Personalización automática de estrategias de control glucémico para pacientes con Diabetes Mellitus tipo 1.

dc.contributor.advisorRivadeneira Paz, Pablo Santiago
dc.contributor.authorSereno Mesa, Juan Esteban
dc.date.accessioned2021-08-12T14:44:19Z
dc.date.available2021-08-12T14:44:19Z
dc.date.issued2021-02-10
dc.descriptionilustracionesspa
dc.description.abstractEl páncreas artificial se ha consolidado como nuevo tratamiento para las personas con diabetes mellitus tipo 1. Esta enfermedad crónica y autoinmune deteriora la regulación glucémica en los pacientes que la padecen y se presenta como un problema de salud pública mundial en crecimiento. En la actualidad diversas pruebas clínicas a nivel mundial han demostrado la validez de los algoritmos de control glucémico. No obstante, nuevos retos se presentan para la concreción de un sistema totalmente automatizado, entre ellos la sintonización automática, la personalización y la eliminación del anuncio de comidas. En el presente trabajo se desarrollan los siguientes temas: Primero, se proponen dos algoritmos de control glucémico con rechazo de perturbaciones de comidas no anunciadas: el primero es una estrategia en paralelo entre un controlador por realimentación y un PID positivo (K+PID); el segundo es un controlador predictivo por zonas con entrada impulsiva (iZMPC). Los algoritmos son validados en un total de 50 pacientes virtuales. Los resultados muestran que ambos controladores logran evitar los casos de hipoglucemia y mantener los niveles de glucosa en la zona de normoglucemia (98, 13% y 95, 01% del tiempo para el iZMPC y el K+PID, respectivamente) ante perturbaciones de comidas no anunciadas. Luego, se propone una metodología para la sintonización automática de controladores glucémicos. Dicha propuesta se basa en un procedimiento de optimización de los parámetros de sintonía haciendo uso del método Nelder-Mead, para maximizar el tiempo de permanencia en normoglucemia. La validación se realiza con 33 pacientes virtuales extraídos del simulador virtual UVa/Padova y con el controlador iZMPC. Los resultados obtenidos muestran un incremento promedio de 17, 21% más de tiempo en normoglucemia, con respecto a la sintonización inicial. Finalmente, se propone un algoritmo de detección y estimación de comidas para la reconstrucción de señales de carbohidratos. El algoritmo propone un esquema de realimentación y un estimador en funciones de transferencia para la detección y estimación de comidas, en base a la señal entregada por el estimador se realiza la reconstrucción de la señal de anuncio de comidas. La validación se realiza por medio de datos recolectados en 30 pacientes virtuales y 5 reales. Los resultados muestran que en promedio el algoritmo presenta una sensibilidad de 98 %, un error de estimación del 14% en la amplitud de la comida y un desfase temporal de 4 min con respecto al inicio real de la comida. (Tomado de la fuente)spa
dc.description.abstractArtificial pancreas has established as a new treatment for people with type 1 diabetes mellitus. This chronic and autoimmune illness impairs the glycaemic regulation in patients who suffer it and presents itself as a growing global public health problem. Currently, worldwide clinical trials have demonstrated the validity of glycaemic control algorithms. However, new challenges arise for the realization of a fully automated system, including automatic tuning, personalization and the elimination of meals announcements. In this work the following topics are developed: Firstly, two glycaemic control algorithms with rejection of unannounced meals are proposed: the first is a parallel strategy between a feedback controller and a positive PID controller (K+PID); the second one is a zone model predictive control with impulsive input (iZMPC). The algorithms are validated in a total of 50 virtual patients. The results show that both controllers manage to avoid cases of hypoglycemia and maintain glucose levels in the normoglycemia zone (98,13% and 95,01% of the time for the iZMPC and the K + PID, respectively) in face of disturbances of unannounced meals. Then, a methodology for automatic tuning of glycaemic controllers is proposed. This approach is based on a procedure of optimizing the controller parameters using the Nelder-Mead method to maximize the time spent in normoglycemia. Validation is performed with 33 virtual patients extracted from the UVa/Padova virtual simulator an with the iZMPC controller. Simulation results show an average increase of 17,21% more time in normoglycemia, with respect to the initial tuning. Finally, a meal detection and estimation algorithm is proposed for reconstruction for carbohydrate signals. The algorithm proposes a feedback scheme and an estimator, in transfer functions, for the detection and estimation of meals. Based on the estimator output signal, the reconstruction of the meal announcement signal is performed. Validation is performed using data collected from 30 virtual patients and 5 real patients. The results show that on average the algorithm presents a sensitivity of 98 %, an estimation error of 14% in the meal size, and a time lag of 4 min with respect to the actual meal onset. (Tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.format.extent76 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79925
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automáticaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesABDI, H. & MOLIN, P. (2007). Lilliefors/van soest’s test of normality. Encyclopedia of measurement and statistics , 540–544.spa
dc.relation.referencesAHMAD, I., MUNIR, F. & MUNIR, M. F. (2019). An adaptive backstepping based nonlinear controller for artificial pancreas in type 1 diabetes patients. Biomedical Signal Processing and Control 47, 49–56.spa
dc.relation.referencesASCHNER, P. (2010). Epidemiología de la diabetes en Colombia. Av. en Diabetol. 26(1), 95–100.spa
dc.relation.referencesBARNES, A. J. & JONES, R. W. (2019). Pid-based glucose control using intra-peritoneal insulin infusion: An in silico study. In: 2019 14th IEEE Conference on IndustrialElectronics and Applications (ICIEA). IEEE.spa
dc.relation.referencesBENZIAN, S., REBAI, A. & AMEUR, A. (2019). Optimal digital pid controller design for regulating blood glucose level of type-i diabetic patients. International Journal of Digital Signals and Smart Systems 3(1-3), 137–149.spa
dc.relation.referencesBERGMAN et al. (1979). Quantitative estimation of insulin sensitivity 236(6), E667.spa
dc.relation.referencesBOLIE, V. W. (1961). Coefficients of normal blood glucose regulation. Journal of applied physiology 16(5), 783–788.spa
dc.relation.referencesCASAS, L. ´A. (2019). Diabetes, detección temprana para una enfermedad compleja. Revista Colombiana de Endocrinología, Diabetes & Metabolismo 6(1), 4–4.spa
dc.relation.referencesCHAKRABARTY, A., HEALEY, E., SHI, D., ZAVITSANOU, S., DOYLE, F. J. & DASSAU, E. (2019). Embedded model predictive control for a wearable artificial pancreas. IEEE Transactions on Control Systems Technology .spa
dc.relation.referencesCHEE, F., FERNANDO, T. L., SAVKIN, A. V. & VAN HEEDEN, V. (2003). Expert pid control system for blood glucose control in critically ill patients. IEEE Transactions on Information Technology in Biomedicine 7(4), 419–425.spa
dc.relation.referencesDEL FAVERO, S., TOFFANIN, C., MAGNI, L. & COBELLI, C. (2019). Deployment of modular mpc for type 1 diabetes control: the italian experience 2008–2016. In: The Artificial Pancreas. Elsevier, pp. 153–182.spa
dc.relation.referencesFARINA, L. & RINALDI, S. (2011). Positive linear systems: theory and applications, vol. 50. John Wiley & Sons.spa
dc.relation.referencesFEDERATION, I. D. (2019). IDF Diabetes Atlas, Ninth edition. Retrieved from https:// diabetesatlas.org/en/.spa
dc.relation.referencesFORLENZA, G. P., BUCKINGHAM, B. & MAAHS, D. M. (2016). Progress in diabetes technology: developments in insulin pumps, continuous glucose monitors, and progress towards the artificial pancreas. The Journal of pediatrics 169, 13–20.spa
dc.relation.referencesGAETANO, A. D. et al. (2005). Distributed-delay models of the glucose-insulin homeostasis and asymptotic state observation. IFAC Proceedings Volumes 38(1), 1041 – 1046.spa
dc.relation.referencesGARCIA-TIRADO, J., CORBETT, J. P., BOIROUX, D., JØRGENSEN, J. B. & BRETON, M. D. (2019). Closed-loop control with unannounced exercise for adults with type 1 diabetes using the ensemble model predictive control. Journal of Process Control 80, 202–210.spa
dc.relation.referencesGARCIA-TIRADO, J., ZULUAGA-BEDOYA, C. & BRETON, M. D. (2018). Identifiability analysis of three control-oriented models for use in artificial pancreas systems. Journal of diabetes science and technology 12(5), 937–952.spa
dc.relation.referencesGODOY, J., SERENO, J. E. & RIVADENEIRA, P. S. (2021). Meal detection and carbohydrate estimation based on a feedback scheme with application to the artificial pancreas. Biomedical Signal Processing and Control , 0000–0000.spa
dc.relation.referencesGOMEZ, A. M., SANCHEZ, A. M., MUNOZ, O. M. & PE˜NA, C. A. C. (2015). Numerical and clinical precision of continuous glucose monitoring in Colombian patients treated with insulin infusion pump with automated suspension in hypoglycaemia. Endocrinología y Nutrición (English Edition) 62(10), 485–492.spa
dc.relation.referencesGONZALEZ, A. H. & ODLOAK, D. (2009). A stable mpc with zone control. Journal of Process Control 19(1), 110–122.spa
dc.relation.referencesGONZ´A LEZ, A. H., RIVADENEIRA, P. S., FERRAMOSCA, A., MAGDELAINE, N. & MOOG, C. H. (2017). Impulsive zone mpc for type i diabetic patients based on a long-term model. IFAC-PapersOnLine 50(1), 14729–14734.spa
dc.relation.referencesGROSMAN, B., DASSAU, E., ZISSER, H. C., JOVANOVIˇC, L. & DOYLE III, F. J. (2010). Zone model predictive control: a strategy to minimize hyper-and hypoglycemic events. Journal of diabetes science and technology 4(4), 961–975.spa
dc.relation.referencesHEISE, T., PIEBER, T. R., DANNE, T., ERICHSEN, L. & HAAHR, H. (2017). A pooled analysis of clinical pharmacology trials investigating the pharmacokinetic and pharmacodynamic characteristics of fast-acting insulin aspart in adults with type 1 diabetes. Clinical pharmacokinetics 56(5), 551–559.spa
dc.relation.referencesHOYOS, J. D. et al. (2018). Population-based incremental learning algorithm for identification of blood glucose dynamics model for type-1 diabetic patients. In proceedings of The 2018 World Congress in Computer Science, Computer Engineering, and Applied Computing .spa
dc.relation.referencesKULCU, E., TAMADA, J. A., REACH, G., POTTS, R. O. & LESHO, M. J. (2003). Physiological differences between interstitial glucose and blood glucose measured in human subjects. Diabetes care 26(8), 2405–2409.spa
dc.relation.referencesMACIEJOWSKI, J. M. (2002). Predictive control: with constraints. Pearson education.spa
dc.relation.referencesMAGDELAINE et al. (2015). A long-term model of the glucose-insulin dynamics of type 1 diabetes. IEEE Transactions on Biomedical Engineering 62(6), 1546–1552.spa
dc.relation.referencesMAGNI, L., FORGIONE, M., TOFFANIN, C., DALLA MAN, C., KOVATCHEV, B., DE NICOLAO, G. & COBELLI, C. (2009). Run-to-run tuning of model predictive control for type 1 diabetes subjects: In silico trial. Journal of Diabetes Science and Technology 3(5), 1091–1098.spa
dc.relation.referencesMESSORI, M., TOFFANIN, C., DEL FAVERO, S., DE NICOLAO, G., COBELLI, C. & MAGNI, L. (2016). Model individualization for artificial pancreas. Computer methods and programs in biomedicine .spa
dc.relation.referencesMOHAMMADRIDHA, T., RIVADENEIRA, P. S., SERENO, J. E., CARDELLI, M. & MOOG, C. H. (2016). Description of the positive invariant sets of a type 1 diabetic patient model. XVII CLCA Latin American Conference of Automatic Control.spa
dc.relation.referencesNELDER, J. A. & MEAD, R. (1965). A simplex method for function minimization. The computer journal 7(4), 308–313.spa
dc.relation.referencesPERRIELLO, G., DE FEO, P., TORLONE, E., FANELLI, C., SANTEUSANIO, F., BRUNETTI, P. & BOLLI, G. (1991). The dawn phenomenon in type 1 (insulin-dependent) diabetes mellitus: magnitude, frequency, variability, and dependency on glucose counter-regulation and insulin sensitivity. Diabetologia 34(1), 21–28.spa
dc.relation.referencesPINSKER, J. E., LEE, J. B., DASSAU, E., SEBORG, D. E., BRADLEY, P. K., GONDHALEKAR, R., BEVIER, W. C., HUYETT, L., ZISSER, H. C. & DOYLE, F. J. (2016). Randomized crossover comparison of personalized mpc and pid control algorithms for the artificial pancreas. Diabetes Care 39(7), 1135–1142.spa
dc.relation.referencesRESALAT, N., EL YOUSSEF, J., REDDY, R. & JACOBS, P. G. (2017). Evaluation of model complexity in model predictive control within an exercise-enabled artificial pancreas. IFAC-PapersOnLine 50(1), 7756–7761.spa
dc.relation.referencesRIVADENEIRA, P. S., CAICEDO, M. A. & SERENO, J. E. (2018). A new approach in zone model predictive control for type 1 diabetes to be tested in Colombia. 11th International Conference on Advanced Technologies & Treatments for Diabetes (ATTD 2018) 20, 86–A87.spa
dc.relation.referencesRIVADENEIRA, P. S., FERRAMOSCA, A. & GONZALEZ, A. H. (2016). Control algorithms for non-zero set-point regulation of linear impulsive systems. In: submitted to IEEE transactions to Automatic Control.spa
dc.relation.referencesRIVADENEIRA, P. S., GODOY, J., SERENO, J., ABUIN, P., FERRAMOSCA, A. & GONZALEZ, A. (2020). Impulsive mpc schemes for biomedical processes: Application to type 1 diabetes. In: Control Applications for Biomedical Engineering Systems. Elsevier, pp. 55–87.spa
dc.relation.referencesRIVADENEIRA, P. S., SERENO, J. E. & CAICEDO, M. A. (2019). Nuevas estrategias de control glucémico en pacientes con diabetes mellitus tipo 1. Revista Iberoamericana de Automática e Informática. 16(2), 238–248.spa
dc.relation.referencesRUAN, Y., WILINSKA, M. E., THABIT, H. & HOVORKA, R. (2016). Modelling day-to-day variability of glucose–insulin regulation over 12-week home use of closed-loop insulin delivery. IEEE Transactions on Biomedical Engineering 64(6), 1412–1419.spa
dc.relation.referencesSCHALLER, H., SCHAUPP, L., BODENLENZ, M., WILINSKA, M., CHASSIN, L., WACH, P., VERING, T., HOVORKA, R. & PIEBER, T. (2006). On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with type 1 diabetes. Diabetic medicine 23(1), 90–93.spa
dc.relation.referencesSERENO, J. E., CAICEDO, M. A. & RIVADENEIRA, P. S. (2018a). Artificial pancreas: glycemic control strategies for avoiding hypoglycemia. Dyna. 85(207), 198–207.spa
dc.relation.referencesSERENO, J. E., CAICEDO, M. A., RIVADENEIRA, P. S. & CAMACHO, O. E. (2018b). In silico test for mpc and smc controllers under parametric variations in type 1 diabetic patients. 2018 Argentine Conference on Automatic Control (AADECA) , 1–6.spa
dc.relation.referencesSERENO, J. E. & RIVADENEIRA, P. S. (2018). Auto-tuning for model predictive controllers in patients with type 1 diabetes. 2018 Argentine Conference on Automatic Control (AADECA) , 1–6.spa
dc.relation.referencesTHABIT, H. & HOVORKA, R. (2016). Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia 59(9), 1795–1805.spa
dc.relation.referencesTOFFANIN, C., AIELLO, E., DEL FAVERO, S., COBELLI, C. & MAGNI, L. (2019). Multiple models for artificial pancreas predictions identified from free-living condition data: A proof of concept study. Journal of Process Control 77, 29–37.spa
dc.relation.referencesWALSH, J., ROBERTS, R. & HEINEMANN, L. (2014). Confusion regarding duration of insulin action: a potential source for major insulin dose errors by bolus calculators. Journal of diabetes science and technology 8(1), 170–178.spa
dc.relation.referencesWONG, J. M. & JENKINS, D. J. (2007). Carbohydrate digestibility and metabolic effects. The Journal of nutrition 137(11), 2539S–2546S.spa
dc.relation.referencesZARKOGIANNI, K., VAZEOU, A., MOUGIAKAKOU, S. G., PROUNTZOU, A. & NIKITA, K. S. (2011). An insulin infusion advisory system based on autotuning nonlinear model-predictive control. IEEE Transactions on Biomedical Engineering 58(9), 2467–2477.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembDiabetes
dc.subject.proposalPáncreas artificialspa
dc.subject.proposalSistemas impulsivosspa
dc.subject.proposalControl predictivospa
dc.subject.proposalAutosintoníaspa
dc.subject.proposalArtificial pancreaseng
dc.subject.proposalDetección de comidasspa
dc.subject.proposalReconstrucción de señalesspa
dc.subject.proposalImpulsive systemseng
dc.subject.proposalPredictive controleng
dc.subject.proposalAuto-tuningeng
dc.subject.proposalMeal detectioneng
dc.subject.proposalMeal estimationeng
dc.subject.proposalSignal reconstructioneng
dc.titlePersonalización automática de estrategias de control glucémico para pacientes con Diabetes Mellitus tipo 1.spa
dc.title.translatedAutomatic personalization of glycemic control strategies for patients with type 1 Diabetes Mellitus.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1039696370-10-02-2021.pdf
Tamaño:
13.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: