Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño
dc.contributor.advisor | Alvarez Marín, Diego Andrés | spa |
dc.contributor.author | Valencia Hernández, Luis Alexánder | spa |
dc.date.accessioned | 2021-02-08T22:46:58Z | spa |
dc.date.available | 2021-02-08T22:46:58Z | spa |
dc.date.issued | 2020-06-15 | spa |
dc.description.abstract | Las tecnologías de control estructural para aliviar la respuesta estructural ante diferentes cargas dinámicas, especialmente los sismos, se han convertido en un estándar a nivel mundial. Su uso está justificado no solo para la protección de la vida, sino también para la protección de los elementos no estructurales y el contenido propio de la edificación. El propósito de este trabajo de grado es aplicar el control estructural a un pórtico de acero, validando su comportamiento mediante los criterios del diseño basado en desempeño, en el que se entienda de manera más realista el riesgo asociado a la pérdida de ocupación y a las pérdidas económicas como resultado de un sismo futuro. | spa |
dc.description.abstract | Structural control technologies to alleviate the structural response to di erent dynamic loads, especially earthquakes, have become a worldwide standard. Its use is justi ed not only for the protection of life, but also for the protection of non-structural elements and the content of the building itself. The purpose of this degree work is to apply structural control to a steel frame, validating its behavior using performance-based design criteria, in which the risk associated with economic losses is understood more realistically as result of a future earthquake. | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 134 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79146 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.department | Departamento de Ingeniería Civil | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructuras | spa |
dc.relation.references | AIS (2010). Reglamento Colombiano de Construcción Sismo Resistente. Reporte técnico, Asociación de Ingeniería Sísmica. | spa |
dc.relation.references | Akbay, A. y Aktan, H.M. (1991). Actively regulated friction slip braces. In proceedings of the 6th Canadian Conference on Earthquake Engineering, 2(2):367{374. | spa |
dc.relation.references | Akhlaghi, S., Zhou, N., and Huang, X. (2017). Adaptive adjustment of noise covariance in Kalman lter for dynamic state estimation. IEEE Power and Energy Society General Meeting, pages 1-5. | spa |
dc.relation.references | Ali, M. y Hassan, J. B. (2012). Weighting matrix selection method for LQR design based on a multi objetive evolutionary algorithm. Journal of Advanced Materials Research, 383:1047-054. | spa |
dc.relation.references | ASCE (2014). Seismic Evaluation and Retro t of Existing Buildings ASCE/SEI 41-13. American Society of Civil Engineers, ASCE standard ASCE/SEI 41-13 edition. | spa |
dc.relation.references | Awad, R. R. (2012). Análisis y diseño sísmico de edi ficios. Universidad Ea t, Medellín, Colombia. | spa |
dc.relation.references | Banazadeh, M., Gholhaki, M., and Sani, H. P. (2016). Cost-bene t analysis of seismicisolated structures with viscous damper based on loss estimation. Structure and infrastructure engineering, 13(8):1045{1055. | spa |
dc.relation.references | Barroso, L. R. y Smith, H. A. (1999). Performance evaluation of vibration controlled steel structures under seismic load. Technical report, Stanford University. | spa |
dc.relation.references | Blachowski, B. y Pnevmatikos, N. (2017). Neural network based vibration control of seismically excited civil structures. Periodica Polytechnica of Civil Engineering, 62(3):1{9. | spa |
dc.relation.references | Buckle, I. G. (2000). Passive control of structures for seismic loads. In 12th World Conference on Earthquake Engineering, number 209. | spa |
dc.relation.references | Cha, Y.-J., Agrawal, A. K., Friedman, A., Phillips, B., Ahn, R., Dong, B., Dyke, S. J., Spencer, B. F., Ricles, J., and Christenson, R. (2014). Performance validations of semiactive controllers on large scale moment resisting frame equipped with 200-kN MR damper using real time hybrid simulations. Journal of Structural Engineering ASCE, 140(10):1{11. | spa |
dc.relation.references | Cha, Y. J. y Bai, J. W. (2016). Seismic fragility estimates of a moment-resisting frame building controlled by MR dampers using performance-based design. Engineering Structures, 116(10):192{202. | spa |
dc.relation.references | Chao, S. H. y Loh, C. H. (2007). Inelastic response analysis of reinforced concrete structures using modi ed force analogy method. Earthquake Engineering and Structural Dynamics, 36:1659{1683. | spa |
dc.relation.references | Chen, C.-T. (1999). Linear system theory and design. Oxford University Press, New York, NY. | spa |
dc.relation.references | Chen, C. y Chen, G. (2004). Shaking table tests of a quarter scale three storey building model with piezoelectric friction dampers. Structural Control and Health Monitoring, 11(6):239{257. | spa |
dc.relation.references | Cheng, F. Y., Juang, H., and Lou, K. (2008). Smart Structures, Innovative Systems for Seismic Response Control. CRC, Press. | spa |
dc.relation.references | Cheng, F. Y. y Jiang H. (1998). Hybrid control of seismic structures with optimal placement of control devices. ASCE Journal of Engineering Mechanics, 11(2):52. | spa |
dc.relation.references | Cheng, F. Y. y Jiang H. (1999). Optimum control of a hybrid system for seismic excitation with observer seismic state. Smart Materials and Structures, 7(5):654. | spa |
dc.relation.references | Cheng, F. Y. y P. Tian (1992). Generalized optimal active control algorithm for nonlinear seismic structures. Proceedings of the 10th World Conference on Earthquake Engineering, 44(6):860{865. | spa |
dc.relation.references | Chopra, A. K. (2012). Dynamics of Structures. Theory and applications to earthquake engineering. Prentice-Hall international series in civil engineering and engineering mechanics. | spa |
dc.relation.references | Connor, J. J. (2001). Introduction to structural motion control. Prentice Hall. | spa |
dc.relation.references | Cornell, A. y Krawinkler, H. (2000). Progress and challenges in seismic performance assessment. PEER center news, 3:1-3. | spa |
dc.relation.references | Cut eld, M., Ma, Q., and Ryan, K. (2014). Cost-bene t analysis of base isolated and conventional buildings: A case study. In 2014 NZSEE Conference. | spa |
dc.relation.references | Datta, T. (2003). A state of the art review on active control of structures. Journal of Earthquake Technology, 40(430):1-17. | spa |
dc.relation.references | Dyanati, M., Huang, Q., and Roke, D. (2017). Cost-bene t evaluation of self-centring concentrically braced frames considering uncertainties. Structure and infrastructure engineering, 13(5):537-553. | spa |
dc.relation.references | Farsangi, E. N. (2011). Performance evaluation of viscoelastic and frition passive damping systems in vibration control of tall buildings. International Journal of Advanced Structural Engineering, 3(2):187-211. | spa |
dc.relation.references | FEMA, F. E. M. A. (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Technical report, Federal Emergency Management Agency FEMA. | spa |
dc.relation.references | FEMA, F. E. M. A. (2000). Prestandard and comentary for the seismic rehabilitation of buildings. Technical report, Federal Emergency Management Agency FEMA. | spa |
dc.relation.references | FEMA, F. E. M. A. (2018). Seismic performance assessment of buildings methodology. Technical report, Federal Emergency Management Agency FEMA. | spa |
dc.relation.references | Ferreira, F., Moutinho, C., Cunha, A., and Caetano, E. (2020). An arti cial accelerogram generator code written in Matlab. Engineering Reports, 10:1{17. | spa |
dc.relation.references | Fischinger, M. (2014). Performance based seismic engineering: vision for an earthquake resilient society, volume 32. Springer. | spa |
dc.relation.references | Fisco, N.R. y Adeli, H. (2011a). Smart structures: Part 1 - Active and semiactive control. Scientia Iranica, 18(3):275{284. | spa |
dc.relation.references | Fisco, N.R. y Adeli, H. (2011b). Smart structures: Part 2 - Hybrid control systems and control strategies. Scientia Iranica, 18(3):285-295. | spa |
dc.relation.references | García, L. E. (1998). Dinámica estructural aplicada al diseño sísmico. Universidad de los Andes. | spa |
dc.relation.references | Ghali, A., Neville, A. M., and Brown, T. (2009). Structural analysis: a uni ed classical and matrix approach. Taylor and Francis, New York, NY. | spa |
dc.relation.references | Gonzalez, O. R. y Kelkar, A. G. (2005). Robust multivariable control. The electrical engineering handbook, pages 1037-1047. | spa |
dc.relation.references | Hiemenz, G. J., Choi, Y. T., and Wereley, N. M. (2003). Seismic control of civil structures utilizing semi-active magnetorheological braces. Computer Aided Civil and Infrastructure Engineering, 18(1):31-44. | spa |
dc.relation.references | Jaramillo, J. O. (2010). Ingeniería estructural. Universidad Nacional de Colombia, Manizales, Colombia. | spa |
dc.relation.references | Jarrett, J. (2013). Performance assessment of seismic resistant steel structures. PhD thesis, Virginia Polytechnic Institute and State University. | spa |
dc.relation.references | Ji, X., Liu, D., and Hutt, C. M. (2018). Seismic performance evaluation of a high-rise building with novel hybrid coupled walls. Engineering Structures, 169:216-225. | spa |
dc.relation.references | Jung, H. J., Lee, I. W., and Kim, J.-T. (2000). Optimal structural control using neural networks. Journal of Engineering Mechanics, 126(2):201. | spa |
dc.relation.references | Kim, J. y Shin, H. (2017). Seismic loss assessment of a structure retro tted with slit-friction hybrid dampers. Engineering Structures, 130:336-350. | spa |
dc.relation.references | Kirk, D. E. (1998). Optimal control theory: An introduction. Prentice Hall, New York, NY. | spa |
dc.relation.references | Kokotovic, P. (1990). The joy of feedback: Nonlinear and adaptative. Control Systems Technology, IEEE transactions, 12(3):7-17. | spa |
dc.relation.references | Krawinkler, H. y Miranda, E. (2004). Performance based earthquake engineering: From engineering seismology to performance based engineering. CRC press. | spa |
dc.relation.references | Kumar, A. (2005). Active control of buildings subjected to seismic excitations: Control system design using LQG optimal approach. LAMBERT Academic Publishing. | spa |
dc.relation.references | Kurata, N., Kobori, T., and Koshika, N. (2002). Performance based design with semi-active structural control technique. Earthquake Engineering and Structural Dynamics, (31):445-458. | spa |
dc.relation.references | Lee, K. S., Ricles, J., and Sause, R. (2009). Performance based seismic design of steel MRFs with elastomeric dampers. Journal of Structural Engineering ASCE, (135):489-498. | spa |
dc.relation.references | Lei, Y., Wu, D., and Lin, Y. (2015). A decentraliced control algorithm for large scale systems. Computer Aided Civil and Infrastructure Engineering, 10(30):824-842. | spa |
dc.relation.references | G. y Wong, K. (2014). Theory of nonlinear structural analysis. John Wiley and sons. | spa |
dc.relation.references | Li, J. J. y Li, G. Q. (2007). Advanced analysis and design of steel frames. John Wiley and sons. | spa |
dc.relation.references | Li, Z. y Adeli, H. (2016). New discrete time robust H2/H1 algorithm for vibration control of smart structures using linear matrix inequalities. Engineering Applications of Arti cial Inteligence, 55:47-57. | spa |
dc.relation.references | Malaviya, P., Lamba, S., and Kumar, A. (2014). Review of algorithms for control systems for civil engineering structures. International Journal of Engineering Research and Applications, pages 35-40. | spa |
dc.relation.references | Marrs, N. (2013). Seismic performance comparison of a xed-base versus a base isolated office building. Master's thesis, Faculty of California Polytechnic State University. | spa |
dc.relation.references | Moehle, J. y Dierlein, G. G. (2004). A framework methodology for performance based earthquake engineering. In 13th World Conference on Earthquake Engineering, number 679. | spa |
dc.relation.references | Montanaro, M. I. (2002). Sistemas de control de vibraciones en estructuras de gran altura. Informe de la construcción, 53(477):37-39. | spa |
dc.relation.references | NEHRP (2010). Nonlinear structural analysis for seismic design. Technical report, National Institute of Standards and Technology. | spa |
dc.relation.references | NEHRP (2013). Nonlinear analysis research and development program for performance based seismic design. Technical report, National Institute of Standards and Technology. | spa |
dc.relation.references | Ogata, K. (2010). Ingenier a de control moderna. Prentice Hall. | spa |
dc.relation.references | Pall, A. y Pall, T. (2004). Performance based design using Pall friction dampers: An economical design solution. In 13th World Conference on Earthquake Engineering, number 1955. | spa |
dc.relation.references | Pnevmatikos, N. G. (2017). Pole placement algorithms for control of civil structures subjected to earthquake excitation. Journal of Applied and Computational Mechanics, 3:25-36. | spa |
dc.relation.references | Pnevmatikos, N. G. y Gantes, C. J. (2015). Actively and semi-actively controlled structures under seismic actions: modelling and analysis. Encyclopedia of Earthquake Engineering, pages 1-20. | spa |
dc.relation.references | Priestley, M. (2003). Myths and Fallacies in Earthquake Engineering, Revisited. European School for Advanced Studies in Reduction of Seismic Risk. | spa |
dc.relation.references | Rabih, A. y M., G. (2003). Active structural vibration control: A review. The Shock and Vibration Digest, 35(5):367-383. | spa |
dc.relation.references | Rashid, M. y Ahmad, N. (2017). Economic losses due to earthquake - induced structural damages in RC SMRF structures. Civil and Enviromental Engineering, 4:1-15. | spa |
dc.relation.references | Saaed, T. E., Nikolokopoulos, G., Jonasson, J.-E., and Hedlund, H. (2013). A state of the art review of structural control systems. Journal of Vibration Control, 21(5):1-19 | spa |
dc.relation.references | Scott, N. T. y Snyder, D. (1995). Active control of vibration using neural network. IEEE Transactions on Neural Networks, 6(4):819-828. | spa |
dc.relation.references | Shu, Z., Li, S., Sun, X., and He, M. (2019). Performance-based Seismic Design of a Pendulum Tuned Mass Damper System. Journal of Earthquake Engineering, 23(2):334-355. | spa |
dc.relation.references | Soong, T. T. (1990). Active Structural Control: Theory and Practice. Longman Scienti c and Technical. | spa |
dc.relation.references | Soto, M. G. y Adeli, H. (2016). Recent advances in control algorithms for smart structures and machines. Wiley: Expert Systems, (34):1-14. | spa |
dc.relation.references | Spencer, B. F. y Nagarajaiah, S. (2003). State of the art of structural control. Journal of Structural Engineering ASCE, 129(7):845-856. | spa |
dc.relation.references | Stengel, R. F. (1994). Optimal Control and Estimation. John Wiley and sons, United States of America. | spa |
dc.relation.references | Taghavi, S. y Miranda, E. (2003). Response assessment of nonstructural buildings elements. Technical report, Paci c Earthquake Engineering Research Center PEER. | spa |
dc.relation.references | Taranath, B. (2016). Tall building design: steel, concrete and composite systems. CRC Press. | spa |
dc.relation.references | Urrego, P. (2018). Comparación del comportamiento estructural en edificaciones controladas sísmicamente con un amortiguador de masa sintonizada (tuned mass damper). Master's thesis, Escuela de Ingeniería de Antioquia. | spa |
dc.relation.references | Wang, N. y Adeli, H. (2015). Robust vibration control of wind excited highrise building structures. Journal of Civil Engineering and Management, 21:967-976. | spa |
dc.relation.references | Wong, K. y Hart, G. C. (1997). Active control of inelastic structural response during earthquakes. The Structural Design of Tall Buildings, 6:125-149. | spa |
dc.relation.references | Wong, K. y Yang, R. (1999). Inelastic dynamic response of structures using force analogy method. Journal of Engineering Mechanics, 125:1190-1199. | spa |
dc.relation.references | Xu, Y. L. y He, J. (2017). Smart civil structures. Taylor and Francis group. | spa |
dc.relation.references | Yang, J. N., Danielians, A., and Liu, S. C. (1991). A seismic hybrid control system for buildings strutcures. ASCE Journal of Engineering Mechanics, 177(4):836. | spa |
dc.relation.references | Yang, T. Y., Moehle, J., Stojadinovic, B., and Kiureghian, A. (2009). Seismic performance evaluation of facilities: Methodology and implementation. Journal of Structural Engineering ASCE, 135:1146-1154. | spa |
dc.relation.references | Yoshioka, H., Ramallo, J. C., and Spencer, B. F. J. (2002). Smart base isolation strategies employing magnetorheological dampers. ASCE Journal of Engineering Mechanics, 128(5):540. | spa |
dc.relation.references | Zameeruddin, M. y Sangle, K. K. (2016). Review on recent developments in the performance based seismic design of reinforced concrete. Structures, 6(3):119-133. | spa |
dc.relation.references | Zeng, X., Lu, X., Yang, T. Y., and Xu, Z. (2016). Application of the FEMA-P58 methodology for regional earthquake loss prediction. Nat Hazard, 83(1):177-192. | spa |
dc.relation.references | Zhang, X., Toranzo, L., Reynolds, A., Cheng, F., Xu, B., and Langhaar, V. (2012). Seismic performance assessment of active/hybrid controlled building by response probability approach. In 15th World Conference on Earthquake Engineering. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.proposal | Control estructural | spa |
dc.subject.proposal | Diseño basado en desempeño | |
dc.subject.proposal | Análisis dinámico no lineal | |
dc.subject.proposal | Structural control | |
dc.subject.proposal | Performance based design | |
dc.subject.proposal | Nonlinear dynamic analysis | |
dc.title | Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño | spa |
dc.title.alternative | Evaluation of the behavior of active control in reducing damage using performance based seismic design | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_8042 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/workingPaper | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/WP | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1060651625.2020.pdf
- Tamaño:
- 4.82 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Estructuras
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: