Valorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantes

dc.contributor.advisorOcampo Carmona, Luz Marina
dc.contributor.authorRamírez Marín, Alejandro
dc.contributor.cvlacA. Ramirez-Marinspa
dc.contributor.googlescholarAlejandro Ramirez Marinspa
dc.contributor.orcidRamírez Marín, Alejandro [0000-0001-8156-2125]spa
dc.contributor.researchgroupCiencia y Tecnología de Materialesspa
dc.date.accessioned2023-06-07T14:36:26Z
dc.date.available2023-06-07T14:36:26Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos efluentes de decapado de la industria de galvanizado por inmersión en caliente son altamente peligrosos y de difícil tratamiento debido a la concentración de ácido clorhídrico alrededor de 10% y contenido de metales pesados disueltos de Fe (~140g/L) y de Zn (~160g/L). Mediante a la técnica de coprecipitación química estos efluentes pueden ser aprovechados para la síntesis de partículas. En este trabajo investigativo se logra la obtención de partículas de óxido de hierro-zinc a partir de efluentes decapado oxidado de la industria de galvanizado en caliente; la oxidación del efluente se realiza con KMnO4 0,5 M o H2O2 13%, posteriormente se utiliza H2C2O4 como agente precipitante a 1 M, 1,5 M y 2 M. Los precipitados se calcinaron bajo atmósfera de aire, y se obtuvieron principalmente micro y nanopartículas de los óxidos de ferrita de zinc y oxido de zinc en proporciones similares que varían en un rango entre 30 y 40% p/p para cada uno de los compuestos metálicos presentes. Se encontró, que el Band-Gap obtenido en todas las síntesis fue alrededor de 1.2-1.4 eV, dichos valores están por debajo del rango reportado (1.9 Ev) en la literatura para este tipo materiales, siendo de gran interés para aplicaciones fotocatalíticas; por último, se evalúa su capacidad como fotocatalizador para la degradación de colorantes, obtenido un porcentaje de remoción del color en la solución mayor al 92% en el 91,6% de las muestras sintetizadas en presencia de un sistema de radiación UV-vis. (Texto tomado de la fuente)spa
dc.description.abstractPickling effluents from the hot-dip galvanizing industry are highly dangerous and difficult to treat due to the concentration of hydrochloric acid around 10% and the content of dissolved heavy metals of Fe (~140g/L) and Zn. (~160g/L). Through a chemical coprecipitation technique, these effluents can be used for the synthesis of particles. In this investigative work, we are able to obtain iron-zinc oxide particles from oxidized pickling effluents from the hot-dip galvanizing industry; different materials were synthesized by coprecipitation using 0.5 M KMnO4 or 13% H2O2 as oxidizing agents of the pickling solution and different concentrations of H2C2O4 as precipitating agent (1 M, 1.5 M and 2 M). The precipitates were calcined under an air atmosphere, and mainly micro and nanoparticles of zinc ferrite oxides and zinc oxide were acquired in similar proportions that vary in a range between 30 and 40% w/w for each of the metal compounds. It was found that the band Gap obtained in all the syntheses was around 1.2-1.4 eV, these values are below the reported range (1.9 Ev) in the literature for this type of materials, being of great interest for photocatalytic applications; they are evaluated as a photocatalyst for the degradation of dyes, obtaining a color removal percentage in the solution greater than 92% in 91.6% of the synthesized samples in the presence of a UV-vis radiation system.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaValorización de residuos y Tratamiento de efluentesspa
dc.format.extent53 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83987
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAsociación Nacional de Empresarios de Colombia, “Guía práctica de galvanizado por inmersión en caliente,” p. 64, 2013, [Online]. Available: http://www.galvanizadocolombia.com/index.php/publicaciones?task=document.viewdoc&id=6spa
dc.relation.references“Asociación Latinoamericana de Zinc - LATIZA,” 2012.spa
dc.relation.referencesH. Samaniego Peña, “Valorización de efluentes de decapado ácido metálico. Recuperación de zinc,” Tesis Dr. en Red, 2006.spa
dc.relation.referencesM. Zhang, C. Chen, L. Mao, and Q. Wu, “Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation,” Constr. Build. Mater., vol. 159, pp. 27–36, 2018, doi: 10.1016/j.conbuildmat.2017.10.130.spa
dc.relation.referencesM. K. Sinha, S. Pramanik, S. K. Sahu, L. B. Prasad, M. K. Jha, and B. D. Pandey, “Development of an efficient process for the recovery of zinc and iron as value added products from the waste chloride solution,” Sep. Purif. Technol., vol. 167, pp. 37–44, 2016, doi: 10.1016/j.seppur.2016.04.049.spa
dc.relation.referencesS. Hu et al., “Recovery of zinc and iron from hot-dip galvanizing spent pickle liquor using solvent extraction,” J. Mol. Liq., vol. 362, p. 119741, 2022, doi: 10.1016/j.molliq.2022.119741.spa
dc.relation.referencesSonu et al., “An overview of heterojunctioned ZnFe2O4photocatalyst for enhanced oxidative water purification,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 105812, 2021, doi: 10.1016/j.jece.2021.105812.spa
dc.relation.referencesP. Dasta, A. Pratap Singh, and A. Pratap Singh, “Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel,” Mater. Today Proc., vol. 52, pp. 751–757, 2022, doi: 10.1016/j.matpr.2021.10.143.spa
dc.relation.referencesQ. Wang, L. Cao, Y. Wang, M. Qin, and Q. Wang, “Shell/core structure zinc oxide/iron oxide: A new sunscreen material against blue light,” Mater. Lett., vol. 322, no. February, p. 132529, 2022, doi: 10.1016/j.matlet.2022.132529.spa
dc.relation.referencesP. A. Vinosha, L. A. Mely, J. E. Jeronsia, S. Krishnan, and S. J. Das, “Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route,” Optik (Stuttg)., vol. 134, pp. 99–108, 2017, doi: 10.1016/j.ijleo.2017.01.018.spa
dc.relation.referencesS. Sharma et al., “Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review,” J. Clean. Prod., vol. 228, pp. 755–769, 2019, doi: 10.1016/j.jclepro.2019.04.292.spa
dc.relation.referencesY. Li, D. Chen, S. Fan, and T. Yang, “Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater,” J. Taiwan Inst. Chem. Eng., vol. 96, no. xxxx, pp. 185–192, 2019, doi: 10.1016/j.jtice.2018.11.006.spa
dc.relation.referencesR. Al-Tohamy et al., “A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,” Ecotoxicol. Environ. Saf., vol. 231, p. 113160, 2022, doi: 10.1016/j.ecoenv.2021.113160.spa
dc.relation.referencesX. Li, Y. Hou, Q. Zhao, W. Teng, X. Hu, and G. Chen, “Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol,” Chemosphere, vol. 82, no. 4, pp. 581–586, 2011, doi: 10.1016/j.chemosphere.2010.09.068.spa
dc.relation.referencesM. C. Valor, I. M. Muñoz, T. María Jesus Fernández, L. M. J. Rivera, F. I. Ferrero, O. J. V. Escrig, and N. E. Gisbert, “ÍNDICE PRESENTACIÓN: LA ECONOMÍA CIRCULAR: UNA OPCIÓN INTELIGENTE 4 Marta de la Cuesta González UNED y Economistas sin Fronteras ECONOMÍA CIRCULAR-ESPIRAL. OPCIONES ESTRATÉGICAS DESDE EL RECICLAJE AL CAMBIO SISTÉMICO 7 Luis M. Jiménez Herrero Asociación p,” Econ. sin Front., vol. 37, 2020, [Online]. Available: www.ecosfron.orgspa
dc.relation.referencesDANE, “Boletín Técnico Cuenta ambiental y económica de flujos de materiales – residuos sólidos,” Dane, pp. 1–19, 2020, [Online]. Available: https://www.dane.gov.co/files/investigaciones/pib/ambientales/cuentas_ambientales/cuentas-residuos/Bt-Cuenta-residuos-2018p.pdfspa
dc.relation.referencesS. Yang et al., “Linear α-olefin production with Na-promoted Fe-Zn catalysts via Fischer-Tropsch synthesis,” RSC Adv., vol. 9, no. 25, pp. 14176–14187, 2019, doi: 10.1039/c9ra02471a.spa
dc.relation.referencesJ. M. Magalhães, J. E. Silva, F. P. Castro, and J. A. Labrincha, “Physical and chemical characterisation of metal finishing industrial wastes,” J. Environ. Manage., vol. 75, no. 2, pp. 157–166, 2005, doi: 10.1016/j.jenvman.2004.09.011.spa
dc.relation.referencesL. Pérez-Villarejo, S. Martínez-Martínez, B. Carrasco-Hurtado, D. Eliche-Quesada, C. Ureña-Nieto, and P. J. Sánchez-Soto, “Valorization and inertization of galvanic sludge waste in clay bricks,” Appl. Clay Sci., vol. 105–106, pp. 89–99, 2015, doi: 10.1016/j.clay.2014.12.022.spa
dc.relation.referencesFrias et al., “Novel process to recover by-products from the pickling baths of stainless steel,” Proj. Funded by Eur. Community under Ind. Mater. Technol. Program. (Brite-Euram III), Proj. BE-3501, Contract BRPR-CT 97-0407, pp. 1–3, 1997, [Online]. Available: https://cordis.europa.eu/project/rcn/37577/factsheet/enspa
dc.relation.referencesA. C. Silva et al., “Incorporation of galvanic waste (Cr, Ni, Cu, Zn, Pb) in a soda-lime-borosilicate glass,” J. Am. Ceram. Soc., vol. 91, no. 4, pp. 1300–1305, 2008, doi: 10.1111/j.1551-2916.2008.02311.x.spa
dc.relation.referencesJ. P. Gong, K. Q. Luo, and Y. L. Huang, “Dynamic modeling & simulation for environmentally benign cleaning & rinsing,” Plat. Surf. Finish., vol. 84, no. 11, pp. 63–70, 1997.spa
dc.relation.referencesA. Culcasi, R. Gueccia, S. Randazzo, A. Cipollina, and G. Micale, “Design of a novel membrane-integrated waste acid recovery process from pickling solution,” J. Clean. Prod., vol. 236, p. 117623, 2019, doi: 10.1016/j.jclepro.2019.117623.spa
dc.relation.referencesV. y D. T. Ministerio de Ambiente, “Decreto 4741,” Minist. Ambient. Vivienda y Desarro. Territ., no. 4741, p. 30, 2005.spa
dc.relation.referencesS. Bao et al., “Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent,” J. Colloid Interface Sci., vol. 462, pp. 235–242, 2016, doi: 10.1016/j.jcis.2015.10.011.spa
dc.relation.referencesI. C. Chou, Y. M. Kuo, C. Lin, J. W. Wang, C. T. Wang, and G. P. Chang-Chien, “Electroplating sludge metal recovering with vitrification using mineral powder additive,” Resour. Conserv. Recycl., vol. 58, pp. 45–49, 2012, doi: 10.1016/j.resconrec.2011.10.006.spa
dc.relation.referencesA. Arguillarena, M. Margallo, A. Urtiaga, and A. Irabien, “Life-cycle assessment as a tool to evaluate the environmental impact of hot-dip galvanisation,” J. Clean. Prod., vol. 290, p. 125676, 2021, doi: 10.1016/j.jclepro.2020.125676.spa
dc.relation.referencesZ. Fang, X. Qiu, J. Chen, and X. Qiu, “Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor,” Appl. Catal. B Environ., vol. 100, no. 1–2, pp. 221–228, 2010, doi: 10.1016/j.apcatb.2010.07.035.spa
dc.relation.referencesH. I. S. A. Pablo Esteban Zaruma Arias, José Bernardo Proal Nájera, Isaías Chaires Hernández, “Los Colorantes Textiles Industriales Y Tratamientos Óptimos De Sus Efluentes De Agua Residual: Una Breve Revisión Textile Industrial Dyes and optimal wastewater effluents treatments: A short review,” Rev. la Fac. Ciencias Quìmicas, vol. 19, pp. 38–47, 2018.spa
dc.relation.referencesP. I. Bruto, “Boletín Técnico Producto Interno Bruto ( PIB ) Boletín Técnico,” pp. 1–47, 2022.spa
dc.relation.referencesL. F. Garcés and G. A. Penuela, “Fotocatálisis de las aguas residuales de la industria textil utilizando colector solar,” Rev. Lasallista Investig, vol. 4, no. 2, pp. 24–31, 2012, [Online]. Available: http://www.scielo.org.co/scielo.php?pid=S1794-44492007000200004&script=sci_arttext&tlng=esspa
dc.relation.referencesJ. Tang, Y. Pei, Q. Hu, D. Pei, and J. Xu, “The Recycling of Ferric Salt in Steel Pickling Liquors: Preparation of Nano-sized Iron Oxide,” Procedia Environ. Sci., vol. 31, pp. 778–784, 2016, doi: 10.1016/j.proenv.2016.02.071.spa
dc.relation.referencesS. B. Zueva et al., “Recovery of zinc from treatment of spent acid solutions from the pickling stage of galvanizing plants,” Sustain., vol. 13, no. 1, pp. 1–8, 2021, doi: 10.3390/su13010407.spa
dc.relation.referencesV. N. Kalpana, B. A. S. Kataru, N. Sravani, T. Vigneshwari, A. Panneerselvam, and V. Devi Rajeswari, “Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies,” OpenNano, vol. 3, no. March, pp. 48–55, 2018, doi: 10.1016/j.onano.2018.06.001.spa
dc.relation.referencesS. Li, S. Krishnamoorthy, A. Li, G. D. Meitzner, and E. Iglesia, “Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties,” J. Catal., vol. 206, no. 2, pp. 202–217, 2002, doi: 10.1006/jcat.2001.3506.spa
dc.relation.referencesM. Mishra and D. M. Chun, “α-Fe<inf>2</inf>O<inf>3</inf> as a photocatalytic material: A review,” Appl. Catal. A Gen., vol. 498, pp. 126–141, 2015, doi: 10.1016/j.apcata.2015.03.023.spa
dc.relation.referencesS. D. Roy, K. C. Das, and S. S. Dhar, “Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short review,” Inorg. Chem. Commun., vol. 134, no. September, p. 109050, 2021, doi: 10.1016/j.inoche.2021.109050.spa
dc.relation.referencesA. Fouda, S. EL-Din Hassan, S. S. Salem, and T. I. Shaheen, “In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications,” Microb. Pathog., vol. 125, no. September, pp. 252–261, 2018, doi: 10.1016/j.micpath.2018.09.030.spa
dc.relation.referencesN. A. Zakariya, S. Majeed, and W. H. W. Jusof, “Investigation of antioxidant and antibacterial activity of iron oxide nanoparticles (IONPS) synthesized from the aqueous extract of Penicillium spp.,” Sensors Int., vol. 3, no. November 2021, pp. 1–9, 2022, doi: 10.1016/j.sintl.2022.100164.spa
dc.relation.referencesC. L. Doolette, T. L. Read, N. R. Howell, T. Cresswell, and E. Lombi, “Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers,” Sci. Total Environ., vol. 749, p. 142369, 2020, doi: 10.1016/j.scitotenv.2020.142369.spa
dc.relation.referencesS. Chareon, H. O. T. Dip, and C. Limited, “HOT DIP GALVANIZED COATING PROCEDURE SANG CHAREON HOT DIP GALVANIZE COMPANY LIMITED Tappan Zee Bridge,” 2008, [Online]. Available: http://www.sangchareongroup.com/images/brochure/Brochure.pdfspa
dc.relation.referencesS. L. McArthur, “Thin films of Vanadium Oxide Grown on Vanadium metal,” Surf. Interface Anal., vol. 38, no. c, pp. 1380–1385, 2006, doi: 10.1002/sia.spa
dc.relation.referencesB. Guo, B. Liu, J. Yang, and S. Zhang, “The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review,” J. Environ. Manage., vol. 193, pp. 410–422, 2017, doi: 10.1016/j.jenvman.2017.02.026.spa
dc.relation.referencesG. Scheer and M. Huckshold, Design and Manufacturing according to Hot-Dip Galvanizing Requirements. 2011. doi: 10.1002/9783527636884.ch7.spa
dc.relation.referencesJ. D. Hernández, “Detection of the critical points of the hot-dip galvanizing process: a focus on sustainability and sustainable development,” p. 148, 2018.spa
dc.relation.referencesM. Regel-Rosocka, “A review on methods of regeneration of spent pickling solutions from steel processing,” J. Hazard. Mater., vol. 177, no. 1–3, pp. 57–69, 2010, doi: 10.1016/j.jhazmat.2009.12.043.spa
dc.relation.referencesR. Huang, Z. Fang, X. Fang, and E. P. Tsang, “Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor,” J. Colloid Interface Sci., vol. 436, pp. 258–266, 2014, doi: 10.1016/j.jcis.2014.08.035.spa
dc.relation.referencesQ. Y. Chen, M. Tyrer, C. D. Hills, X. M. Yang, and P. Carey, “Immobilisation of heavy metal in cement-based solidification/stabilisation: A review,” Waste Manag., vol. 29, no. 1, pp. 390–403, 2009, doi: 10.1016/j.wasman.2008.01.019.spa
dc.relation.referencesB. Tang, L. Yuan, T. Shi, L. Yu, and Y. Zhu, “Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation,” J. Hazard. Mater., vol. 163, no. 2–3, pp. 1173–1178, 2009, doi: 10.1016/j.jhazmat.2008.07.095.spa
dc.relation.referencesP. Dvořák and J. Jandová, “Hydrometallurgical recovery of zinc from hot dip galvanizing ash,” Hydrometallurgy, vol. 77, no. 1–2, pp. 29–33, 2005, doi: 10.1016/j.hydromet.2004.10.007.spa
dc.relation.referencesU. P. M. Ashik, S. Kudo, and J. Hayashi, An Overview of Metal Oxide Nanostructures. Elsevier Ltd., 2018. doi: 10.1016/b978-0-08-101975-7.00002-6.spa
dc.relation.referencesA. H. M. Yusoff, M. N. Salimi, and M. F. Jamlos, “A review: Synthetic strategy control of magnetite nanoparticles production,” Adv. Nano Res., vol. 6, no. 1, pp. 1–19, 2018, doi: 10.12989/anr.2018.6.1.001.spa
dc.relation.referencesS. Sanaei-Rad, M. A. Ghasemzadeh, and S. S. Aghaei, “Synthesis and structure elucidation of ZnFe2O4/IRMOF-3/GO for the drug delivery of tetracycline and evaluation of their antibacterial activities,” J. Organomet. Chem., vol. 960, p. 122221, 2022, doi: 10.1016/j.jorganchem.2021.122221.spa
dc.relation.referencesJ. Lian, Q. Ouyang, P. E. Tsang, and Z. Fang, “Fenton-like catalytic degradation of tetracycline by magnetic palygorskite nanoparticles prepared from steel pickling waste liquor,” Appl. Clay Sci., vol. 182, no. July, p. 105273, 2019, doi: 10.1016/j.clay.2019.105273.spa
dc.relation.referencesK. Babooram and Z. G. Ye, “Novel solution routes to ferroelectrics and relaxors,” Handb. Adv. Dielectr. Piezoelectric Ferroelectr. Mater. Synth. Prop. Appl., vol. 3, pp. 852–883, 2008, doi: 10.1533/9781845694005.7.852.spa
dc.relation.referencesC. P. Romao, K. J. Miller, C. A. Whitman, M. A. White, and B. A. Marinkovic, Negative Thermal Expansion (Thermomiotic) Materials, vol. 4. Elsevier Ltd., 2013. doi: 10.1016/B978-0-08-097774-4.00425-3.spa
dc.relation.referencesM. C. Paganini, A. Giorgini, N. P. F. Gonçalves, C. Gionco, A. Bianco Prevot, and P. Calza, “New insight into zinc oxide doped with iron and its exploitation to pollutants abatement,” Catal. Today, vol. 328, no. September 2018, pp. 230–234, 2019, doi: 10.1016/j.cattod.2018.10.054.spa
dc.relation.referencesR. Saleh and N. F. Djaja, “Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 130, pp. 581–590, 2014, doi: 10.1016/j.saa.2014.03.089.spa
dc.relation.referencesA. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, and E. Jabbari, “Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions,” Nano-Structures and Nano-Objects, vol. 14, pp. 19–48, 2018, doi: 10.1016/j.nanoso.2018.01.006.spa
dc.relation.referencesP. Falak, S. A. Hassanzadeh-Tabrizi, and A. Saffar-Teluri, “Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity,” J. Magn. Magn. Mater., vol. 441, pp. 98–104, 2017, doi: 10.1016/j.jmmm.2017.05.044.spa
dc.relation.referencesS. Choudhary, D. Hasina, M. Saini, M. Ranjan, and S. Mohapatra, “Facile synthesis, morphological, structural, photocatalytic and optical properties of ZnFe2O4-ZnO hybrid nanostructures,” J. Alloys Compd., vol. 895, p. 162723, 2022, doi: 10.1016/j.jallcom.2021.162723.spa
dc.relation.referencesH. Derikvandi and A. Nezamzadeh-Ejhieh, “A comprehensive study on enhancement and optimization of photocatalytic activity of ZnS and SnS2: Response Surface Methodology (RSM), n-n heterojunction, supporting and nanoparticles study,” J. Photochem. Photobiol. A Chem., vol. 348, pp. 68–78, 2017, doi: 10.1016/j.jphotochem.2017.08.007.spa
dc.relation.referencesR. Srivastava and B. C. Yadav, “Ferrite materials: Introduction, synthesis techniques, and applications as sensors,” Int. J. Green Nanotechnol. Biomed., vol. 4, no. 2, pp. 141–154, 2012, doi: 10.1080/19430892.2012.676918.spa
dc.relation.referencesT. T. Loan, D. K. Huy, N. P. Duong, T. D. Hoan, S. Soontaranon, and W. Klysubun, “Facile synthesis and characterization of ZnFe2O4/ZnO nanocomposite: An insight into structure and formation,” Radiat. Phys. Chem., vol. 193, no. January, p. 109977, 2022, doi: 10.1016/j.radphyschem.2022.109977.spa
dc.relation.referencesM. Kuang et al., “Synthesis of octahedral-like ZnO/ZnFe2O4 heterojunction photocatalysts with superior photocatalytic activity,” Solid State Sci., vol. 96, no. March, p. 105901, 2019, doi: 10.1016/j.solidstatesciences.2019.05.012.spa
dc.relation.referencesT. R. Sobahi and M. S. Amin, “Synthesis of ZnO/ZnFe2O4/ Pt nanoparticles heterojunction photocatalysts with superior photocatalytic activity,” Ceram. Int., vol. 46, no. 3, pp. 3558–3564, 2020, doi: 10.1016/j.ceramint.2019.10.073.spa
dc.relation.referencesS. Randazzo, D. La Corte, R. Gueccia, A. Cipollina, and G. Micale, “Metals recovery from waste pickling solutions by reactive precipitation,” Chem. Eng. Trans., vol. 86, no. i, pp. 1045–1050, 2021, doi: 10.3303/CET2186175.spa
dc.relation.referencesK. R. Lee, J. Kim, and J. G. Jang, “Recovery of zinc in spent pickling solution with oxalic acid,” Korean Chem. Eng. Res., vol. 55, no. 6, pp. 785–790, 2017, doi: 10.9713/kcer.2017.55.6.785.spa
dc.relation.referencesA. Verma, R. Kore, D. R. Corbin, and M. B. Shiflett, “Metal Recovery Using Oxalate Chemistry: A Technical Review,” Ind. Eng. Chem. Res., vol. 58, no. 34, pp. 15381–15393, 2019, doi: 10.1021/acs.iecr.9b02598.spa
dc.relation.referencesA. Pathak, A. Roy, and M. Manna, “Recovery of zinc from industrial waste pickling liquor,” Hydrometallurgy, vol. 163, pp. 161–166, 2016, doi: 10.1016/j.hydromet.2016.04.006.spa
dc.relation.referencesM. Z. Chekroun, M. A. Benali, I. E. Yahiaoui, M. Debab, M. Z. Belmehdi, and H. Tabet-derraz, “Optical properties behavior of ZnO nanoparticles deposited on glass in the ultraviolet – visible spectral range : Experimental and numerical study,” Opt. Mater. (Amst)., vol. 132, no. May, p. 112769, 2022, doi: 10.1016/j.optmat.2022.112769.spa
dc.relation.referencesM. A. Benali et al., “Synthesis and analysis of SnO2/ZnO nanocomposites: Structural studies and optical investigations with Maxwell–Garnett model,” Mater. Chem. Phys., vol. 240, no. July 2019, p. 122254, 2020, doi: 10.1016/j.matchemphys.2019.122254.spa
dc.relation.referencesD. A. Ferreira, L. M. Z. Prados, D. Majuste, and M. B. Mansur, “Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries,” J. Power Sources, vol. 187, no. 1, pp. 238–246, 2009, doi: 10.1016/j.jpowsour.2008.10.077.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo sostenible, “Resolución 631 de 2015 (Ministerio de Ambiente y Desarrollo sostenible),” Por la cual se Establ. los parámetros y los valores límites máximos Permis. en los vertimientos puntuales a cuerpos aguas Superf. y a los Sist. alcantarillado público y se dictan otras disposiciones., vol. 2015, no. 49, p. 73, 2015, [Online]. Available: http://www.minambiente.gov.co/images/normativa/app/resoluciones/d1-res_631_marz_2015.pdfspa
dc.relation.referencesH. Mehrizadeh, A. Niaei, H. H. Tseng, D. Salari, and A. Khataee, “Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor,” J. Photochem. Photobiol. A Chem., vol. 332, pp. 188–195, 2017, doi: 10.1016/j.jphotochem.2016.08.028.spa
dc.relation.referencesO. Bakina, E. Glazkova, N. Rodkevich, A. Mosunov, V. Chzhou, and M. Lerner, “Electroexplosive synthesis of composite ZnO/ZnFe2O4/Zn nanoparticles with photocatalytic and antibacterial activity,” Mater. Sci. Semicond. Process., vol. 152, no. August, p. 107076, 2022, doi: 10.1016/j.mssp.2022.107076.spa
dc.relation.referencesM. Sundararajan et al., “Physica B : Physics of Condensed Matter A comparative study on NiFe 2 O 4 and ZnFe 2 O 4 spinel nanoparticles : Structural , surface chemistry , optical , morphology and magnetic studies,” Phys. B Phys. Condens. Matter, vol. 644, no. April, p. 414232, 2022, doi: 10.1016/j.physb.2022.414232.spa
dc.relation.referencesB. Arunkumar, S. Johnson Jeyakumar, J. Vasudevan, M. Jothibas, and A. Sindhya, “Scrutiny of the magnetic properties of ZnO nanoparticles by solid state reaction method,” Mater. Today Proc., no. xxxx, 2022, doi: 10.1016/j.matpr.2022.06.036.spa
dc.relation.referencesR. Rameshbabu, N. Kumar, A. Karthigeyan, and B. Neppolian, “Visible light photocatalytic activities of ZnFe2O4/ZnO nanoparticles for the degradation of organic pollutants,” Mater. Chem. Phys., vol. 181, pp. 106–115, 2016, doi: 10.1016/j.matchemphys.2016.06.040.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primariosspa
dc.subject.lembGalvanizaciónspa
dc.subject.lembGalvanizingeng
dc.subject.lembDecapado de metalesspa
dc.subject.lembMetals - picklingeng
dc.subject.proposalValorización de efluentesspa
dc.subject.proposalDecapadospa
dc.subject.proposalGalvanizado en calientespa
dc.subject.proposalNanopartículasspa
dc.subject.proposalFerrita de zincspa
dc.subject.proposalÓxido de zincspa
dc.subject.proposalÓxido de hierrospa
dc.subject.proposalFotocatálisisspa
dc.subject.proposalDegradación de colorantes.spa
dc.subject.proposalEffluent valorizationeng
dc.subject.proposalPicklingeng
dc.subject.proposalHot-dip galvanizingeng
dc.subject.proposalNanoparticleseng
dc.subject.proposalZinc ferriteeng
dc.subject.proposalZinc oxideeng
dc.subject.proposalIron oxideeng
dc.subject.proposalPhotocatalysis and dye degradationeng
dc.titleValorización de efluentes de decapado del galvanizado en caliente para el desarrollo de fotocatalizadores de óxidos de zinc y hierro con aplicaciones potenciales en la degradación de colorantesspa
dc.title.translatedValorization of pickling effluents from hot-dip galvanizing for the development of zinc and iron oxide photocatalysts with potential applications in the degradation of dyeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152462665.2023.pdf
Tamaño:
1.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: