Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño

dc.contributor.advisorAlvarez Marín, Diego Andrésspa
dc.contributor.authorValencia Hernández, Luis Alexánderspa
dc.date.accessioned2021-02-08T22:46:58Zspa
dc.date.available2021-02-08T22:46:58Zspa
dc.date.issued2020-06-15spa
dc.description.abstractLas tecnologías de control estructural para aliviar la respuesta estructural ante diferentes cargas dinámicas, especialmente los sismos, se han convertido en un estándar a nivel mundial. Su uso está justificado no solo para la protección de la vida, sino también para la protección de los elementos no estructurales y el contenido propio de la edificación. El propósito de este trabajo de grado es aplicar el control estructural a un pórtico de acero, validando su comportamiento mediante los criterios del diseño basado en desempeño, en el que se entienda de manera más realista el riesgo asociado a la pérdida de ocupación y a las pérdidas económicas como resultado de un sismo futuro.spa
dc.description.abstractStructural control technologies to alleviate the structural response to di erent dynamic loads, especially earthquakes, have become a worldwide standard. Its use is justi ed not only for the protection of life, but also for the protection of non-structural elements and the content of the building itself. The purpose of this degree work is to apply structural control to a steel frame, validating its behavior using performance-based design criteria, in which the risk associated with economic losses is understood more realistically as result of a future earthquake.spa
dc.description.degreelevelMaestríaspa
dc.format.extent134spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79146
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesAIS (2010). Reglamento Colombiano de Construcción Sismo Resistente. Reporte técnico, Asociación de Ingeniería Sísmica.spa
dc.relation.referencesAkbay, A. y Aktan, H.M. (1991). Actively regulated friction slip braces. In proceedings of the 6th Canadian Conference on Earthquake Engineering, 2(2):367{374.spa
dc.relation.referencesAkhlaghi, S., Zhou, N., and Huang, X. (2017). Adaptive adjustment of noise covariance in Kalman lter for dynamic state estimation. IEEE Power and Energy Society General Meeting, pages 1-5.spa
dc.relation.referencesAli, M. y Hassan, J. B. (2012). Weighting matrix selection method for LQR design based on a multi objetive evolutionary algorithm. Journal of Advanced Materials Research, 383:1047-054.spa
dc.relation.referencesASCE (2014). Seismic Evaluation and Retro t of Existing Buildings ASCE/SEI 41-13. American Society of Civil Engineers, ASCE standard ASCE/SEI 41-13 edition.spa
dc.relation.referencesAwad, R. R. (2012). Análisis y diseño sísmico de edi ficios. Universidad Ea t, Medellín, Colombia.spa
dc.relation.referencesBanazadeh, M., Gholhaki, M., and Sani, H. P. (2016). Cost-bene t analysis of seismicisolated structures with viscous damper based on loss estimation. Structure and infrastructure engineering, 13(8):1045{1055.spa
dc.relation.referencesBarroso, L. R. y Smith, H. A. (1999). Performance evaluation of vibration controlled steel structures under seismic load. Technical report, Stanford University.spa
dc.relation.referencesBlachowski, B. y Pnevmatikos, N. (2017). Neural network based vibration control of seismically excited civil structures. Periodica Polytechnica of Civil Engineering, 62(3):1{9.spa
dc.relation.referencesBuckle, I. G. (2000). Passive control of structures for seismic loads. In 12th World Conference on Earthquake Engineering, number 209.spa
dc.relation.referencesCha, Y.-J., Agrawal, A. K., Friedman, A., Phillips, B., Ahn, R., Dong, B., Dyke, S. J., Spencer, B. F., Ricles, J., and Christenson, R. (2014). Performance validations of semiactive controllers on large scale moment resisting frame equipped with 200-kN MR damper using real time hybrid simulations. Journal of Structural Engineering ASCE, 140(10):1{11.spa
dc.relation.referencesCha, Y. J. y Bai, J. W. (2016). Seismic fragility estimates of a moment-resisting frame building controlled by MR dampers using performance-based design. Engineering Structures, 116(10):192{202.spa
dc.relation.referencesChao, S. H. y Loh, C. H. (2007). Inelastic response analysis of reinforced concrete structures using modi ed force analogy method. Earthquake Engineering and Structural Dynamics, 36:1659{1683.spa
dc.relation.referencesChen, C.-T. (1999). Linear system theory and design. Oxford University Press, New York, NY.spa
dc.relation.referencesChen, C. y Chen, G. (2004). Shaking table tests of a quarter scale three storey building model with piezoelectric friction dampers. Structural Control and Health Monitoring, 11(6):239{257.spa
dc.relation.referencesCheng, F. Y., Juang, H., and Lou, K. (2008). Smart Structures, Innovative Systems for Seismic Response Control. CRC, Press.spa
dc.relation.referencesCheng, F. Y. y Jiang H. (1998). Hybrid control of seismic structures with optimal placement of control devices. ASCE Journal of Engineering Mechanics, 11(2):52.spa
dc.relation.referencesCheng, F. Y. y Jiang H. (1999). Optimum control of a hybrid system for seismic excitation with observer seismic state. Smart Materials and Structures, 7(5):654.spa
dc.relation.referencesCheng, F. Y. y P. Tian (1992). Generalized optimal active control algorithm for nonlinear seismic structures. Proceedings of the 10th World Conference on Earthquake Engineering, 44(6):860{865.spa
dc.relation.referencesChopra, A. K. (2012). Dynamics of Structures. Theory and applications to earthquake engineering. Prentice-Hall international series in civil engineering and engineering mechanics.spa
dc.relation.referencesConnor, J. J. (2001). Introduction to structural motion control. Prentice Hall.spa
dc.relation.referencesCornell, A. y Krawinkler, H. (2000). Progress and challenges in seismic performance assessment. PEER center news, 3:1-3.spa
dc.relation.referencesCut eld, M., Ma, Q., and Ryan, K. (2014). Cost-bene t analysis of base isolated and conventional buildings: A case study. In 2014 NZSEE Conference.spa
dc.relation.referencesDatta, T. (2003). A state of the art review on active control of structures. Journal of Earthquake Technology, 40(430):1-17.spa
dc.relation.referencesDyanati, M., Huang, Q., and Roke, D. (2017). Cost-bene t evaluation of self-centring concentrically braced frames considering uncertainties. Structure and infrastructure engineering, 13(5):537-553.spa
dc.relation.referencesFarsangi, E. N. (2011). Performance evaluation of viscoelastic and frition passive damping systems in vibration control of tall buildings. International Journal of Advanced Structural Engineering, 3(2):187-211.spa
dc.relation.referencesFEMA, F. E. M. A. (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Technical report, Federal Emergency Management Agency FEMA.spa
dc.relation.referencesFEMA, F. E. M. A. (2000). Prestandard and comentary for the seismic rehabilitation of buildings. Technical report, Federal Emergency Management Agency FEMA.spa
dc.relation.referencesFEMA, F. E. M. A. (2018). Seismic performance assessment of buildings methodology. Technical report, Federal Emergency Management Agency FEMA.spa
dc.relation.referencesFerreira, F., Moutinho, C., Cunha, A., and Caetano, E. (2020). An arti cial accelerogram generator code written in Matlab. Engineering Reports, 10:1{17.spa
dc.relation.referencesFischinger, M. (2014). Performance based seismic engineering: vision for an earthquake resilient society, volume 32. Springer.spa
dc.relation.referencesFisco, N.R. y Adeli, H. (2011a). Smart structures: Part 1 - Active and semiactive control. Scientia Iranica, 18(3):275{284.spa
dc.relation.referencesFisco, N.R. y Adeli, H. (2011b). Smart structures: Part 2 - Hybrid control systems and control strategies. Scientia Iranica, 18(3):285-295.spa
dc.relation.referencesGarcía, L. E. (1998). Dinámica estructural aplicada al diseño sísmico. Universidad de los Andes.spa
dc.relation.referencesGhali, A., Neville, A. M., and Brown, T. (2009). Structural analysis: a uni ed classical and matrix approach. Taylor and Francis, New York, NY.spa
dc.relation.referencesGonzalez, O. R. y Kelkar, A. G. (2005). Robust multivariable control. The electrical engineering handbook, pages 1037-1047.spa
dc.relation.referencesHiemenz, G. J., Choi, Y. T., and Wereley, N. M. (2003). Seismic control of civil structures utilizing semi-active magnetorheological braces. Computer Aided Civil and Infrastructure Engineering, 18(1):31-44.spa
dc.relation.referencesJaramillo, J. O. (2010). Ingeniería estructural. Universidad Nacional de Colombia, Manizales, Colombia.spa
dc.relation.referencesJarrett, J. (2013). Performance assessment of seismic resistant steel structures. PhD thesis, Virginia Polytechnic Institute and State University.spa
dc.relation.referencesJi, X., Liu, D., and Hutt, C. M. (2018). Seismic performance evaluation of a high-rise building with novel hybrid coupled walls. Engineering Structures, 169:216-225.spa
dc.relation.referencesJung, H. J., Lee, I. W., and Kim, J.-T. (2000). Optimal structural control using neural networks. Journal of Engineering Mechanics, 126(2):201.spa
dc.relation.referencesKim, J. y Shin, H. (2017). Seismic loss assessment of a structure retro tted with slit-friction hybrid dampers. Engineering Structures, 130:336-350.spa
dc.relation.referencesKirk, D. E. (1998). Optimal control theory: An introduction. Prentice Hall, New York, NY.spa
dc.relation.referencesKokotovic, P. (1990). The joy of feedback: Nonlinear and adaptative. Control Systems Technology, IEEE transactions, 12(3):7-17.spa
dc.relation.referencesKrawinkler, H. y Miranda, E. (2004). Performance based earthquake engineering: From engineering seismology to performance based engineering. CRC press.spa
dc.relation.referencesKumar, A. (2005). Active control of buildings subjected to seismic excitations: Control system design using LQG optimal approach. LAMBERT Academic Publishing.spa
dc.relation.referencesKurata, N., Kobori, T., and Koshika, N. (2002). Performance based design with semi-active structural control technique. Earthquake Engineering and Structural Dynamics, (31):445-458.spa
dc.relation.referencesLee, K. S., Ricles, J., and Sause, R. (2009). Performance based seismic design of steel MRFs with elastomeric dampers. Journal of Structural Engineering ASCE, (135):489-498.spa
dc.relation.referencesLei, Y., Wu, D., and Lin, Y. (2015). A decentraliced control algorithm for large scale systems. Computer Aided Civil and Infrastructure Engineering, 10(30):824-842.spa
dc.relation.referencesG. y Wong, K. (2014). Theory of nonlinear structural analysis. John Wiley and sons.spa
dc.relation.referencesLi, J. J. y Li, G. Q. (2007). Advanced analysis and design of steel frames. John Wiley and sons.spa
dc.relation.referencesLi, Z. y Adeli, H. (2016). New discrete time robust H2/H1 algorithm for vibration control of smart structures using linear matrix inequalities. Engineering Applications of Arti cial Inteligence, 55:47-57.spa
dc.relation.referencesMalaviya, P., Lamba, S., and Kumar, A. (2014). Review of algorithms for control systems for civil engineering structures. International Journal of Engineering Research and Applications, pages 35-40.spa
dc.relation.referencesMarrs, N. (2013). Seismic performance comparison of a xed-base versus a base isolated office building. Master's thesis, Faculty of California Polytechnic State University.spa
dc.relation.referencesMoehle, J. y Dierlein, G. G. (2004). A framework methodology for performance based earthquake engineering. In 13th World Conference on Earthquake Engineering, number 679.spa
dc.relation.referencesMontanaro, M. I. (2002). Sistemas de control de vibraciones en estructuras de gran altura. Informe de la construcción, 53(477):37-39.spa
dc.relation.referencesNEHRP (2010). Nonlinear structural analysis for seismic design. Technical report, National Institute of Standards and Technology.spa
dc.relation.referencesNEHRP (2013). Nonlinear analysis research and development program for performance based seismic design. Technical report, National Institute of Standards and Technology.spa
dc.relation.referencesOgata, K. (2010). Ingenier a de control moderna. Prentice Hall.spa
dc.relation.referencesPall, A. y Pall, T. (2004). Performance based design using Pall friction dampers: An economical design solution. In 13th World Conference on Earthquake Engineering, number 1955.spa
dc.relation.referencesPnevmatikos, N. G. (2017). Pole placement algorithms for control of civil structures subjected to earthquake excitation. Journal of Applied and Computational Mechanics, 3:25-36.spa
dc.relation.referencesPnevmatikos, N. G. y Gantes, C. J. (2015). Actively and semi-actively controlled structures under seismic actions: modelling and analysis. Encyclopedia of Earthquake Engineering, pages 1-20.spa
dc.relation.referencesPriestley, M. (2003). Myths and Fallacies in Earthquake Engineering, Revisited. European School for Advanced Studies in Reduction of Seismic Risk.spa
dc.relation.referencesRabih, A. y M., G. (2003). Active structural vibration control: A review. The Shock and Vibration Digest, 35(5):367-383.spa
dc.relation.referencesRashid, M. y Ahmad, N. (2017). Economic losses due to earthquake - induced structural damages in RC SMRF structures. Civil and Enviromental Engineering, 4:1-15.spa
dc.relation.referencesSaaed, T. E., Nikolokopoulos, G., Jonasson, J.-E., and Hedlund, H. (2013). A state of the art review of structural control systems. Journal of Vibration Control, 21(5):1-19spa
dc.relation.referencesScott, N. T. y Snyder, D. (1995). Active control of vibration using neural network. IEEE Transactions on Neural Networks, 6(4):819-828.spa
dc.relation.referencesShu, Z., Li, S., Sun, X., and He, M. (2019). Performance-based Seismic Design of a Pendulum Tuned Mass Damper System. Journal of Earthquake Engineering, 23(2):334-355.spa
dc.relation.referencesSoong, T. T. (1990). Active Structural Control: Theory and Practice. Longman Scienti c and Technical.spa
dc.relation.referencesSoto, M. G. y Adeli, H. (2016). Recent advances in control algorithms for smart structures and machines. Wiley: Expert Systems, (34):1-14.spa
dc.relation.referencesSpencer, B. F. y Nagarajaiah, S. (2003). State of the art of structural control. Journal of Structural Engineering ASCE, 129(7):845-856.spa
dc.relation.referencesStengel, R. F. (1994). Optimal Control and Estimation. John Wiley and sons, United States of America.spa
dc.relation.referencesTaghavi, S. y Miranda, E. (2003). Response assessment of nonstructural buildings elements. Technical report, Paci c Earthquake Engineering Research Center PEER.spa
dc.relation.referencesTaranath, B. (2016). Tall building design: steel, concrete and composite systems. CRC Press.spa
dc.relation.referencesUrrego, P. (2018). Comparación del comportamiento estructural en edificaciones controladas sísmicamente con un amortiguador de masa sintonizada (tuned mass damper). Master's thesis, Escuela de Ingeniería de Antioquia.spa
dc.relation.referencesWang, N. y Adeli, H. (2015). Robust vibration control of wind excited highrise building structures. Journal of Civil Engineering and Management, 21:967-976.spa
dc.relation.referencesWong, K. y Hart, G. C. (1997). Active control of inelastic structural response during earthquakes. The Structural Design of Tall Buildings, 6:125-149.spa
dc.relation.referencesWong, K. y Yang, R. (1999). Inelastic dynamic response of structures using force analogy method. Journal of Engineering Mechanics, 125:1190-1199.spa
dc.relation.referencesXu, Y. L. y He, J. (2017). Smart civil structures. Taylor and Francis group.spa
dc.relation.referencesYang, J. N., Danielians, A., and Liu, S. C. (1991). A seismic hybrid control system for buildings strutcures. ASCE Journal of Engineering Mechanics, 177(4):836.spa
dc.relation.referencesYang, T. Y., Moehle, J., Stojadinovic, B., and Kiureghian, A. (2009). Seismic performance evaluation of facilities: Methodology and implementation. Journal of Structural Engineering ASCE, 135:1146-1154.spa
dc.relation.referencesYoshioka, H., Ramallo, J. C., and Spencer, B. F. J. (2002). Smart base isolation strategies employing magnetorheological dampers. ASCE Journal of Engineering Mechanics, 128(5):540.spa
dc.relation.referencesZameeruddin, M. y Sangle, K. K. (2016). Review on recent developments in the performance based seismic design of reinforced concrete. Structures, 6(3):119-133.spa
dc.relation.referencesZeng, X., Lu, X., Yang, T. Y., and Xu, Z. (2016). Application of the FEMA-P58 methodology for regional earthquake loss prediction. Nat Hazard, 83(1):177-192.spa
dc.relation.referencesZhang, X., Toranzo, L., Reynolds, A., Cheng, F., Xu, B., and Langhaar, V. (2012). Seismic performance assessment of active/hybrid controlled building by response probability approach. In 15th World Conference on Earthquake Engineering.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalControl estructuralspa
dc.subject.proposalDiseño basado en desempeño
dc.subject.proposalAnálisis dinámico no lineal
dc.subject.proposalStructural control
dc.subject.proposalPerformance based design
dc.subject.proposalNonlinear dynamic analysis
dc.titleEvaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeñospa
dc.title.alternativeEvaluation of the behavior of active control in reducing damage using performance based seismic designspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1060651625.2020.pdf
Tamaño:
4.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: