Prueba geométrica de potenciales Tracker en cosmología

dc.contributor.advisorCastañeda Colorado, Leonardospa
dc.contributor.authorMoreno Sánchez, Alexanderspa
dc.date.accessioned2025-05-21T14:58:25Z
dc.date.available2025-05-21T14:58:25Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractA partir del descubrimiento de la expansión acelerada del universo se han desarrollado muchos mode- los de energía oscura, los cuales en gran medida explican las observaciones hoy día. Uno de los modelos de mayor interés surgido algunas décadas atrás son los modelos de quintaesencia, en particular se abordan los modelos de quintaesencia desde el punto de vista de los campos trackers, los cuales permiten explicar la expansión acelerada del universo mediante la introducción de un campo escalar dinámico y un potencial escalar. Para el desarrollo de este estudio se obtiene una aproximación de sistemas dinámicos cosmológicos para modelos de campos trackers en quintaesencia y un acercamiento a sistemas dinámicos en teorías f(R). Para obtener un contraste con datos observacionales como SN Ia y cronómetros cósmicos se realiza el ajuste de parámetros cosmológicos y de potenciales trackers, tales como inverso de potencias, exponencial e hiper- bólico, todo ello enmarcado en el análisis de la estadística bayesiana y mediante el esquema MCMC. Así, se obtuvieron las soluciones para los sistemas dinámicos planteados, el análisis de elementos cosmológicos para LCDM y wCDM, y un estudio de potenciales trackers en quintaesencia bajo pruebas geométricas cos- mológicas, como de restricciones dadas por los datos observacionales, lo cual permite determinar algunos elementos propios de los campos trackers y de quintaesencia para aportar al entendimiento de la energía oscura y su fenomenología (Texto tomado de la fuente).spa
dc.description.abstractSince the discovery of the accelerating expansion of the universe, many dark energy models have been de- veloped, which largely explain the observations today. One of the models of greatest interest that emerged a few decades ago are quintessence models, in particular quintessence models are addressed from the point of view of tracker elds, which allow us to explain the accelerated expansion of the universe by introduc- ing a eld dynamic scalar and a scalar potential. For the development of this study, an approximation of cosmological dynamical systems is obtained for quintessential tracker eld models and an approach to dynamical systems in f(R) theories. To obtain a contrast with observational data such as SN Ia and cosmic chronometers, the adjustment of cosmological parameters and potential trackers is performed, such as in- verse of powers, exponential and hyperbolic, all marked in the analysis of Bayesian statistics and through the scheme MCMC. Then, the solutions for the proposed dynamic systems were obtained, the analysis of cosmological elements for LCDM and wCDM, and a study of potential quintessential trackers under cos- mological geometric tests, as well as restrictions given by the observational data, which allows determining some elements for the tracker and quintessence elds to contribute to the understanding of dark energy and its phenomenology.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extent269 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88179
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesSupernova Search Team Collaboration, A. G. Riess et al., Type Ia Supernova Discoveries at z > 1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Astrophys. J. 607 (2004) 665 687, https://arxiv.org/pdf/astro-ph/0402512.spa
dc.relation.referencesSupernova Cosmology Project Collaboration, A. J. Conley et al., Measurement of m , from a blind analysis of Type Ia supernovae with CMAGIC: Using color information to verify the acceleration of the Universe, Astrophys. J. 644 (2006) 1, https://arxiv.org/pdf/astro-ph/0602411.spa
dc.relation.referencesThe High Z SN Search Collaboration, A. Clocchiatti et al., Hubble Space Telescope and Ground- Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications, Astrophys. J. 642 (2006) 1 21, https://arxiv.org/pdf/astro-ph/0510155. Narlikar, J. V., Introduction to Cosmology, (2002).spa
dc.relation.referencesLinder, E. V., First Principles of Cosmology, Addison-Wesley, (1997).spa
dc.relation.referencesPeebles, P. J. E. 1993, Principles of Phisical Cosmology. Princeton: Princeton University Press.spa
dc.relation.referencesColes, P. and Lucchin, F. (1995). Cosmology-the Origin and Evolution of Cosmic Structure. Chich- ester: John Wiley and Sons.spa
dc.relation.referencesGuth, A. (1997). The In acionary Universe. The Quest for a New Theory of Cosmic Origins. Reading, MA: Addisson-Wesley.spa
dc.relation.referencesTurner, M. S. (1997). In Relativistic Astrophysics, (eds. B.J.T Jones and D. Markovic), 83. Cambridge University Press.spa
dc.relation.referencesKolb, E.W. and Turner, M.S. (1990). The Early Universe. Redwood City, California: Addison-Wesley Publishing Co.spa
dc.relation.referencesLongair, M.S. (1994). Theoretical Concepts In Physics.Cambridge: Cambridge University Press.spa
dc.relation.referencesWeinberg, S. (1997). In Critical Dialogues in Cosmology, (ed. N. Turok), 195. Singapore: World Scienti c.spa
dc.relation.referencesT. Padmanabhan, Dark Energy and Gravity, IUCAA, Post Bag 4, Ganeshkhind, Pune - 411 007, India, 2007spa
dc.relation.referencesT. Padmanabhan, Gravity: A New Holographic Perspective (Lecture at the International Conference on Einstein s Legacy in the New Millennium, Puri, India, Dec, 2005) Int.J.Mod.Phys., D 15, 1659- 1675, gr-qc/0606061, 2006.spa
dc.relation.referencesV. Sahni and A. A. Starobinsky, Int. J. Mod. Phys D. 9, 373 (2000); S. M. Carroll, Living Rev, 4, 1 (2001); T. Padmanabhan, Phys Rept. 380, 235 (2003); P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003); V. Sahni, Lect. Notes Phys. 653, 141 (2004).spa
dc.relation.referencesE. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).spa
dc.relation.referencesS. Perlmutter et al., Astrophys. J. 517, 565 (1999); A. G. Riess et al., Astron. J. 116, 1009 (1998); Astron. J. 117, 707 (1999); J. L. Tonry et al., Astrophys. J. 594, 1 (2003); R. A. Knop et al., Astrophys. J. 598, 102 (2003).spa
dc.relation.referencesD. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003); D. N. Spergel et al., https://arxiv.org/pdf/astro-ph/0603449.spa
dc.relation.referencesN. Chan, Dynamical Systems in Cosmology, thesis PhD, University College London, 2012.spa
dc.relation.referencesD. J. Eisenstein et al., Astrophys. J. 633, 560 (2005); C. Blake, D. Parkinson, B. Bassett, K. Glaze- brook, M. Kunz and R. C. Nichol, Mon. Not. Roy. Astron. Soc. 365, 255 (2006).spa
dc.relation.referencesB. Jain and A. Taylor, Phys. Rev. Lett. 91, 141302 (2003).spa
dc.relation.referencesV. Sahni and A. A. Starobinsky, https://arxiv.org/pdf/astro-ph/0610026.spa
dc.relation.referencesY. Fujii, Phys. Rev. D 26, 2580 (1982); L. H. Ford, Phys. Rev. D 35, 2339 (1987); C. Wetterich, Nucl. Phys B. 302, 668 (1988); B. Ratra and J. Peebles, Phys. Rev D 37, 321 (1988); Y. Fujii and T. Nishioka, Phys. Rev. D 42, 361 (1990); E. J. Copeland, A. R. Liddle, and D. Wands, Ann. N. Y. Acad. Sci. 688, 647 (1993); C. Wetterich, A&A 301, 321 (1995); P. G. Ferreira and M. Joyce, Phys.spa
dc.relation.referencesL. Amendola, Phys. Rev. D 62, 043511 (2000); L. Amendola and D. Tocchini-Valentini, Phys. Rev. D 64, 043509 (2001); L. Amendola and C. Quercellini, Phys. Rev. D 68, 023514 (2003).spa
dc.relation.referencesL. Amendola, M. Quartin, S. Tsujikawa and I. Waga, Phys. Rev. D 74, 023525 (2006).spa
dc.relation.referencesA. Melchiorri, L. Mersini-Houghton, C. J. Odman and M. Trodden, Phys. Rev. D 68, 043509 (2003); U. Alam, V. Sahni, T. D. Saini and A. A. Starobinsky, Mon. Not. Roy. Astron. Soc. 354, 275 (2004); B. A. Bassett, P. S. Corasaniti and M. Kunz, Astrophys. J. 617, L1 (2004).spa
dc.relation.referencesR. R. Caldwell, Phys. Lett. B 545,23-29 (2002); R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003); S. M. Carroll, M. Ho¤man and M. Trodden, Phys. Rev. D 68, 023509 (2003); P. Singh, M. Sami and N. Dadhich, Phys. Rev. D 68 023522 (2003).spa
dc.relation.referencesL. Perivolaropoulos, JCAP 0510, 001 (2005); S. Nesseris and L. Perivolaropoulos, https://arxiv.org/pdf/astro-ph/0610092.spa
dc.relation.referencesS. Capozziello, V. F. Cardone, S. Carloni and A. Troisi, Int. J. Mod. Phys. D 12, 1969 (2003).spa
dc.relation.referencesS. M. Carroll, V. Duvvuri, M. Trodden and M. S. Turner, Phys. Rev. D 70, 043528 (2004).spa
dc.relation.referencesS. Capozziello, F. Occhionero and L. Amendola, Int. J. Mod. Phys. D 1 (1993) 615.spa
dc.relation.referencesL. Amendola, D. Polarski and S. Tsujikawa, https://arxiv.org/pdf/astro-ph/0603703, Physical Review Letters to appear.spa
dc.relation.referencesJ. Barrow and A. Ottewill, J. Phys. A 16, 2757 (1983).spa
dc.relation.referencesA. A. Starobinsky, Phys. Lett. B 91, 99 (1980).spa
dc.relation.referencesJ. P. Uzan, R. Lehoucq, A dynamical study of the Friedman Equations, https://arxiv.org/pdf/physics/0108066v1 [physics.ed-ph] 30 Aug 2001.spa
dc.relation.referencesP. D. B. Collins, A. D. Martin, E. J. Squires, Particle Physics and Cosmology, Durham, England, 1988spa
dc.relation.referencesPoisson. E, An advanced course in general relativity, Unv. Guelph, 2002.spa
dc.relation.referencesU. Alam, V. Sahni, T. D. Saini and A. A. Starobinsky, Exploring the Expanding Universe and Dark Energy using the State nder Diagnostic, astro-ph/0303009v4.spa
dc.relation.referencesR. Maartens, Relativity and Cosmology Group, University of Porstsmouth, gr-qc/0101059v2, R. Maartens, Relativity and Cosmology Group, University of Porstsmouth, U.K. 2004.spa
dc.relation.referencesM. S. Longair, Galaxy Formation, Springer, 1998.spa
dc.relation.referencesWeinberg. S, Gravitation and Cosmology, John Wiley and Sons, 1972.spa
dc.relation.referencesD. W. Hogg, Institute for Advanced Study, Princeton NJ, astro-ph/9905116v4, 2000.spa
dc.relation.referencesCosmología Física, Jordi Cepa, Ediciones Akal S.A, webpages.ull.es/jcepano 2007.spa
dc.relation.referencesS. G. Valero, Métodos MCMC para la inferencia Bayesiana, Universidad Carlos III de Madrid, Escuela Politécnica Superior Departamento de Teoría de la Señales y Comunicaciones, 2013.spa
dc.relation.referencesR.T. Hough, A. Abebe, S.E.S. Ferreira, f(R)-gravity, models constrained with cosmological data, SAIP (2019). [ https://arxiv.org/pdf/gr-qc/1911.05983v2]spa
dc.relation.referencesJ. D. Bratt, A. C. Gault, R. J. Scherrer. T. P. Walker, https://arxiv.org/pdf/astro-ph/0208133v2.spa
dc.relation.referencesS. Perlmutter, Institute for Nuclear and Particle Astrophysics, Berkeley, Cal, https://arxiv.org/pdf/astro-ph/9812133v1, 1998.spa
dc.relation.referencesT. Padmanabhan, T. Roy Choudhury, Ganeshkhind, Pune, India, astro-ph/0212573v2, 2003.spa
dc.relation.referencesAdam. G. Riess, Alexei V. Filippenko, Department of Astronomy, University of California, Berkeley, CA, astro-ph/9805201v1, 1998.spa
dc.relation.referencesAdam. G. Riess, Louis-Gregory, John Tonry, et. al, Space Telescope Sciencie Institute, 3700 San Martin Drive, Baltimore, MD 21218, https://arxiv.org/pdf/astro-ph/0402512v2, 2004.spa
dc.relation.referencesS. Carloni, J. A. Leach, S. Capozzielo, P. K. S. Dunsby, Cosmological dynamics of Scalar-Tensor Gravity, gr-qc/0701009v13.spa
dc.relation.referencesBilic, N., Tupper, G. B., & Viollier, R. D. Uni cation of dark matter and dark energy: The inhomo- geneous Chaplygin gas. (2002). Physics Letters B, 535(1-4), 17-21.spa
dc.relation.referencesO Hrycyna, M Szyd÷owski , Dynamical complexity of the Brans-Dicke cosmology, JCAP12(2013)016, DOI:10.1088/1475-7516/2013/12/016, https://arxiv.org/pdf/310.1961.spa
dc.relation.referencesB. Ratra, P. J. E. Peebles, Cosmological consequences of a rolling homogeneous scalar Field, Physics Review D 37, 12 (1988).spa
dc.relation.referencesR. R. Caldwell, An Introduction to Quintessence, Brazilian Journal of Physics, vol. 30, 2 (2000).spa
dc.relation.referencesS. C. C. Ng, N. J. Nunes and F. Rosati, Applications of scalar attractor solutions to Cosmology, astro-ph/0107321v1, 2001.spa
dc.relation.referencesN. Roy, N. Banerjee, Tracking quintessence: a dynamical systems study, gr-qc/1312.2670v1, 2013.spa
dc.relation.referencesT. Padmanabhan, Phys. Rept. 380, 235 (2003); P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003); V. Sahni, Lect. Notes Phys. 653, 141 (2004) [ https://arxiv.org/pdf/astro-ph/0403324].spa
dc.relation.referencesE. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).spa
dc.relation.referencesS. Perlmutter et al., Astrophys. J. 517, 565 (1999); A. G. Riess et al., Astron. J. 116, 1009 (1998); Astron. J. 117, 707(1999); J. L. Tonry et al., Astrophys. J. 594, 1 (2003); R. A. Knop et al., Astrophys. J. 598, 102 (2003).spa
dc.relation.referencesD. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003); D. N. Spergel et al., https://arxiv.org/pdf/astro-ph/0603449.spa
dc.relation.referencesK. Ichiki, M. Yahiro, T. Kajino, M. Orito, G. J. Mathews, astro-ph/0203272.spa
dc.relation.referencesM. Tegmark et al., Phys. Rev. D 69, 103501 (2004); U. Seljak et al., Phys. Rev. D 71, 103515 (2005).spa
dc.relation.referencesD. J. Eisenstein et al., Astrophys. J. 633, 560 (2005); C. Blake, D. Parkinson, B. Bassett, K. Glaze- brook, M. Kunz and R. C. Nichol, Mon. Not. Roy. Astron. Soc. 365, 255 (2006).spa
dc.relation.referencesB. Jain and A. Taylor, Phys. Rev. Lett. 91, 141302 (2003).spa
dc.relation.referencesU. Seljak, A. Slosar and P. McDonald, JCAP 0610, 014 (2006).spa
dc.relation.referencesP. Astier et al., Astron. Astrophys. 447, 31 (2006).spa
dc.relation.referencesM. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001).spa
dc.relation.referencesV. Sahni and A. A. Starobinsky, https://arxiv.org/pdf/astro-ph/0610026.spa
dc.relation.referencesY. Fujii, Phys. Rev. D 26, 2580 (1982); L. H. Ford, Phys. Rev. D 35, 2339 (1987); C. Wetterich, Nucl. Phys B. 302, 668 (1988); B. Ratra and J. Peebles, Phys. Rev D 37, 321 (1988); Y. Fujii and T. Nishioka, Phys. Rev. D 42, 361 (1990).spa
dc.relation.referencesE. J. Copeland, A. R. Liddle, and D. Wands, Ann. N. Y. Acad. Sci. 688, 647 (1993); C. Wetterich, A&A 301, 321 (1995).spa
dc.relation.referencesP. G. Ferreira and M. Joyce, Phys. Rev. Lett. 79, 4740 (1997); Phys. Rev. D 58, 023503 (1998); R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998); I. Zlatev, L. M. Wang and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999); P. J. Steinhardt, L. M. Wang and I. Zlatev, Phys. Rev. D 59, 123504 (1999).spa
dc.relation.referencesJ. Pérez-Romero and S. Nesseris, Cosmological constraints and comparations of viable f(R) models, Physics Review D97 (2018) 023525. URL.spa
dc.relation.referencesL. Amendola, Institute of Theoretical Physics, University of Heidelberg, Shinji Tsujikawa, Tokyo University of Science, Dark Energy Theory and Observations,Cambridge University Press, 2010.spa
dc.relation.referencesL. Amendola, Phys. Rev. D 62, 043511 (2000); L. Amendola and D. Tocchini-Valentini, Phys. Rev. D 64, 043509 (2001).spa
dc.relation.referencesL. Amendola and C. Quercellini, Phys. Rev. D 68, 023514 (2003).spa
dc.relation.referencesL. Amendola, M. Quartin, S. Tsujikawa and I. Waga, Phys. Rev. D 74, 023525 (2006).spa
dc.relation.referencesU. Alam, V. Sahni, T. D. Saini, A. A. Starobinsky, Exploring the Expanding Universe and Dark Energy using the State nder Diagnostic, https://arxiv.org/pdf/ astro-ph/0303009v4.spa
dc.relation.referencesA. Melchiorri, L. Mersini-Houghton, C. J. Odman and M. Trodden, Phys. Rev. D 68, 043509 (2003); U. Alam, V. Sahni,spa
dc.relation.referencesT. D. Saini and A. A. Starobinsky, Mon. Not. Roy. Astron. Soc. 354, 275 (2004); B. A. Bassett, P. S. Corasaniti and M. Kunz, Astrophys. J. 617, L1 (2004).spa
dc.relation.referencesR. R. Caldwell, Phys. Lett. B 545,23-29 (2002); R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003); S. M. Carroll, M. Ho¤man and M. Trodden, Phys. Rev. D 68, 023509 (2003); P. Singh, M. Sami and N. Dadhich, Phys. Rev. D 68 023522 (2003).spa
dc.relation.referencesJ. M. Cline, S. Jeon and G. D. Moore, Phys. Rev. D 70, 043543 (2004); N. Arkani-Hamed, H. C. Cheng, M. A. Luty and S. Mukohyama, JHEP 0405, 074 (2004); F. Piazza and S. Tsujikawa, JCAP 0407, 004 (2004).spa
dc.relation.referencesJ. P. Uzan, Phys. Rev. D 59, 123510 (1999); L. Amendola, Phys. Rev. D 60, 043501 (1999); T. Chiba, Phys. Rev. D 60, 083508 (1999); Y. Fujii, Phys. Rev. D62, 044011 (2000); N. Bartolo and M. Pietroni, Phys. Rev. D 61 023518 (2000); F. Perrotta, C. Baccigalupi and S. Matarrese, Phys. Rev. D 61, 023507 (2000); A. Riazuelo & J.-P. Uzan, Phys.Rev. D66 (2002) 023525.spa
dc.relation.referencesS. Chib and I. Jeliazkov, Marginal likelihood from the Metropolis-Hastings output, Journal of the American Statistical Associations 96 (2001) 270-281.spa
dc.relation.referencesG. Esposito-Far ese and D. Polarski, Phys. Rev. D 63 063504 (2001).spa
dc.relation.referencesB. Boisseau, G. Esposito-Far ese, D. Polarski and A. A. Starobinsky, Phys. Rev. Lett. 85, 2236 (2000).spa
dc.relation.referencesR. Gannouji, D. Polarski, A. Ranquet and A. A. Starobinsky, JCAP 0609, 016 (2006).spa
dc.relation.referencesL. Perivolaropoulos, JCAP 0510, 001 (2005); S. Nesseris and L. Perivolaropoulos, https://arxiv.org/pdf/astro-ph/0610092.spa
dc.relation.referencesS. Capozziello, V. F. Cardone, S. Carloni and A. Troisi, Int. J. Mod. Phys. D 12, 1969 (2003).spa
dc.relation.referencesS. M. Carroll, V. Duvvuri, M. Trodden and M. S. Turner, Phys. Rev. D 70, 043528 (2004).spa
dc.relation.referencesL. Wang, R.R. Caldwell, J.P. Ostriker and P. Steinhardt, Astrophys. J. 530, 17 (2000).spa
dc.relation.referencesT. Chiba, Phys. Lett. B 575, 1 (2003).spa
dc.relation.referencesA. D. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1 (2003).spa
dc.relation.referencesV. Faraoni, Phys. Rev. D 74, 023529 (2006).spa
dc.relation.referencesS. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512 (2003).spa
dc.relation.referencesA. W. Brook eld, C. van de Bruck and L. M. H. Hall, Phys. Rev. D 74, 064028 (2006).spa
dc.relation.referencesS. Capozziello, V. Salzano, Cosmography and large scale structure by f(R)-gravity, Cosmography: Cosmology without the Einstein equations. Gen. Rel. Grav. 37. https://arxiv.org/pdf/0902.0088v1.spa
dc.relation.referencesM. Roshan, F. Shojai, Tracking f(R) cosmology, Physics Review D, May 2009. https://arxiv.org/pdf/0905.0247v1.spa
dc.relation.referencesN. Roy, Dynamical Systems Analysis of Various Dark Energy Models, Thesis submitted to IISER Kolkata for the Degree of Doctor Of Philosophy in Science, 2015.spa
dc.relation.referencesPao-Yu Wang, Chien-Wen Chen, Confronting Phantom Dark Energy with Observations, Department of Physics, National Taiwan University, Taipei 10617, Taiwan, R.O.C, Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei 10617, Taiwan, R.O.C. https//arxiv/1208.65798v1, arxiv/1108.1424v1.spa
dc.relation.referencesN. Roy and N. Banerjee, Quintessence Scalar Field: A Dynamical Systems Study", Euro. Phys. J Plus., 129, 162 (2014).spa
dc.relation.referencesAdam G Riess and Lucas M Macri. A 2.4 % Determination of the Local Value of the Hubble Constant. https://arxiv.org/pdf/ April 2016.spa
dc.relation.referencesR. Jimenez and A. Loeb, Constraining Cosmological Parameters Based on Relative Galaxy Ages, https://arxiv.org/pdf/astro-ph/0106145v1.spa
dc.relation.referencesAntonella Cid et al. Bayesian Comparison of Interacting Scenarios . In: JCAP 03 (2019), p. 030. doi : 10.1088/1475-7516/2019/03/030. https://arxiv.org/pdf/1805.02107[astro-ph.CO].spa
dc.relation.referencesE. D. Pietro, J. Demaret, Quinsesence: back to basics, Institut d Astrophysique et de Geophysique, Universit e de Li ege, All ee du 6 Ao ut 17, B-4000, Li ^ege, Belgium.spa
dc.relation.referencesN. Roy, A. X. Gonazalez-Morales, L. A Ureña-López, New General Parametrizations of quintessence elds and its observationals contraints, https://arxiv.org/pdf/gr-qc/1803.09204v2.spa
dc.relation.referencesB. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988); P. J. E. Peebles and B. Ratra, Ap. J. Lett. 325 , L17 (1988).spa
dc.relation.referencesK. Coble, S. Dodelson and J. A. Frieman, Phys. Rev. D 55, 1851 (1997); J. A. Frieman et al. , Phys. Rev. Lett. 75 , 2077 (1995).spa
dc.relation.referencesA. B. Burd and J. D. Barrow, Nucl. Phys. B 308 , 929 (1988).spa
dc.relation.referencesRobert J. Scherrer, A.A. Sen, Thawing quintessence with a nearly at potential, Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, Center For Theoretical Physics, Jamia Millia Islamia, New Delhi 110025, India.spa
dc.relation.referencesSalvatore Capozziello, Curvature Quintessence, International Journal of Modern Physics D 11(04).spa
dc.relation.referencesChiba, T., Okabe, T., & Yamaguchi, M. Kinetically driven quintessence. (2000). Physical Review D, 62(2), 023511.spa
dc.relation.referencesLewis, A., & Bridle, S. Cosmological parameters from CMB and other data: A Monte Carlo approach. (2002). Physical Review D, 66(10), 103511.spa
dc.relation.referencesVinod B. Johri, The Genesis of Cosmological Tracker Fields, Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA.spa
dc.relation.referencesPaul J. Steinhardt, Limin Wang, Ivaylo Zlatev, Cosmological Tracking Solutions, https://arxiv.org/pdf/astro-ph/9812313.spa
dc.relation.referencesNeil Gehrels, NASA/GSFC, NASA s Dark Matter & Dark Energy Program, SpacePart12, November 5, 2012.spa
dc.relation.referencesDaniel Humberto Solis, Campos Escalares en Cosmología, National Polytechnic Institute, Mexico City, Mexico, Jan 2014 ISBN: 978-3-659-02821-2.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.ddc110 - Metafísica::113 - Cosmología (Filosofía de la naturaleza)spa
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicosspa
dc.subject.lembUNIVERSO EN EXPANSIONspa
dc.subject.lembExpanding universeeng
dc.subject.lembCOSMOLOGIAspa
dc.subject.lembCosmologyeng
dc.subject.lembSISTEMAS DE HAMILTONspa
dc.subject.lembHamiltonian systemseng
dc.subject.lembSISTEMAS DINAMICOS DIFERENCIALESspa
dc.subject.lembDifferentiable dynamical systemseng
dc.subject.lembMETODO DE MONTECARLOspa
dc.subject.lembMonte carlo methodeng
dc.subject.lembANALISIS NUMERICOspa
dc.subject.lembNumerical analysiseng
dc.subject.proposalEnergía oscuraspa
dc.subject.proposalExpansión aceleradaspa
dc.subject.proposalQuintaesenciaspa
dc.subject.proposalCampo trackerspa
dc.subject.proposalSistema dinámicospa
dc.subject.proposalPotencial escalarspa
dc.subject.proposalEstadística bayesianaspa
dc.subject.proposalMétodo Markov Monte Carlospa
dc.subject.proposalAccelerated expansioneng
dc.subject.proposalDark energyeng
dc.subject.proposalQuintessenceeng
dc.subject.proposalTracker fieldeng
dc.subject.proposalDynamic systemeng
dc.subject.proposalScalar potentialeng
dc.subject.proposalBayesian statisticseng
dc.subject.proposalMarkov Monte Carlo methodeng
dc.titlePrueba geométrica de potenciales Tracker en cosmologíaspa
dc.title.translatedGeometric proof of Tracker potentials in cosmologyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80374215.2025.pdf
Tamaño:
5.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: