Thermodynamics of Black Holes in maximally symmetric spacetimes in f(R) theories of gravity

dc.contributor.advisorArenas Salazar, Jose Robel
dc.contributor.authorHurtado Mojica, Roger Anderson
dc.date.accessioned2021-06-22T20:18:55Z
dc.date.available2021-06-22T20:18:55Z
dc.date.issued2020-12-10
dc.descriptionilustracionesspa
dc.description.abstractIn this work exact solutions of the field equations in the metric formalism of f(R) theory are found for a spherical non-rotating and electrically charged mass distribution within the framework of the non-linear Born-Infeld theory. From these solutions the Black Hole temperature, entropy and specific heat are found and it was demonstrated that they coincide with the analogous quantities for the Reissner-Nordström Black Hole of General Relativity with cosmological constant. It is also found a hypergeometric model of cosmologically viable f(R), whose main characteristic is to generalize the well-known Starobinsky and Hu-Sawicki models. In Chapter 2 there is a review of the metric formalism of f(R) theory, the the field equations are found and since the f(R) theory of gravity can be expressed as a scalar-tensor theory with a scalar degree of freedom phi, by a conformal transformation, the action and its Gibbons-York-Hawking boundary term are written in the Einstein frame and the field equations in this frame are written. An effective potential is defined from part of the trace of the field equations in such a way that it can be calculated as an integral of a purely geometric term. This potential as well as the scalar potential are found, plotted and analyzed for some viable models of f(R) and for two other proposed new, shown viable, models. In Chapter 3, a cosmologically viable hypergeometric model in the modified gravity theory f(R) is found from the need for asintoticity towards LambdaCDM, the existence of an inflection point in the f(R) curve, and the conditions of viability given by the phase space curves (m, r), where m and r are characteristic functions of the model. To analyze the constraints associated with the viability requirements, the models were expressed in terms of a dimensionless variable, i.e. Rto x and f(R)to y(x)=x+h(x)+lambda, where h(x) represents the deviation of the model from General Relativity. Using the geometric properties imposed by the inflection point, differential equations were constructed to relate h'(x) and h''(x), and the solutions found were Starobinsky (2007) and Hu-Sawicki type models, nonetheless, it was found that these differential equations are particular cases of a hypergeometric differential equation, so that these models can be obtained from a general hypergeometric model. The parameter domains of this model were analyzed to make the model viable. Solutions of the field equations in f(R) theory of gravity are found in Chapter 4 for a spherically symmetric and static spacetime in the non-linear electrodynamic theory of Born-Infeld (BI). It is found that the models allowed under these conditions must have the parametric form f'(R)|_r=m+nr, where m and n are constants, whose values and signs have a strong impact on the solutions, as well as on the form and range of the function f(R). When n=0, f(R)=m R+m_0 and Einstein-BI solution is found. When mneq 0 and nneq0, the theory f(R) is asymptotically equivalent to General Relativity (GR), so that the solutions of Schwarzschild and f(R)-Reissner-Nordström can be written in some limits. Similarly, if n>0 and rgg1, the form of f(R) can be approximated by an expansion in series and as a particular case, when R_S=-frac{m^2}{3n}, can be found explicitly f(R)=m R+2nsqrt{R}+m_0. Finally, the solutions, scalar curvature and parametric form of the function f(r) in the non-linear regime (m=0) of the f(R) theory are found, and some models are plotted for specific values of m and n. In Chapter 5 it is used the conformal transformation between Jordan and Einstein frames in the formalism of the scalar-tensor theory, and the definitions of scalar field potentials, to determine in which cases the exact solutions shown here evade some generalized non-hair theorems for f(R) theory. Also, the Starobinsky quadratic model is linearized using Green functions. Some relevant Black Hole thermodynamic properties, namely entropy, temperature and specific heat are described and in some cases plotted, depending on the parameters m, n, q and Lambda, of the f(R) model, for the solutions found in Chapter 4. The technique used to calculate the Black Hole entropy is the Wald method and the symplectic potentials are calculated. It is found that the Black Hole entropy in this theory is no longer proportional to the square of the radius of the horizon, but that its expression changes according to the value of m and n. Finally, the results are discussed in Chapter 7. (Texto tomado de la fuente)eng
dc.description.abstractEn este trabajo se encuentran soluciones exactas de las ecuaciones de campo en el formalismo métrico de la teoría f(R) para una distribución de masa esférica no rotante y cargada eléctricamente en el marco de la teoría no lineal de Born-Infeld. A partir de estas soluciones se encuentran la temperatura, la entropía y el calor específico del agujero negro y se demuestra que coinciden con las cantidades análogas para el agujero negro de Reissner-Nordström de la relatividad general con constante cosmológica. También se encuentra un modelo hipergeométrico de f(R) cosmológicamente viable, cuya principal característica es generalizar los conocidos modelos de Starobinsky y Hu-Sawicki. En el Capítulo 2 se hace una revisión del formalismo métrico de la teoría f(R), se encuentran las ecuaciones de campo y dado que la teoría f(R) de la gravedad puede expresarse como una teoría escalar-tensorial con un grado de libertad escalar phi, mediante una transformación conforme, se escribe la acción y su término de frontera de Gibbons-York-Hawking en el marco de Einstein y se escriben las ecuaciones de campo en este marco. Se define un potencial efectivo a partir de una parte de la traza de las ecuaciones de campo, de manera que pueda calcularse como una integral de un término puramente geométrico. Este potencial, así como el potencial escalar, se encuentran, se trazan y se analizan para algunos modelos viables de f(R) y para otros dos nuevos modelos propuestos, que se muestran viables. En el Capítulo 3, se encuentra un modelo hipergeométrico cosmológicamente viable en la teoría de la gravedad modificada f(R) a partir de la necesidad de asintoticidad hacia LambdaCDM, la existencia de un punto de inflexión en la curva de f(R), y las condiciones de viabilidad dadas por las curvas del espacio de fase (m, r), donde m y r son funciones características del modelo. Para analizar las restricciones asociadas a los requisitos de viabilidad, los modelos se expresaron en términos de una variable adimensional, es decir, R\to x y f(R)\to y(x)=x+h(x)+\lambda, donde h(x) representa la desviación del modelo respecto a la Relatividad General. Utilizando las propiedades geométricas impuestas por el punto de inflexión, se construyeron ecuaciones diferenciales para relacionar h'(x) y h''(x), y las soluciones encontradas fueron modelos del tipo Starobinsky (2007) y Hu-Sawicki, sin embargo, se encontró que estas ecuaciones diferenciales son casos particulares de una ecuación diferencial hipergeométrica, por lo que estos modelos pueden ser obtenidos a partir de un modelo hipergeométrico general. Se analizaron los dominios de los parámetros de este modelo para hacerlo viable. Las soluciones de las ecuaciones de campo en la teoría f(R) de la gravedad se encuentran en el capítulo 4 para un espaciotiempo esféricamente simétrico y estático en la teoría electrodinámica no lineal de Born-Infeld (BI). Se encuentra que los modelos permitidos bajo estas condiciones deben tener la forma paramétrica f'(R)|_r=m+nr, donde m y n son constantes, cuyos valores y signos tienen un fuerte impacto en las soluciones, así como en la forma y rango de la función f(R). Cuando n=0, f(R)=m R+m_0 y se encuentra la solución de Einstein-BI. Cuando m\neq 0 y n\neq 0, la teoría f(R) es asintóticamente equivalente a la Relatividad General (RG), por lo que las soluciones de Schwarzschild y f(R)-Reissner-Nordström pueden escribirse en algunos límites. De forma similar, si n>0 y r\gg1, la forma de f(R) puede aproximarse mediante una expansión en serie y, como caso particular, cuando R_S=-\frac{m^2}{3n}, puede encontrarse explícitamente f(R)=m R+2n\sqrt{R}+m_0. Finalmente, se encuentran las soluciones, la curvatura escalar y la forma paramétrica de la función f(r) en el régimen no lineal (m=0) de la teoría f(R), y se grafican algunos modelos para valores específicos de m y n. En el Capítulo 5 se utiliza la transformación conforme entre los marcos de Jordan y Einstein en el formalismo de la teoría escalar-tensorial, y las definiciones de los potenciales de campo escalar, para determinar en qué casos las soluciones exactas mostradas aquí evaden algunos teoremas generalizados de no-cabello para la teoría f(R). Además, el modelo cuadrático de Starobinsky se linealiza utilizando funciones de Green. Se describen algunas propiedades termodinámicas relevantes de los Agujeros Negros, a saber, la entropía, la temperatura y el calor específico, y en algunos casos se representan gráficamente, en función de los parámetros m, n, q y Lambda, del modelo f(R), para las soluciones encontradas en el capítulo 4. La técnica utilizada para calcular la entropía del Agujero Negro es el método de Wald y se calculan los potenciales simplécticos. Se encuentra que la entropía del Agujero Negro en esta teoría ya no es proporcional al cuadrado del radio del horizonte, sino que su expresión cambia según el valor de m y n. Finalmente, los resultados se discuten en el capítulo 7. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.format.extent160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79680
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesJ. H. J ØRGENSEN , O. O. E. B JÆLDE , AND S. H ANNESTAD , Probing the spin of the central black hole in the galactic centre with secondary images, Mon. Not. Roy. Astron. Soc., 458 (2016), pp. 3614–3618.spa
dc.relation.referencesP. A. R. A DE , N. A GHANIM , M. I. R. A LVES , C. A RMITAGE -C APLAN , M. A RNAUD , M. A SH - DOWN , F. A TRIO -B ARANDELA , J. A UMONT , H. A USSEL , AND ET AL ., Planck2013 results. i. overview of products and scientific results, Astronomy & Astrophysics, 571 (2014), p. A1.spa
dc.relation.referencesP. A. R. A DE , N. A GHANIM , C. A RMITAGE -C APLAN , M. A RNAUD , M. A SHDOWN , F. A TRIO - B ARANDELA , J. A UMONT , C. B ACCIGALUPI , A. J. B ANDAY , AND ET AL ., Planck2013 results. xvi. cosmological parameters, Astronomy & Astrophysics, 571 (2014), p. A16.spa
dc.relation.referencesPlanck2013 results. xvii. gravitational lensing by large-scale structure, Astronomy & Astrophysics, 571 (2014), p. A17.spa
dc.relation.referencesPlanck2013 results. xxii. constraints on inflation, Astronomy & Astrophysics, 571 (2014), p. A22.spa
dc.relation.referencesP. A. R. A DE , N. A GHANIM , M. A RNAUD , M. A SHDOWN , J. A UMONT , C. B ACCIGALUPI , A. J. B ANDAY , R. B. B ARREIRO , J. G. B ARTLETT , AND ET AL ., Planck2015 results, Astronomy & Astrophysics, 594 (2016), p. A13.spa
dc.relation.referencesM. A KBAR AND R.-G. C AI , Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics, Phys. Lett., B635 (2006), pp. 7–10.spa
dc.relation.referencesThermodynamic Behavior of Field Equations for f(R) Gravity, Phys. Lett., B648 (2007), pp. 243–248.spa
dc.relation.referencesL. A MENDOLA , R. G ANNOUJI , D. P OLARSKI , AND S. T SUJIKAWA , Conditions for the cosmological viability of f(R) dark energy models, Phys. Rev., D75 (2007), p. 083504.spa
dc.relation.referencesConditions for the cosmological viability off(r)dark energy models, Physical Review D, 75 (2007). 133BIBLIOGRAPHYspa
dc.relation.referencesL. A MENDOLA , D. P OLARSKI , AND S. T SUJIKAWA , Aref(r)dark energy models cosmologi- cally viable?, Physical Review Letters, 98 (2007).spa
dc.relation.referencesT. A SAKA , S. I SO , H. K AWAI , K. K OHRI , T. N OUMI , AND T. T ERADA , Reinterpretation of the Starobinsky model, PTEP, 2016 (2016), p. 123E01.spa
dc.relation.referencesV. A TANASOV , Entropic theory of Gravitation, arXiv e-prints, (2017), p. arXiv:1702.04184.spa
dc.relation.referencesS. B AGHRAM , M. F ARHANG , AND S. R AHVAR , Modified gravity with f(R) = square root of R**- R**2(0), Phys. Rev., D75 (2007), p. 044024.spa
dc.relation.referencesJ. M. B ARDEEN , B. C ARTER , AND S. W. H AWKING , The four laws of black hole mechanics, Comm. Math. Phys., 31 (1973), pp. 161–170.spa
dc.relation.referencesD. B AUMANN AND L. M C A LLISTER , Advances in Inflation in String Theory, Ann. Rev. Nucl. Part. Sci., 59 (2009), pp. 67–94.spa
dc.relation.references, Inflation and String Theory, Cambridge University Press, 2015. R. B EAN , D. B ERNAT , L. P OGOSIAN , A. S ILVESTRI , AND M. T RODDEN , Dynamics of Linear Perturbations in f(R) Gravity, Phys. Rev., D75 (2007), p. 064020.spa
dc.relation.referencesJ. D. B EKENSTEIN , Black holes and the second law, Lett. Nuovo Cim., 4 (1972), pp. 737–740.spa
dc.relation.referencesJ. D. B EKENSTEIN , Black holes and entropy, Phys. Rev., D7 (1973), pp. 2333–2346.spa
dc.relation.referencesR. B ERNDT , An Introduction to Symplectic Geometry, 2001.spa
dc.relation.referencesC. G. B OEHMER , T. H ARKO , AND F. S. N. L OBO , Dark matter as a geometric effect in f(R) gravity, Astropart. Phys., 29 (2008), pp. 386–392.spa
dc.relation.referencesM. B OJOWALD AND K. V ANDERSLOOT , Loop quantum cosmology, boundary proposals, and inflation, Phys. Rev., D67 (2003), p. 124023.spa
dc.relation.referencesM. B ORN AND L. I NFELD , Foundations of the new field theory, Proc. Roy. Soc. Lond., A144 (1934), pp. 425–451.spa
dc.relation.referencesR. B OUSSO AND S. W. H AWKING , (Anti)evaporation of Schwarzschild-de Sitter black holes, Phys. Rev., D57 (1998), pp. 2436–2442.spa
dc.relation.referencesC. B RANS AND R. H. D ICKE , Mach’s Principle and a Relativistic Theory of Gravitation, Physical Review, 124 (1961), pp. 925–935.spa
dc.relation.referencesP. B RAX AND J. M ARTIN , Quintessence and supergravity, Phys. Lett., B468 (1999), pp. 40– 45. 134BIBLIOGRAPHYspa
dc.relation.referencesP. B RAX , C. VAN DE B RUCK , A.-C. D AVIS , AND D. J. S HAW , f(r)gravity and chameleon theories, Physical Review D, 78 (2008).spa
dc.relation.referencesN. B RETÓN , Born-infeld black hole in the isolated horizon framework, Phys. Rev. D, 67 (2003), p. 124004.spa
dc.relation.referencesN. B RETÓN , Geodesic structure of the born–infeld black hole, Classical and Quantum Gravity, 19 (2002), p. 601.spa
dc.relation.referencesI. H. B REVIK , S. N OJIRI , S. D. O DINTSOV , AND L. V ANZO , Entropy and universality of Cardy-Verlinde formula in dark energy universe, Phys. Rev., D70 (2004), p. 043520.spa
dc.relation.referencesA. W. B ROOKFIELD , C. B RUCK , VAN DE AND L. M. H. H ALL , Viability of f(R) Theories with Additional Powers of Curvature, Phys. Rev., D74 (2006), p. 064028.spa
dc.relation.referencesD. J. B UETTNER , P. D. M ORLEY , AND I. S CHMIDT , Review of spectroscopic determination of extra spatial dimensions in the early universe, (2003).spa
dc.relation.referencesR.-G. C AI AND Y. S. M YUNG , Black holes in the Brans-Dicke-Maxwell theory, Phys. Rev., D56 (1997), pp. 3466–3470.spa
dc.relation.referencesG. C ALCAGNI , de Sitter thermodynamics and the braneworld, JHEP, 09 (2005), p. 060.spa
dc.relation.referencesM. C AMPANELLI AND C. O. L OUSTO , Are Black Holes in Brans-Dicke Theory Precisely the same as in General Relativity?, International Journal of Modern Physics D, 2 (1993), pp. 451–462.spa
dc.relation.referencesP. C AÑATE , A no-hair theorem for black holes in f (r) gravity, Classical and Quantum Gravity, 35 (2017), p. 025018.spa
dc.relation.referencesP. C AÑATE , L. G. J AIME , AND M. S ALGADO , Spherically symmetric black holes in f (r) gravity: is geometric scalar hair supported?, Classical and Quantum Gravity, 33 (2016), p. 155005. S ILVA , Lectures on Symplectic Geometry, 2008.spa
dc.relation.referencesA Cannas da SILVA , Lectures on Symplectic Geometry, 2008spa
dc.relation.referencesS. C APOZZIELLO , Curvature quintessence, Int. J. Mod. Phys., D11 (2002), pp. 483–492.spa
dc.relation.referencesS. C APOZZIELLO , V. F. C ARDONE , S. C ARLONI , DA AND A. T ROISI , Higher order curvature theories of gravity matched with observations: A Bridge between dark energy and dark matter problems, AIP Conf. Proc., 751 (2005), pp. 54–63. [,54(2004)].spa
dc.relation.referencesS. C APOZZIELLO , V. F. C ARDONE , AND A. T ROISI , Low surface brightness galaxies rotation curves in the low energy limit of r**n gravity: no need for dark matter?, Mon. Not. Roy. Astron. Soc., 375 (2007), pp. 1423–1440.spa
dc.relation.referencesS. C APOZZIELLO , N. F RUSCIANTE , AND D. V ERNIERI , New spherically symmetric solutions in f(r)-gravity by noether symmetries, General Relativity and Gravitation, 44 (2012).spa
dc.relation.referencesS. C APOZZIELLO , A. S TABILE , AND A. T ROISI , Spherical symmetry inf(r)-gravity, Classical and Quantum Gravity, 25 (2008), p. 085004. S. V IGNOLO , The cauchy problem for f(r)-gravity: an overview, 2011.spa
dc.relation.referencesS. C APOZZIELLO S. V IGNOLO , The cauchy problem for f(r)-gravity: an overview, 2011.spa
dc.relation.referencesS. M. C ARROLL , The cosmological constant, Living Reviews in Relativity, 4 (2001). , Spacetime and geometry: An introduction to general relativity, 2004.spa
dc.relation.referencesS. M. C ARROLL , V. D UVVURI , M. T RODDEN , AND M. S. T URNER , Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D, 70 (2004), p. 043528.spa
dc.relation.referencesS. C HATTERJEE , A. B ANERJEE , AND Y. Z. Z HANG , Accelerating universe from extra spatial dimension, Int. J. Mod. Phys., A21 (2006), pp. 4035–4044.spa
dc.relation.referencesB. C HAUVINEAU , Stationarity and large ω Brans Dicke solutions versus general relativity, General Relativity and Gravitation, 39 (2007), pp. 297–306.spa
dc.relation.referencesR. Y. C HIAO , Conceptual tensions between quantum mechanics and general relativity: Are there experimental consequences?, (2003).spa
dc.relation.referencesG. C OGNOLA , E. E LIZALDE , S. N OJIRI , S. D. O DINTSOV , L. S EBASTIANI , AND S. Z ERBINI , A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion, Phys. Rev., D77 (2008), p. 046009.spa
dc.relation.referencesG. C OGNOLA , E. E LIZALDE , S. N OJIRI , S. D. O DINTSOV , AND S. Z ERBINI , One-loop f(R) gravity in de Sitter universe, JCAP, 0502 (2005), p. 010.spa
dc.relation.referencesE. J. C OPELAND , M. S AMI , AND S. T SUJIKAWA , Dynamics of dark energy, Int. J. Mod. Phys., D15 (2006), pp. 1753–1936.spa
dc.relation.referencesE. C ORBELLI AND P. S ALUCCI , The extended rotation curve and the dark matter halo of M33, Monthly Notices of the Royal Astronomical Society, 311 (2000), pp. 441–447.spa
dc.relation.referencesD. G. D UFFY , Green’s functions with applications; 2nd ed., Taylor and Francis, Hoboken, NJ, 2015.spa
dc.relation.referencesE. D YER AND K. H INTERBICHLER , Boundary Terms, Variational Principles and Higher Derivative Modified Gravity, Phys. Rev., D79 (2009), p. 024028.spa
dc.relation.referencesI. D ÍAZ -S ALDAÑA , J. L ÓPEZ -D OMÍNGUEZ , AND M. S ABIDO , An Effective Cosmological Constant From an Entropic Formulation of Gravity, (2018).spa
dc.relation.referencesA. E INSTEIN AND N. R OSEN , On gravitational waves, Journal of the Franklin Institute, 223 (1937), pp. 43 – 54.spa
dc.relation.referencesE. E LIZALDE , G. G. L. N ASHED , S. N OJIRI , AND S. D. O DINTSOV , Spherically symmetric black holes with electric and magnetic charge in extended gravity: physical properties, causal structure, and stability analysis in einstein’s and jordan’s frames, The European Physical Journal C, 80 (2020).spa
dc.relation.referencesA. L. E RICKCEK , T. L. S MITH , AND M. K AMIONKOWSKI , Solar System tests do rule out 1/R gravity, Phys. Rev., D74 (2006), p. 121501.spa
dc.relation.referencesV. F ARAONI , Black hole entropy in scalar-tensor and f(R) gravity: An Overview, Entropy, 12 (2010), p. 1246.spa
dc.relation.references, Jebsen-birkhoff theorem in alternative gravity, Physical Review D, 81 (2010). S. F AY , R. T AVAKOL , AND S. T SUJIKAWA , f(R) gravity theories in Palatini formalism: Cosmological dynamics and observational constraints, Phys. Rev., D75 (2007), p. 063509.spa
dc.relation.referencesS. F ERRARA , A. K EHAGIAS , AND A. R IOTTO , The Imaginary Starobinsky Model, Fortsch. Phys., 62 (2014), pp. 573–583.spa
dc.relation.referencesJ. F RIEMAN , M. T URNER , AND D. H UTERER , Dark Energy and the Accelerating Universe, Ann. Rev. Astron. Astrophys., 46 (2008), pp. 385–432.spa
dc.relation.referencesA. F ROLOV , Singularity problem with f ( r ) models for dark energy, Physical review letters, 101 (2008), p. 061103.spa
dc.relation.referencesV. F ROLOV AND I. N OVIKOV , Black Hole Physics. Basic Concepts and New Developments, 1998.spa
dc.relation.referencesA. G UARNIZO , L. C ASTANEDA , AND J. M. T EJEIRO , Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism, Gen. Rel. Grav., 42 (2010), pp. 2713–2728.spa
dc.relation.referencesA. H. G UTH , Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, 23 (1981), pp. 347–356.spa
dc.relation.references, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev., D23 (1981), pp. 347–356.spa
dc.relation.referencesF. H AMMAD , f(R)-modified gravity, Wald entropy, and the generalized uncertainty principle, Phys. Rev., D92 (2015), p. 044004.spa
dc.relation.referencesT. H ARKO , F. S. N. L OBO , S. N OJIRI , AND S. D. O DINTSOV , f (R, T) gravity, Phys. Rev., D84 (2011), p. 024020.spa
dc.relation.referencesS. W. H AWKING , Black holes in general relativity, Commun. Math. Phys., 25 (1972), pp. 152–166.spa
dc.relation.references, Black holes in the Brans-Dicke theory of gravitation, Commun. Math. Phys., 25 (1972), pp. 167–171.spa
dc.relation.referencesS. W. H AWKING , Black holes in the Brans-Dicke: Theory of gravitation, Communications in Mathematical Physics, 25 (1972), pp. 167–171.spa
dc.relation.referencesS. W. H AWKING , Gravitational radiation - the theoretical aspect, Contemp. Phys., 13 (1972), pp. 273–282.spa
dc.relation.referencesParticle creation by black holes, Comm. Math. Phys., 43 (1975), pp. 199–220.spa
dc.relation.referencesBlack holes and thermodynamics, Phys. Rev. D, 13 (1976), pp. 191–197.spa
dc.relation.referencesS. W. H AWKING D. N. P AGE , Thermodynamics of black holes in anti-de sitter space, AND Communications in Mathematical Physics, 87 (1983), pp. 577–588.spa
dc.relation.referencesB. H OFFMANN , Gravitational and electromagnetic mass in the born-infeld electrodynamics, Phys. Rev., 47 (1935), pp. 877–880.spa
dc.relation.referencesR. H OUGH , A. A BEBE , AND S. F ERREIRA , Viability tests of f(R)-gravity models with supernovae type 1a data, 2020.spa
dc.relation.referencesW. H U AND I. S AWICKI , Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, Phys. Rev., D76 (2007), p. 064004.spa
dc.relation.references, Models off(r)cosmic acceleration that evade solar system tests, Physical Review D, 76 (2007).spa
dc.relation.referencesR. A. H URTADO AND R. A RENAS , Hypergeometric viable models in f (r) gravity, 2020. AND R. A RENAS , Scalar-field potential for viable models in f (r) theory, 2019.spa
dc.relation.referencesR. A. H URTADO AND R. A RENAS , Spherically symmetric and static solutions in f(r) gravity coupled with electromagnetic fields, Physical Review D, 102 (2020).spa
dc.relation.referencesV. I YER R. M. W ALD , Some properties of Noether charge and a proposal for dynamical AND black hole entropy, Phys. Rev., D50 (1994), pp. 846–864.spa
dc.relation.referencesT. J ACOBSON , G. K ANG , AND R. C. M YERS , Increase of black hole entropy in higher curvature gravity, Phys. Rev., D52 (1995), pp. 3518–3528.spa
dc.relation.referencesT. J ACOBSON AND R. C. M YERS , Black hole entropy and higher curvature interactions, Phys. Rev. Lett., 70 (1993), pp. 3684–3687.spa
dc.relation.referencesN. J AROSIK , C. L. B ENNETT , J. D UNKLEY , B. G OLD , M. R. G REASON , M. H ALPERN , R. S. H ILL , G. H INSHAW , A. K OGUT , E. K OMATSU , AND ET AL ., Seven-year wilkinson microwave anisotropy probe ( wmap ) observations: Sky maps, systematic errors, and basic results, The Astrophysical Journal Supplement Series, 192 (2011), p. 14.spa
dc.relation.referencesT. J OHANNSEN , C. W ANG , A. E. B RODERICK , S. S. D OELEMAN , V. L. F ISH , A. L OEB , AND D. P SALTIS , Testing General Relativity with Accretion-Flow Imaging of Sgr A*, Phys. Rev. Lett., 117 (2016), p. 091101.spa
dc.rightsDerechos Reservados al Autor, 2021
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.otherRelatividad general
dc.subject.otherGeneral Relativity
dc.subject.proposalf(R) theoryeng
dc.subject.proposalTheoria f(R)spa
dc.subject.proposalBlack Holeseng
dc.subject.proposalAgujeros negrosspa
dc.subject.proposalGeneral Relativityeng
dc.subject.proposalRelatividad Generalspa
dc.subject.unescoAgujero negro
dc.subject.unescoBlack holes
dc.titleThermodynamics of Black Holes in maximally symmetric spacetimes in f(R) theories of gravityeng
dc.title.translatedTermodinámica de agujeros negros en espaciotiempos maximalmente simétricos en teorías de gravedad f(R)spa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneral
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis.pdf
Tamaño:
4.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: