya, and A. Molina-García, “Coordinated ancillary services, market participation and communication of multi-microgrids: A review,” Applied Energy, vol. 308, p. 118332, 2 2022. | spa |
dc.relation.references | S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access, vol. 3, pp. 890–925, 6 2015. | spa |
dc.relation.references | P. Tielens and D. V. Hertem, “The relevance of inertia in power systems,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 999–1009, 3 2016. | spa |
dc.relation.references | F. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbic, “Foundations and challenges of low-inertia systems (invited paper),” in 2018 Power Systems Computation Conference(PSCC), 2018,p. 1–25. | spa |
dc.relation.references | G. de investigación XUÉ and S. de investigación BARIÓN, “Estado de la cobertura eléctrica y las zonas no interconectadas en la región central,” 2020. | spa |
dc.relation.references | S. de Servicios Públicos Domiciliarios, “Informe sectorial de la prestaci ón de energía eléctrica 2021,” 2021. | spa |
dc.relation.references | D. T. Ton and M. A. Smith, “The u.s. department of energy’s microgrid initiative,” Electricity Journal, vol. 25, pp. 84–94, 10 2012. | spa |
dc.relation.references | X. Xing and L. Jia, “Energy management in microgrid and multi-microgrid,” IET Renewable Power Generation, 2023. | spa |
dc.relation.references | M. Hamidieh and M. Ghassemi, “Microgrids and resilience: A review,” IEEE Access, vol. 10, pp. 106 059–106 080, 2022. | spa |
dc.relation.references | A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews, 2018. | spa |
dc.relation.references | S. Shahzad, M. A. Abbasi, H. Ali, M. Iqbal, R. Munir, and H. Kili¸c, “Possibilities, challenges, and future opportunities of microgrids: A review,” Sustainability, 2023. | spa |
dc.relation.references | K. Gao, T. Wang, C. Han, J. Xie, Y. Ma, and R. Peng, “A review of optimization of microgrid operation,” Energies, vol. 14, p. 2842, 2021. | spa |
dc.relation.references | M. A. Jirdehi, V. S. Tabar, S. G. Zadeh, and S. Tohidi, “Different aspects of microgrid management: A comprehensive review,” Journal of energy storage, vol. 30, p. 101457, 2020. | spa |
dc.relation.references | D. E. Olivares, A. Mehrizi-Sani, A. Etemadi, C. Cañizares, R. Iravani, M. Kazerani, A. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. Jim´enez-Estévez, and N. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, pp. 1905–1919, 2014. | spa |
dc.relation.references | K. Cabana-Jiménez, J. Candelo-Becerra, and V. S. Santos, “Comprehensive analysis of microgrids configurations and topologies,” Sustainability, 2022. | spa |
dc.relation.references | N. Hatziargyriou, Microgrids:Architectures and Control, 1st ed. John Wiley and Sons Ltd, 2014. | spa |
dc.relation.references | B. Zhou, J. Zou, C. Y. Chung, H. Wang, N. Liu, N. Voropai, and D. Xu, “Multimicrogrid energy management systems: Architecture, communication, and scheduling strategies,” Journal of Modern Power Systems and Clean Energy, vol. 9, pp. 463–476, 5 2021. | spa |
dc.relation.references | M. J. Bordbari and F. Nasiri, “Networked microgrids: A review on configuration, operation, and control strategies,” Energies, vol. 17, 2 2024. | spa |
dc.relation.references | M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked microgrids: State-of-the-art and future perspectives,” IEEE Transactions on Industrial Informatics, vol. 15, pp. 1238–1250, 2019. | spa |
dc.relation.references | Z. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab, and Y. Al-Turki, “Networked microgrids for enhancing the power system resilience,” Proceedings of the IEEE, vol. 105, pp. 1289–1310, 2017. | spa |
dc.relation.references | L. Che, X. Zhang, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “Optimal interconnection planning of community microgrids with renewable energy sources,” IEEE Transactions on Smart Grid, vol. 8, pp. 1054–1063, 2017. | spa |
dc.relation.references | Z. Mi, “Characteristic analysis of multi-microgrids and a pilot project design,” Power system technology, 2015. | spa |
dc.relation.references | W.-Y. Chiu, H. Sun, and H. Poor, “A multiobjective approach to multimicrogrid system design,” IEEE Transactions on Smart Grid, vol. 6, pp. 2263–2272, 2015. | spa |
dc.relation.references | D. Xu, B. Zhou, K. Chan, C. Li, Q. Wu, B. Chen, and S. Xia, “Distributed multienergy coordination of multimicrogrids with biogas-solar-wind renewables,” IEEE Transactions on Industrial Informatics, vol. 15, pp. 3254–3266, 2019. | spa |
dc.relation.references | M. M. Esfahani, A. Hariri, and O. Mohammed, “A multiagent-based game-theoretic and optimization approach for market operation of multimicrogrid systems,” IEEE Transactions on Industrial Informatics, vol. 15, pp. 280–292, 2019. | spa |
dc.relation.references | Y. Li, T. Zhao, P. Wang, H. Gooi, L. Wu, Y. Liu, and J. Ye, “Optimal operation of multimicrogrids via cooperative energy and reserve scheduling,” IEEE Transactions on Industrial Informatics, vol. 14, pp. 3459–3468, 2018. | spa |
dc.relation.references | A. Kumar, A. R. Singh, L. P. Raghav, Y. Deng, X. He, R. C. Bansal, P. Kumar, and R. M. Naidoo, “State-of-the-art review on energy sharing and trading of resilient multi microgrids,” 4 2024. | spa |
dc.relation.references | H. Zou, S. Mao, Y. Wang, F. Zhang, X. Chen, and L. Cheng, “A survey of energy management in interconnected multi-microgrids,” IEEE Access, vol. 7, pp. 72 158–72 169, 2019. | spa |
dc.relation.references | M. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, “Stability and control aspects of microgrid architectures-a comprehensive review,” pp. 144 730–144 766, 2020. | spa |
dc.relation.references | J. Xu, K. Li, and M. Abusara, “Preference based multi-objective reinforcement learning for multi-microgrid system optimization problem in smart grid,” Memetic Computing, vol. 14, pp. 225–235, 6 2022. | spa |
dc.relation.references | X. Du, L. Wang, J. Zhao, Y. He, and K. Sun, “Power dispatching of multi-microgrid based on improved cs aiming at economic optimization on source-network-load-storage,” Electronics (Switzerland), vol. 11, 9 2022. | spa |
dc.relation.references | H. Wang, X. Wu, K. Sun, and Y. He, “Research on the optimal economic power dispatching of a multi-microgrid cooperative operation,” Energies, vol. 15, 11 2022. | spa |
dc.relation.references | N. O. Song, J. H. Lee, H. M. Kim, Y. H. Im, and J. Y. Lee, “Optimal energy management of multi-microgrids with sequentially coordinated operations,” Energies, vol. 8, pp. 8371–8390, 8 2015. | spa |
dc.relation.references | J. Chen, C. Chen, and S. Duan, “Cooperative optimization of electric vehicles and renewable energy resources in a regional multi-microgrid system,” Applied Sciences (Switzerland), vol. 9, 6 2019. | spa |
dc.relation.references | S. A. Arefifar, M. Ordonez, and Y. A. R. I. Mohamed, “Energy management in multimicrogrid systems - development and assessment,” IEEE Transactions on Power Systems, vol. 32, pp. 910–922, 3 2017. | spa |
dc.relation.references | F. Kamal, B. H. Chowdhury, and C. Lim, “Networked microgrid scheduling for resilient operation,” IEEE Transactions on Industry Applications, vol. 60, pp. 2290–2301, 2023. | spa |
dc.relation.references | J. Xu and Y. Yi, “Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A nash bargaining approach,” Energy, vol. 263, 1 2023. | spa |
dc.relation.references | K. yong Hu, W. juan Li, L. dong Wang, S. hua Cao, F. ming Zhu, and Z. xiang Shou, “Energy management for multi-microgrid system based on model predictive control,” Frontiers of Information Technology and Electronic Engineering, vol. 19, pp. 1340–1351, 11 2018. | spa |
dc.relation.references | J. Chen and Q. Zhu, “A stackelberg game approach for two-level distributed energy management in smart grids,” IEEE Transactions on Smart Grid, vol. 9, pp. 6554–6565, 11 2018. | spa |
dc.relation.references | Z. Li, L. Wu, Y. Xu, L. Wang, and N. Yang, “Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids,” Applied Energy, vol. 331, 2 2023. | spa |
dc.relation.references | J. Lee, J. Guo, J. K. Choi, and M. Zukerman, “Distributed energy trading in microgrids: A game-theoretic model and its equilibrium analysis,” IEEE Transactions on Industrial Electronics, vol. 62, pp. 3524–3533, 6 2015. | spa |
dc.relation.references | Z. Xiaohui, G. Wenbo, and Z. Jiaqing, “Decentralized economic dispatching of multimicro grid considering wind power and photovoltaic output uncertainty,” IEEE Access, vol. 9, pp. 104 093–104 103, 2021. | spa |
dc.relation.references | H. Gao, J. Liu, L. Wang, and Z. Wei, “Decentralized energy management for networked microgrids in future distribution systems,” IEEE Transactions on Power Systems, vol. 33, pp. 3599–3610, 7 2018. | spa |
dc.relation.references | X. He, J. Yu, T. Huang, and C. Li, “Distributed power management for dynamic economic dispatch in the multimicrogrids environment,” IEEE Transactions on Control Systems Technology, vol. 27, pp. 1651–1658, 7 2019. | spa |
dc.relation.references | R. Hao, Q. Ai, Y. Zhu, and Z. Jiang, “Decentralized self-discipline scheduling strategy for multi-microgrids based on virtual leader agents,” Electric Power Systems Research, vol. 164, pp. 230–242, 11 2018. | spa |
dc.relation.references | Y. Xu, J. Zhang, P. Wang, and M. Lu, “Research on the bi-level optimization model of distribution network based on distributed cooperative control,” IEEE Access, vol. 9, pp. 11 798–11 810, 2021. | spa |
dc.relation.references | Y. Wang, T. L. Nguyen, Y. Xu, Q. T. Tran, and R. Caire, “Peer-to-peer control for networked microgrids: Multi-layer and multi-agent architecture design,” IEEE Transactions on Smart Grid, vol. 11, pp. 4688–4699, 11 2020. | spa |
dc.relation.references | H. Bevrani, H. Golpˆıra, A. R. Messina, N. Hatziargyriou, F. Milano, and T. Ise, “Power system frequency control: An updated review of current solutions and new challenges,” Electric Power Systems Research, vol. 194, p. 107114, 2021. | spa |
dc.relation.references | R. Rajan, F. M. Fernandez, and Y. Yang, “Primary frequency control techniques for large-scale pv-integrated power systems: A review,” Renewable and Sustainable Energy Reviews, vol. 144, p. 110998, 2021. | spa |
dc.relation.references | A. J. Veronica and N. S. Kumar, “Control strategies for frequency regulation in microgrids: A review,” Wind Engineering, vol. 45, pp. 107 – 122, 2019. | spa |
dc.relation.references | H. Xin, Y. Liu, Z. Wang, D. Gan, and T. Yang, “A new frequency regulation strategy for photovoltaic systems without energy storage,” IEEE Transactions on Sustainable Energy, vol. 4, pp. 985–993, 2013. | spa |
dc.relation.references | C. A. Macana, E. Mojica-Nava, H. R. Pota, J. Guerrero, and J. C. Vasquez, “A distributed real-time energy management system for inverter-based microgrids,” Electric Power Systems Research, vol. 213, p. 108753, 2022. | spa |
dc.relation.references | A. A. K. Arani, G. B. Gharehpetian, and M. Abedi, “Decentralised primary and secondary control strategies for islanded microgrids considering energy storage systems characteristics,” IET Generation, Transmission and Distribution, vol. 13, pp. 2986–2992, 7 2019. | spa |
dc.relation.references | R. de Azevedo, M. H. Cintuglu, T. Ma, and O. A. Mohammed, “Multiagent-based optimal microgrid control using fully distributed diffusion strategy,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1997–2008, 2017. | spa |
dc.relation.references | J. Lu, J. Hu, J. Yu, and J. Cao, “A dynamic demand response control strategy for isolated microgrid with primary frequency regulation,” Electric Power Systems Research, vol. 224, p. 109691, 2023. | spa |
dc.relation.references | C. Gouveia, J. Moreira, C. L. Moreira, and J. A. P. Lopes, “Coordinating storage and demand response for microgrid emergency operation,” IEEE Transactions on Smart Grid, vol. 4, pp. 1898–1908, 12 2013. | spa |
dc.relation.references | A. Etxegarai, P. Eguia, E. Torres, G. Buigues, and A. Iturregi, “Evaluation of shortterm frequency control in isolated power grids with increasing penetration of renewable energy sources,” in 2016 IEEE PES PowerAfrica, 2016, pp. 213–217. | spa |
dc.relation.references | A. Teawnarong and P. Chirapongsananurak, “Providing frequency response in isolated microgrids using battery energy storage systems,” in 2020 8th International Electrical Engineering Congress (iEECON), 2020, pp. 1–4. | spa |
dc.relation.references | S. Dinkhah, J. Salazar Cuellar, and M. Khanbaghi, “Optimal power and frequency control of microgrid cluster with mixed loads,” IEEE Open Access Journal of Power and Energy, vol. 9, pp. 143–150, 2022. | spa |
dc.relation.references | H. Golpîra, A. R. Messina, and H. Bevrani, “Emulation of virtual inertia to accommodate higher penetration levels of distributed generation in power grids,” IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3384–3394, 2019. | spa |
dc.relation.references | S. D’Arco, J. A. Suul, and O. B. Fosso, “A virtual synchronous machine implementation for distributed control of power converters in smartgrids,” Electric Power Systems Research, vol. 122, pp. 180–197, 2015. | spa |
dc.relation.references | C. Zhong, Y. Zhou, and G. Yan, “Power reserve control with real-time iterative estimation for pv system participation in frequency regulation,” International Journal of Electrical Power & Energy Systems, vol. 124, p. 106367, 2021. | spa |
dc.relation.references | E. Sorin, L. Bobo, and P. Pinson, “Consensus-based approach to peer-to-peer electricity markets with product differentiation,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 994–1004, 2019. | spa |
dc.relation.references | D. Martinez-Polo, D. Romero-Quete, and C. A. Cortes, “Consumer theory-based primary frequency regulation in multi-microgrid systems within a p2p energy management framework,” Sustainability, vol. 16, no. 15, 2024. | spa |
dc.relation.references | M. Dreidy, H. Mokhlis, and S. Mekhilef, “Inertia response and frequency control techniques for renewable energy sources: A review,” pp. 144–155, 3 2017. | spa |
dc.relation.references | P. Kundur, Power System Stability And Control, ser. EPRI power system engineering series. McGraw-Hill, 1994. | spa |
dc.relation.references | E. Mojica-Nava, Optimizaci´on y control en grafos. Editorial UN, 2022. | spa |
dc.relation.references | J. Levin and P. Milgrom, “Consumer theory,” 2004. | spa |
dc.relation.references | P. R. Krugman and R. Wells, Economics, 4th ed. Worth Publishers, a Macmillan Education imprint, 2015. | spa |
dc.relation.references | Y. Xu and Z. Li, “Distributed optimal resource management based on the consensus algorithm in a microgrid,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2584–2592, 2015. | spa |
dc.relation.references | W. Shi, N. Li, C.-C. Chu, and R. Gadh, “Real-time energy management in microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 228–238, 2017. | spa |
dc.relation.references | H. Afrakhte and P. Bayat, “A contingency based energy management strategy for multimicrogrids considering battery energy storage systems and electric vehicles,” Journal of Energy Storage, vol. 27, p. 101087, 2020. | spa |
dc.relation.references | L. Thurner, A. Scheidler, F. Sch¨afer, J. Menke, J. Dollichon, F. Meier, S. Meinecke, and M. Braun, “pandapower — an open-source python tool for convenient modeling, analysis, and optimization of electric power systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–6521, Nov 2018. | spa |
dc.relation.references | A. Ellis, M. R. Behnke, and R. T. Elliott, “Generic solar photovoltaic system dynamic simulation model specification,” 10 2013. | spa |
dc.relation.references | CREG, “Resolución creg 060 de 2019,” 2019. | spa |
dc.relation.references | X. Xu, M. Bishop, and D. Oikarinen, “Modeling and simulation of battery energy storage systems for grid frequency regulation.” | spa |
dc.relation.references | D.Ramasubramanian, “Model user guide for generic renewable energy system models,”2023. | spa |
dc.relation.references | IEEE, “Dynamic models for turbine-governors in power system studies,” 2013. | spa |
dc.relation.references | F. Spescha and F. Koehler, “Cigre session 2022 guide on the assessment, specification and design of synchronous condenser for power system with predominance of low or zero inertia generators a1/c4 wg, jwg66,” 2022. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.ddc | 621.31 | spa |
dc.subject.lemb | DISTRIBUCION DE ENERGIA ELECTRICA | spa |
dc.subject.lemb | Electric power distribution | eng |
dc.subject.lemb | ANALIZADORES DE REDES ELECTRICAS | spa |
dc.subject.lemb | Electric network analyzers | eng |
dc.subject.lemb | SISTEMAS DE INTERCONEXION ELECTRICA-AUTOMATIZACION | spa |
dc.subject.lemb | Interconnected electric utility systems -- Automation | eng |
dc.subject.lemb | INDUSTRIA ENERGETICA | spa |
dc.subject.lemb | Energy industry | eng |
dc.subject.lemb | GENERACION DE ENERGIA | spa |
dc.subject.lemb | Power generation | eng |
dc.subject.lemb | CALCULO DE VARIACIONES | spa |
dc.subject.lemb | Calculus of variations | eng |
dc.subject.proposal | Gestión de la energía | spa |
dc.subject.proposal | Mercado peer-to-peer | spa |
dc.subject.proposal | Microrredes | spa |
dc.subject.proposal | Regulación de frecuencia | spa |
dc.subject.proposal | Sistemas de almacenamiento de energía | spa |
dc.subject.proposal | Sistemas de generación fotovoltaicos | spa |
dc.subject.proposal | Teoría del consumidor | spa |
dc.subject.proposal | Energy storage systems | eng |
dc.subject.proposal | Consumer theory | eng |
dc.subject.proposal | Energy management system | eng |
dc.subject.proposal | Frequency regulation | eng |
dc.subject.proposal | Microgrids | eng |
dc.subject.proposal | Peer-to-peer market | eng |
dc.subject.proposal | Photovoltaic systems | eng |
dc.title | Esquema de control para múltiples microrredes que prestan servicios a una red de distribución con baja confiabilidad | spa |
dc.title.translated | Control scheme for multiple microgrids providing services to a low-reliability distribution network | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Ministerio de Ciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1018490742.2024.pdf
- Tamaño:
- 1.69 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: