Computational anatomy strategies for characterization of brain patterns associated with Alzheimer's disease

dc.contributor.advisorRomero Castro, Eduardo
dc.contributor.advisorSijbers, Jan
dc.contributor.advisorJeurissen, Ben
dc.contributor.authorGiraldo Franco, Diana Lorena
dc.contributor.researchgroupCim@Labspa
dc.date.accessioned2022-03-28T17:54:01Z
dc.date.available2022-03-28T17:54:01Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractLa enfermedad de Alzheimer (EA) es una de las fallas sistemáticas del sistema nervioso más complejas que se conocen. Los síntomas clínicos de esta enfermedad neurodegenerativa son alteraciones de la cognición y el comportamiento que pueden conducir a la aparición de un síndrome de demencia. Los mecanismos de la enfermedad que conducen a la neurodegeneración y al deterioro cognitivo en la EA aún no se conocen bien, lo que dificulta la predicción de la evolución clínica de los pacientes en las primeras fases de la EA. Actualmente, ningún biomarcador o examen es suficiente para diagnosticar la EA y los instrumentos estándar existentes no son lo suficientemente sensibles para detectar cambios sutiles, predecir el curso clínico o reconocer presentaciones atípicas de EA. Esta tesis presenta dos estrategias de anatomía computacional destinadas a identificar y cuantificar los patrones de neurodegeneración asociados a diferentes etapas clínicas a lo largo del continuo de la EA utilizando dos modalidades diferentes de imágenes de resonancia magnética. Una tercera contribución consiste en una estrategia guiada por datos para desarrollar un conjunto de puntajes específicas por dominio que resultan útiles para estimar el riesgo y predecir la progresión del deterioro cognitivo leve a la demencia. La evaluación de estas estrategias con métodos de aprendizaje automático y de inferencia estadística demuestra el potencial de las herramientas cuantitativas propuestas para ayudar al manejo y el seguimiento clínico de los pacientes y podría utilizarse para mejorar la evaluación de posibles intervenciones que puedan modificar el curso de la enfermedad. (Texto tomado de la fuente)spa
dc.description.abstractAlzheimer's disease (AD) is one of the most complex systematic malfunctions of the nervous system that are known. The clinical symptoms of this neurodegenerative disease are alterations in cognition and behaviour that can lead to the onset of a dementia syndrome. Disease mechanisms that lead to neurodegeneration and cognitive impairment in sporadic AD are not well understood yet, making it difficult to predict the clinical progression of patients at the early stages of the AD continuum. Currently, no single biomarker or exam is sufficient to diagnose AD and existing standard instruments are not sensitive enough to detect subtle changes, predict the clinical course, and recognize heterogeneous forms of AD. This thesis presents two computational anatomy strategies aiming to identify and quantify neurodegeneration patterns associated with different clinical stages along the AD continuum using two different modalities of magnetic resonance imaging. A third contribution consists of a data-driven strategy to develop a set of domain-specific scores that result useful to estimate the risk of and predict the progression from mild cognitive impairment to dementia. Evaluation of these strategies with machine-learning and statistical inference methods demonstrate the potential of the proposed quantitative tools to help patients' clinical management and monitoring and could be used to improve the evaluation of potential disease-modifying interventions.eng
dc.description.abstractDe ziekte van Alzheimer (AD) is een van de meest complexe systemische storingen van het zenuwstelsel die bekend zijn. De klinische symptomen van deze neurodegeneratieve ziekte zijn veranderingen in cognitie en gedrag die kunnen leiden tot het ontstaan van een dementiesyndroom. De ziektemechanismen die leiden tot neurodegeneratie en cognitieve stoornissen bij sporadische AD zijn nog niet goed begrepen, waardoor het moeilijk is om de klinische progressie van patiënten in de vroege stadia van het AD continuüm te voorspellen. Momenteel is geen enkele biomarker of onderzoek voldoende om de diagnose AD te stellen en de bestaande standaardinstrumenten zijn niet gevoelig genoeg om subtiele veranderingen te detecteren, het klinische verloop te voorspellen en heterogene vormen van AD te herkennen. Dit proefschrift presenteert twee computationele anatomiestrategieën die gericht zijn op het identificeren en kwantificeren van neurodegeneratiepatronen geassocieerd met verschillende klinische stadia in het AD continuüm, gebruikmakend van twee verschillende modaliteiten van magnetische resonantie beeldvorming. Een derde bijdrage bestaat uit een data-gestuurde strategie om een reeks van domeinspecifieke scores te ontwikkelen die bruikbaar zijn om het risico in te schatten op en de progressie te voorspellen van milde cognitieve stoornissen naar dementie. Evaluatie van deze strategieën met machine-learning en statistische inferentie methoden tonen het potentieel aan van de voorgestelde kwantitatieve instrumenten om het klinisch management en de monitoring van patiënten te helpen en zouden gebruikt kunnen worden om de evaluatie van potentiële ziekte-modificerende interventies te verbeteren.other
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.format.extentxvii, 81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81406
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherUniversiteit Antwerpenspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computaciónspa
dc.relation.references2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 16(3):391–460, 2020.spa
dc.relation.referencesJulio Acosta-Cabronero and Peter J. Nestor. Diffusion tensor imaging in Alzheimer’s disease: insights into the limbic-diencephalic network and methodological considera- tions. Frontiers in Aging Neuroscience, 6:266, 2014.spa
dc.relation.referencesJulio Acosta-Cabronero, Guy B. Williams, George Pengas, and Peter J. Nestor. Ab- solute diffusivities define the landscape of white matter degeneration in alzheimer’s disease. Brain, 133(2):529–539, 2010.spa
dc.relation.referencesPaul S. Aisen, Jeffrey Cummings, Clifford R. Jack, John C. Morris, Reisa Sper- ling, Lutz Fr ̈olich, Roy W. Jones, Sherie A. Dowsett, Brandy R. Matthews, Joel Raskin, Philip Scheltens, and Bruno Dubois. On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimer's Research & Therapy, 9(1), August 2017.spa
dc.relation.referencesMarilyn S. Albert, Steven T. DeKosky, Dennis Dickson, Bruno Dubois, Howard H. Feldman, Nick C. Fox, Anthony Gamst, David M. Holtzman, William J. Jagust, Ronald C. Petersen, Peter J. Snyder, Maria C. Carrillo, Bill Thies, and Creighton H. Phelps. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recom- mendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3):270 – 279, 2011.spa
dc.relation.referencesAmerican Psychiatric Association. Diagnostic and statistical manual of mental dis- orders: DSM-5. American Psychiatric Association, Washington, DC, 5th ed. edition, 2013.spa
dc.relation.referencesI.K. Amlien and A.M. Fjell. Diffusion tensor imaging of white matter degeneration in Alzheimer’s disease and mild cognitive impairment. Neuroscience, 276(Supplement C):206 – 215, 2014. Secrets of the CNS White Matter.spa
dc.relation.referencesBabak A. Ardekani, Antonio Convit, and Alvin H. Bachman. Analysis of the miriad data shows sex differences in hippocampal atrophy progression. Journal of Alzheimer’s Disease, 50(3):847–857, Feb 2016.spa
dc.relation.referencesJohn Ashburner and Karl J. Friston. Voxel-based morphometry—The methods. Neu- roImage, 11(6):805 – 821, 2000.spa
dc.relation.referencesRavi Bansal, Lawrence H. Staib, Andrew F. Laine, Xuejun Hao, Dongrong Xu, Jun Liu, Myrna Weissman, and Bradley S. Peterson. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS ONE, 7(12):1–21, 12 2012.spa
dc.relation.referencesPeter J. Basser and Carlo Pierpaoli. Microstructural and physiological features of tis- sues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance, Series B, 111(3):209–219, 1996.spa
dc.relation.referencesIman Beheshti and Hasan Demirel. Feature-ranking-based Alzheimer’s disease classi- fication from structural MRI. Magnetic Resonance Imaging, 34(3):252 – 263, 2016.spa
dc.relation.referencesH. Braak and E. Braak. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4):239–259, September 1991.spa
dc.relation.referencesEsther E. Bron, Marion Smits, Wiesje M. van der Flier, Hugo Vrenken, Frederik Barkhof, Philip Scheltens, Janne M. Papma, Rebecca M.E. Steketee, Carolina M ́endez Orellana, Rozanna Meijboom, Madalena Pinto, Joana R. Meireles, Carolina Gar- rett, Ant ́onio J. Bastos-Leite, Ahmed Abdulkadir, Olaf Ronneberger, Nicola Amoroso, ́ Roberto Bellotti, David C ́ardenas-Pe ̃ na, Andr ́es M. Alvarez Meza, Chester V. Dolph, Khan M. Iftekharuddin, Simon F. Eskildsen, Pierrick Coup ́e, Vladimir S. Fonov, Katja Franke, Christian Gaser, Christian Ledig, Ricardo Guerrero, Tong Tong, Katherine R. Gray, Elaheh Moradi, Jussi Tohka, Alexandre Routier, Stanley Durrleman, Alessia Sarica, Giuseppe Di Fatta, Francesco Sensi, Andrea Chincarini, Garry M. Smith, Zhivko V. Stoyanov, Lauge Sørensen, Mads Nielsen, Sabina Tangaro, Paolo Inglese, Christian Wachinger, Martin Reuter, John C. van Swieten, Wiro J. Niessen, and Stefan Klein. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge. NeuroImage, 111:562 – 579, 2015.spa
dc.relation.referencesMarco Canevelli, Ilaria Bacigalupo, Giuseppe Gervasi, Eleonora Lacorte, Marco Mas- sari, Flavia Mayer, Nicola Vanacore, and Matteo Cesari. Methodological issues in the clinical validation of biomarkers for Alzheimer’s disease: The paradigmatic example of CSF. Frontiers in Aging Neuroscience,, 11:282, 2019.spa
dc.relation.referencesFrancesca Caso, Federica Agosta, and Massimo Filippi. Insights into white matter damage in Alzheimer's disease: From postmortem to in vivo diffusion tensor MRI studies. Neurodegenerative Diseases, 16(1-2):26–33, dec 2015.spa
dc.relation.referencesMarie Chupin, Emilie G ́erardin, R ́emi Cuingnet, Claire Boutet, Louis Lemieux, St ́ephane Leh ́ericy, Habib Benali, Line Garnero, and Olivier Colliot. Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus, 19(6):579–587, 2009.spa
dc.relation.referencesSimon Cloutier, Howard Chertkow, Marie-Jeanne Kergoat, Serge Gauthier, and Sylvie Belleville. Patterns of cognitive decline prior to dementia in persons with mild cognitive impairment. Journal of Alzheimer’s Disease, 47(4):901–913, August 2015.spa
dc.relation.referencesLyndsey E Collins-Praino, Yitshak I Francis, Erica Y Griffith, Anne F Wiegman, Jonathan Urbach, Arlene Lawton, Lawrence S Honig, Etty Cortes, Jean Paul G Von- sattel, Peter D Canoll, James E Goldman, and Adam M Brickman. Soluble amyloid beta levels are elevated in the white matter of Alzheimer’s patients, independent of cortical plaque severity. Acta Neuropathologica Communications, 2(1), August 2014.spa
dc.relation.referencesOlivier Colliot, Ga ̈el Ch ́etelat, Marie Chupin, B ́eatrice Desgranges, Benoˆıt Magnin, Habib Benali, Bruno Dubois, Line Garnero, Francis Eustache, and St ́ephane Leh ́ericy. Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology, 248, 07 2008.spa
dc.relation.referencesR ́emi Cuingnet, Emilie Gerardin, J ́erˆome Tessieras, Guillaume Auzias, St ́ephane Leh ́ericy, Marie-Odile Habert, Marie Chupin, Habib Benali, and Olivier Colliot. Au- tomatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the adni database. NeuroImage, 56(2):766 – 781, 2011. Multivariate Decoding and Brain Reading.spa
dc.relation.referencesChristos Davatzikos, Priyanka Bhatt, Leslie M. Shaw, Kayhan N. Batmanghelich, and John Q. Trojanowski. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32(12):2322.e19 – 2322.e27, 2011.spa
dc.relation.referencesChristos Davatzikos, Yong Fan, Xiaoying Wu, Dinggang Shen, and Susan M. Resnick. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic res- onance imaging. Neurobiology of Aging, 29(4):514 – 523, 2008.spa
dc.relation.referencesM.S. de Oliveira, M.L.F. Balthazar, A. D’Abreu, C.L. Yasuda, B.P. Damasceno, F. Cendes, and G. Castellano. MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease. American Journal of Neuroradiology, 32(1):60–66, 2011.spa
dc.relation.referencesMichaela Defrancesco, Karl Egger, Josef Marksteiner, Regina Esterhammer, Hartmann Hinterhuber, Eberhard A. Deisenhammer, and Michael Schocke. Changes in white mat- ter integrity before conversion from mild cognitive impairment to alzheimer?s disease. PLoS ONE, 9(8):1–10, 08 2014.spa
dc.relation.referencesFlavio Dell’Acqua and J.-Donald Tournier. Modelling white matter with spherical deconvolution: How and why? NMR in Biomedicine, 32(4):e3945, 2019. e3945 NBM- 17-0226.R1.spa
dc.relation.referencesR. S. Desikan, H. J. Cabral, C. P. Hess, W. P. Dillon, C. M. Glastonbury, M. W. Weiner, N. J. Schmansky, D. N. Greve, D. H. Salat, and R. L. et al. Buckner. Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain, 132(8):2048–2057, 2009.spa
dc.relation.referencesB.C. Dickerson, E. Fenstermacher, D.H. Salat, D.A. Wolk, R.P. Maguire, R. Desikan, J. Pacheco, B.T. Quinn, A. Van der Kouwe, D.N. Greve, D. Blacker, M.S. Albert, R.J. Killiany, and B. Fischl. Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths. Neu- roImage, 39(1):10 – 18, 2008.spa
dc.relation.referencesB.C. Dickerson, I. Goncharova, M.P. Sullivan, C. Forchetti, R.S. Wilson, D.A. Bennett, L.A. Beckett, and L. deToledo Morrell. MRI-derived entorhinal and hippocampal at- rophy in incipient and very mild Alzheimer’s disease. Neurobiology of Aging, 22(5):747 – 754, 2001.spa
dc.relation.referencesAoyan Dong, Jon B. Toledo, Nicolas Honnorat, Jimit Doshi, Erdem Varol, Aristeidis Sotiras, David Wolk, John Q. Trojanowski, and Christos Davatzikos and. Heterogene- ity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers. Brain, page aww319, dec 2017.spa
dc.relation.referencesGwena ̈elle Douaud, Saˆad Jbabdi, Timothy E.J. Behrens, Ricarda A. Menke, Achim Gass, Andreas U. Monsch, Anil Rao, Brandon Whitcher, Gordon Kindlmann, Paul M. Matthews, and Stephen Smith. DTI measures in crossing-fibre areas: Increased dif- fusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. NeuroImage, 55(3):880 – 890, 2011.spa
dc.relation.referencesBruno Dubois, Howard H Feldman, Claudia Jacova, Jeffrey L Cummings, Steven T DeKosky, Pascale Barberger-Gateau, Andr ́e Delacourte, Giovanni Frisoni, Nick C Fox, Douglas Galasko, Serge Gauthier, Harald Hampel, Gregory A Jicha, Kenichi Meguro, John O’Brien, Florence Pasquier, Philippe Robert, Martin Rossor, Steven Salloway, Marie Sarazin, Leonardo C de Souza, Yaakov Stern, Pieter J Visser, and Philip Schel- tens. Revising the definition of Alzheimer’s disease: a new lexicon. The Lancet Neu- rology, 9(11):1118 – 1127, 2010.spa
dc.relation.referencesBruno Dubois, Howard H Feldman, Claudia Jacova, Steven T DeKosky, Pascale Barberger-Gateau, Jeffrey Cummings, Andr ́e Delacourte, Douglas Galasko, Serge Gau- thier, Gregory Jicha, Kenichi Meguro, John O’Brien, Florence Pasquier, Philippe Robert, Martin Rossor, Steven Salloway, Yaakov Stern, Pieter J Visser, and Philip Scheltens. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. The Lancet Neurology, 6(8):734 – 746, 2007.spa
dc.relation.referencesBruno Dubois, Howard H Feldman, Claudia Jacova, Harald Hampel, Jos ́e Luis Molin- uevo, Kaj Blennow, Steven T DeKosky, Serge Gauthier, Dennis Selkoe, Randall Bate- man, Stefano Cappa, Sebastian Crutch, Sebastiaan Engelborghs, Giovanni B Frisoni, Nick C Fox, Douglas Galasko, Marie-Odile Habert, Gregory A Jicha, Agneta Nord- berg, Florence Pasquier, Gil Rabinovici, Philippe Robert, Christopher Rowe, Stephen Salloway, Marie Sarazin, St ́ephane Epelbaum, Leonardo C de Souza, Bruno Vellas, Pieter J Visser, Lon Schneider, Yaakov Stern, Philip Scheltens, and Jeffrey L Cum- mings. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology, 13(6):614 – 629, 2014.spa
dc.relation.referencesBruno Dubois, Harald Hampel, Howard H. Feldman, Philip Scheltens, Paul Aisen, Sandrine Andrieu, Hovagim Bakardjian, Habib Benali, Lars Bertram, Kaj Blennow, Karl Broich, Enrica Cavedo, Sebastian Crutch, Jean-Fran ̧cois Dartigues, Charles Duy- ckaerts, St ́ephane Epelbaum, Giovanni B. Frisoni, Serge Gauthier, Remy Genthon, Alida A. Gouw, Marie-Odile Habert, David M. Holtzman, Miia Kivipelto, Simone Lista, Jos ́e-Luis Molinuevo, Sid E. O’Bryant, Gil D. Rabinovici, Christopher Rowe, Stephen Salloway, Lon S. Schneider, Reisa Sperling, Marc Teichmann, Maria C. Car- rillo, Jeffrey Cummings, and Cliff R. Jack. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s & Dementia, 12(3):292–323, mar 2016.spa
dc.relation.referencesEmily C. Edmonds, Lisa Delano-Wood, Lindsay R. Clark, Amy J. Jak, Daniel A. Nation, Carrie R. McDonald, David J. Libon, Rhoda Au, Douglas Galasko, David P. Salmon, and Mark W. Bondi. Susceptibility of the conventional criteria for mild cogni- tive impairment to false-positive diagnostic errors. Alzheimer’s & Dementia, 11(4):415 – 424, 2015.spa
dc.relation.referencesEmily C. Edmonds, Joel Eppig, Mark W. Bondi, Kelly M. Leyden, Bailey Goodwin, Lisa Delano-Wood, and Carrie R. McDonald. Heterogeneous cortical atrophy patterns in MCI not captured by conventional diagnostic criteria. Neurology, 87(20):2108–2116, 2016.spa
dc.relation.referencesYong Fan, Susan M. Resnick, Xiaoying Wu, and Christos Davatzikos. Structural and functional biomarkers of prodromal Alzheimer’s disease: A high-dimensional pattern classification study. NeuroImage, 41(2):277 – 285, 2008.spa
dc.relation.referencesMarshal F. Folstein, Susan E. Folstein, and Paul R. McHugh. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 1975.spa
dc.relation.referencesMark A. Fraser, Marnie E. Shaw, and Nicolas Cherbuin. A systematic review and meta- analysis of longitudinal hippocampal atrophy in healthy human ageing. NeuroImage, 112(Supplement C):364 – 374, 2015.spa
dc.relation.referencesP. A. Freeborough and N. C. Fox. MR image texture analysis applied to the diag- nosis and tracking of Alzheimer’s disease. IEEE Transactions on Medical Imaging, 17(3):475–478, June 1998.spa
dc.relation.referencesGiovanni B. Frisoni, Marina Boccardi, Frederik Barkhof, Kaj Blennow, Stefano Cappa, Konstantinos Chiotis, Jean-Francois D ́emonet, Valentina Garibotto, Panteleimon Gi- annakopoulos, Anton Gietl, Oskar Hansson, Karl Herholz, Clifford R. Jr Jack, Flavio Nobili, Agneta Nordberg, Heather M. Snyder, Mara Ten Kate, Andrea Varrone, Emil- iano Albanese, Stefanie Becker, Patrick Bossuyt, Maria C. Carrillo, Chiara Cerami, Bruno Dubois, Valentina Gallo, Ezio Giacobini, Gabriel Gold, Samia Hurst, Anders L ̈onneborg, Karl-Olof Lovblad, Niklas Mattsson, Jos ́e-Luis Molinuevo, Andreas U. Monsch, Urs Mosimann, Alessandro Padovani, Agnese Picco, Corinna Porteri, Os- man Ratib, Laure Saint-Aubert, Charles Scerri, Philip Scheltens, Jonathan M. Schott, Ida Sonni, Stefan Teipel, Paolo Vineis, Pieter Jelle Visser, Yutaka Yasui, and Bengt Winblad. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. The Lancet Neurology, 16(8):661–676, 07 2017.spa
dc.relation.referencesGiovanni B. Frisoni, Nick C. Fox, Clifford R. Jack, Philip Scheltens, and Paul M. Thompson. The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2):67–77, 2010.spa
dc.relation.referencesSerge Gauthier, Marilyn Albert, Nick Fox, Michel Goedert, Miia Kivipelto, Jorge Mestre-Ferrandiz, and Lefkos T. Middleton. Why has therapy development for de- mentia failed in the last two decades? Alzheimer’s & Dementia, 12(1):60–64, 2016.spa
dc.relation.referencesEmilie Gerardin, Ga ̈el Ch ́etelat, Marie Chupin, R ́emi Cuingnet, B ́eatrice Desgranges, Ho-Sung Kim, Marc Niethammer, Bruno Dubois, St ́ephane Leh ́ericy, Line Garnero, Francis Eustache, and Olivier Colliot. Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. NeuroImage, 47(4):1476 – 1486, 2009.spa
dc.relation.referencesDiana Giraldo, Hanne Struyfs, David Raffelt, Paul Parizel, Sebastiaan Engelborghs, Eduardo Romero, Jan Sijbers, and Ben Jeurissen. Fixel-based analysis of Alzheimer’s disease using multi-tissue constrained spherical deconvolution of multi-shell diffusion MRI. In International Society of Magnetic Resonance in Medicine, Honolulu, HI, USA, 2017.spa
dc.relation.referencesDiana L. Giraldo, Juan D. Garc ́ıa-Arteaga, Sim ́on C ́ardenas-Robledo, and Eduardo Romero. Characterization of brain anatomical patterns by comparing region inten- sity distributions: Applications to the description of Alzheimer’s disease. Brain and Behavior, 8(4):e00942, 2018.spa
dc.relation.referencesDiana L. Giraldo, Jan Sijbers, and Eduardo Romero. Quantifying cognition and behav- ior in normal aging, mild cognitive impairment, and Alzheimer’s disease. In 13th Inter- national Conference on Medical Information Processing and Analysis, volume 10572, pages 125 – 134, 2017.spa
dc.relation.referencesDiana L. Giraldo, Jan Sijbers, Eduardo Romero, and for the Alzheimer’s Disease Neuroimaging Initiative. Quantification of cognitive impairment to characterize het- erogeneity of patients at risk of developing Alzheimer’s disease dementia. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1):e12237, 2021.spa
dc.relation.referencesBrian T. Gold, Nathan F. Johnson, David K. Powell, and Charles D. Smith. White matter integrity and vulnerability to Alzheimer’s disease: Preliminary findings and future directions. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822(3):416 – 422, 2012. Imaging Brain Aging and Neurodegenerative Disease.spa
dc.relation.referencesTeresa Gomez-Isla and Matthew P. Frosch. The challenge of defining Alzheimer disease based on biomarkers in the absence of symptoms. JAMA Neurology, 76(10):1143–1144, 10 2019.spa
dc.relation.referencesH. Goodglass and E. Kaplan. The Assessment of Aphasia and Related Disorders. Number v. 2 in The Assessment of Aphasia and Related Disorders. Lea & Febiger, 1983.spa
dc.relation.referencesJoseph H. Grochowalski, Ying Liu, and Karen L. Siedlecki. Examining the reliability of ADAS-Cog change scores. Aging, Neuropsychology, and Cognition, 23(5):513–529, 2016. PMID: 26708116.spa
dc.relation.referencesMurray Grossman, Corey McMillan, Peachie Moore, Lijun Ding, Guila Glosser, Melissa Work, and James Gee. What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain, 127(3):628–649, 2004.spa
dc.relation.referencesRobert M. Haralick, K. Shanmugam, and Its'Hak Dinstein. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6):610– 621, November 1973.spa
dc.relation.referencesJohn A. Hardy and Gerald A. Higgins. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256(5054):184–185, 1992.spa
dc.relation.referencesRolf A. Heckemann, Shiva Keihaninejad, Paul Aljabar, Katherine R. Gray, Casper Nielsen, Daniel Rueckert, Joseph V. Hajnal, and Alexander Hammers. Automatic morphometry in Alzheimer’s disease and mild cognitive impairment. NeuroImage, 56(4):2024 – 2037, 2011.spa
dc.relation.referencesJudith Henf, Michel J. Grothe, Katharina Brueggen, Stefan Teipel, and Martin Dyrba. Mean diffusivity in cortical gray matter in Alzheimer’s disease: The importance of partial volume correction. NeuroImage: Clinical, 17(Supplement C):579 – 586, 2018.spa
dc.relation.referencesKarl Herrup. The case for rejecting the amyloid cascade hypothesis. Nature Neuro- science, 18(6):794–799, May 2015.spa
dc.relation.referencesBradley T. Hyman, Creighton H. Phelps, Thomas G. Beach, Eileen H. Bigio, Nigel J. Cairns, Maria C. Carrillo, Dennis W. Dickson, Charles Duyckaerts, Matthew P. Frosch, Eliezer Masliah, Suzanne S. Mirra, Peter T. Nelson, Julie A. Schneider, Dietmar Rudolf Thal, Bill Thies, John Q. Trojanowski, Harry V. Vinters, and Thomas J. Montine. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s & Dementia, 8(1):1 – 13, 2012.spa
dc.relation.referencesJeremy D Isaacs and Marianne Boenink. Biomarkers for dementia: too soon for routine clinical use. The Lancet Neurology, 19(11):884–885, November 2020.spa
dc.relation.referencesC. R. Jack, R. C. Petersen, P. C. O’Brien, and E. G. Tangalos. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology, 42(1):183–183, 1992.spa
dc.relation.referencesClifford R. Jack, David A. Bennett, Kaj Blennow, Maria C. Carrillo, Billy Dunn, Samantha Budd Haeberlein, David M. Holtzman, William Jagust, Frank Jessen, Ja- son Karlawish, Enchi Liu, Jose Luis Molinuevo, Thomas Montine, Creighton Phelps, Katherine P. Rankin, Christopher C. Rowe, Philip Scheltens, Eric Siemers, Heather M. Snyder, Reisa Sperling, Cerise Elliott, Eliezer Masliah, Laurie Ryan, and Nina Sil- verberg. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4):535–562, apr 2018.spa
dc.relation.referencesClifford R Jack, David S Knopman, William J Jagust, Ronald C Petersen, Michael W Weiner, Paul S Aisen, Leslie M Shaw, Prashanthi Vemuri, Heather J Wiste, Stephen D Weigand, Timothy G Lesnick, Vernon S Pankratz, Michael C Donohue, and John Q Trojanowski. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2):207–216, feb 2013.spa
dc.relation.referencesJens H. Jensen, Joseph A. Helpern, Anita Ramani, Hanzhang Lu, and Kyle Kaczynski. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic Resonance in Medicine, 53(6):1432– 1440, 2005.spa
dc.relation.referencesBen Jeurissen, Alexander Leemans, Jacques-Donald Tournier, Derek K. Jones, and Jan Sijbers. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Human Brain Mapping, 34(11):2747–2766, 2013.spa
dc.relation.referencesDavid T. Jones, David S. Knopman, Jeffrey L. Gunter, Jonathan Graff-Radford, Prashanthi Vemuri, Bradley F. Boeve, Ronald C. Petersen, Michael W. Weiner, Clif- ford R. Jr. Jack, and on behalf of the Alzheimer’s Disease Neuroimaging Initiative. Cascading network failure across the Alzheimer’s disease spectrum. Brain, 139(2):547– 562, 11 2015.spa
dc.relation.referencesK. Kantarci, R. C. Petersen, B. F. Boeve, D. S. Knopman, S. D. Weigand, P. C. O’Brien, M. M. Shiung, G. E. Smith, R. J. Ivnik, and E. G. et al. Tangalos. Dwi predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology, 64(5):902–904, 2005.spa
dc.relation.referencesKasper Planeta Kepp. Ten challenges of the amyloid hypothesis of Alzheimer’s disease. Journal of Alzheimer’s Disease, 55(2):447–457, November 2016.spa
dc.relation.referencesStefan Kl ̈oppel, Cynthia M. Stonnington, Carlton Chu, Bogdan Draganski, Rachael I. Scahill, Jonathan D. Rohrer, Nick C. Fox, Clifford R. Jack, John Ashburner, and Richard S. J. Frackowiak. Automatic classification of MR scans in Alzheimer’s disease. Brain, 131(3):681–689, 2008.spa
dc.relation.referencesJacqueline K. Kueper, Mark Speechley, and Manuel Montero-Odasso. The Alzheimer’s disease assessment scale–cognitive subscale (ADAS-Cog): Modifications and respon- siveness in pre-dementia populations. A narrative review. Journal of Alzheimer’s Dis- ease, 63(2):423–444, April 2018.spa
dc.relation.referencesFlorian Kurth, Christian Gaser, and Eileen Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM). Nature Protocols, 10(2):293–304, January 2015.spa
dc.relation.referencesDenis Le Bihan. Apparent diffusion coefficient and beyond: What diffusion mr imaging can tell us about tissue structure. Radiology, 268(2):318–322, 2013. PMID: 23882093.spa
dc.relation.referencesS.-H. Lee, J.-P. Coutu, P. Wilkens, A. Yendiki, H.D. Rosas, and D.H. Salat. Tract- based analysis of white matter degeneration in Alzheimer’s disease. Neuroscience, 301:79 – 89, 2015.spa
dc.relation.referencesFangda Leng and Paul Edison. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews Neurology, 17(3):157– 172, December 2020.spa
dc.relation.referencesJason P. Lerch, Jens Pruessner, Alex P. Zijdenbos, D. Louis Collins, Stefan J. Teipel, Harald Hampel, and Alan C. Evans. Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiology of Aging, 29(1):23 – 30, 2008.spa
dc.relation.referencesSung-Han Lin, Wen-Chuin Hsu, Shu-Hang Ng, Jur-Shan Cheng, Oleksandr Khegai, Chin-Chang Huang, Yao-Liang Chen, Yi-Chun Chen, and Jiun-Jie Wang. Increased water diffusion in the parcellated cortical regions from the patients with amnestic mild cognitive impairment and alzheimer’s disease. Frontiers in Aging Neuroscience, 8:325, 2017.spa
dc.relation.referencesManhua Liu, Fan Li, Hao Yan, Kundong Wang, Yixin Ma, Li Shen, and Mingqing Xu. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in alzheimer’s disease. NeuroImage, 208:116459, 2020.spa
dc.relation.referencesBenoˆıt Magnin, Lilia Mesrob, Serge Kinkingn ́ehun, M ́elanie P ́el ́egrini-Issac, Olivier Colliot, Marie Sarazin, Bruno Dubois, St ́ephane Leh ́ericy, and Habib Benali. Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology, 51, 02 2009.spa
dc.relation.referencesRazvan V. Marinescu, Neil P. Oxtoby, Alexandra L. Young, Esther E. Bron, Arthur W. Toga, Michael W. Weiner, Frederik Barkhof, Nick C. Fox, Arman Eshaghi, Tina Toni, Marcin Salaterski, Veronika Lunina, Manon Ansart, Stanley Durrleman, Pascal Lu, Samuel Iddi, Dan Li, Wesley K. Thompson, Michael C. Donohue, Aviv Nahon, Yarden Levy, Dan Halbersberg, Mariya Cohen, Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose G. Tamez-Pena, Aya Ismail, Timothy Wood, Hector Corrada Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. T. Thomas Yeo, Gang Chen, Ke Qi, Shiyang Chen, Deqiang Qiu, Ionut Buciuman, Alex Kelner, Raluca Pop, Denisa Rimocea, Mostafa M. Ghazi, Mads Nielsen, Sebastien Ourselin, Lauge Sorensen, Vikram Venka- traghavan, Keli Liu, Christina Rabe, Paul Manser, Steven M. Hill, James Howlett, Zhiyue Huang, Steven Kiddle, Sach Mukherjee, Anais Rouanet, Bernd Taschler, Brian D. M. Tom, Simon R. White, Noel Faux, Suman Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, Karol Estrada, Leon Aksman, Andre Altmann, Cynthia M. Ston- nington, Yalin Wang, Jianfeng Wu, Vivek Devadas, Clementine Fourrier, Lars Lau Raket, Aristeidis Sotiras, Guray Erus, Jimit Doshi, Christos Davatzikos, Jacob Vogel, Andrew Doyle, Angela Tam, Alex Diaz-Papkovich, Emmanuel Jammeh, Igor Koval, Paul Moore, Terry J. Lyons, John Gallacher, Jussi Tohka, Robert Ciszek, Bruno Jedy- nak, Kruti Pandya, Murat Bilgel, William Engels, Joseph Cole, Polina Golland, Stefan Klein, and Daniel C. Alexander. The Alzheimer’s disease prediction of longitudinal evolution (TADPOLE) challenge: Results after 1 year follow-up, 2020.spa
dc.relation.referencesChantel D. Mayo, Erin L. Mazerolle, Lesley Ritchie, John D. Fisk, and Jodie R. Gawry- luk. Longitudinal changes in microstructural white matter metrics in Alzheimer’s dis- ease. NeuroImage: Clinical, 13(Supplement C):330 – 338, 2017.spa
dc.relation.referencesLinda K. McEvoy, Christine Fennema-Notestine, J. Cooper Roddey, Jr Donald J. Ha- gler, Dominic Holland, David S. Karow, Christopher J. Pung, James B. Brewer, and Anders M. Dale. Alzheimer disease: Quantitative structural neuroimaging for detec- tion and prediction of clinical and structural changes in mild cognitive impairment. Radiology, 251(1):195–205, 2009. PMID: 19201945.spa
dc.relation.referencesGuy McKhann, David Drachman, Marshall Folstein, Robert Katzman, Donald Price, and Emanuel M. Stadlan. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group* under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology, 34(7):939, 1984.spa
dc.relation.referencesDev Mehta, Robert Jackson, Gaurav Paul, Jiong Shi, and Marwan Sabbagh. Why do trials for Alzheimer’s disease drugs keep failing? a discontinued drug perspective for 2010-2015. Expert Opinion on Investigational Drugs, 26(6):735–739, 2017. PMID: 28460541.spa
dc.relation.referencesChandan Misra, Yong Fan, and Christos Davatzikos. Baseline and longitudinal pat- terns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI. NeuroImage, 44(4):1415 – 1422, 2009.spa
dc.relation.referencesRemika Mito, David Raffelt, Thijs Dhollander, David N Vaughan, J-Donald Tournier, Olivier Salvado, Amy Brodtmann, Christopher C Rowe, Victor L Villemagne, and Alan Connelly. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain, 141(3):888–902, 2018.spa
dc.relation.referencesElaheh Moradi, Antonietta Pepe, Christian Gaser, Heikki Huttunen, and Jussi Tohka. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage, 104:398 – 412, 2015.spa
dc.relation.referencesJ. C. Morris. The clinical dementia rating (CDR): Current version and scoring rules. Neurology, 43, 11 1993.spa
dc.relation.referencesJ. C. Morris, A. Heyman, R. C. Mohs, J. P. Hughes, G. van Belle, G. Fillenbaum, E. D. Mellits, and C. Clark. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assesment of Alzheimer’s disease. Neurology, 39, 09 1989.spa
dc.relation.referencesMelissa E Murray, Neill R Graff-Radford, Owen A Ross, Ronald C Petersen, Ranjan Duara, and Dennis W Dickson. Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical charspa
dc.relation.referencesZiad S. Nasreddine, Natalie A. Phillips, Val ́erie B ́edirian, Simon Charbonneau, Victor Whitehead, Isabelle Collin, Jeffrey L. Cummings, and Howard Chertkow. The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4):695–699, 2005.spa
dc.relation.referencesJasmine Nettiksimmons, Charles DeCarli, Susan Landau, and Laurel Beckett. Bio- logical heterogeneity in ADNI amnestic mild cognitive impairment. Alzheimer’s & Dementia, 10(5):511 – 521.e1, 2014.spa
dc.relation.referencesEmma Nichols, Cassandra E I Szoeke, Stein Emil Vollset, Nooshin Abbasi, Foad Abd-Allah, Jemal Abdela, Miloud Taki Eddine Aichour, Rufus O Akinyemi, Fares Alahdab, Solomon W Asgedom, Ashish Awasthi, Suzanne L Barker-Collo, Bern- hard T Baune, Yannick B ́ejot, Abate B Belachew, Derrick A. Bennett, Belete Bi- adgo, Ali Bijani, Muhammad Shahdaat Bin Sayeed, Carol Brayne, David O Carpen- ter, F ́elix Carvalho, Ferr ́an Catal ́a-L ́opez, Ester Cerin, Jee-Young J Choi, Anh Kim Dang, Meaza G Degefa, Shirin Djalalinia, Manisha Dubey, Eyasu Ejeta Duken, David Edvardsson, Matthias Endres, Sharareh Eskandarieh, Andre Faro, Farshad Farzad- far, Seyed-Mohammad Fereshtehnejad, Eduarda Fernandes, Irina Filip, Florian Fis- cher, Abadi K Gebre, Demeke Geremew, Maryam Ghasemi-Kasman, Elena V. Gne- dovskaya, Rajeev Gupta, Vladimir Hachinski, Tekleberhan B Hagos, Samer Hamidi, Graeme J. Hankey, Josep M Haro, Simon I Hay, Seyed Sina N Irvani, Ravi P Jha, Jost B. Jonas, Rizwan Kalani, Andr ́e Karch, Amir Kasaeian, Yousef Saleh Khader, Ibrahim A Khalil, Ejaz Ahmad Khan, Tripti Khanna, Tawfik A M Khoja, Jagdish Khubchandani, Adnan Kisa, Katarzyna Kissimova-Skarbek, Mika Kivim ̈aki, Ai Koy- anagi, Kristopher J Krohn, Giancarlo Logroscino, Stefan Lorkowski, Marek Majdan, Reza Malekzadeh, Winfried M ̈arz, Jo ̃ao Massano, Getnet Mengistu, Atte Meretoja, Moslem Mohammadi, Maryam Mohammadi-Khanaposhtani, Ali H Mokdad, Stefa- nia Mondello, Ghobad Moradi, Gabriele Nagel, Mohsen Naghavi, Gurudatta Naik, Long H Nguyen, Trang H Nguyen, Yirga L Nirayo, Molly R Nixon, Richard Ofori- Asenso, Felix A Ogbo, Andrew T Olagunju, Mayowa O Owolabi, Songhomitra Panda- Jonas, Val ́eria M de Azeredo Passos, David M. Pereira, Gabriel D Pinilla-Monsalve, Michael A Piradov, Constance D Pond, Hossein Poustchi, Mostafa Qorbani, Amir Radfar, Robert C Reiner, Stephen R Robinson, Gholamreza Roshandel, Ali Rostami, Tom C Russ, Perminder S Sachdev, Hosein Safari, Saeid Safiri, Ramesh Sahathevan, Yahya Salimi, Maheswar Satpathy, Monika Sawhney, Mete Saylan, Sadaf G. Sepanlou, Azadeh Shafieesabet, Masood A Shaikh, Mohammad Ali Sahraian, Mika Shigematsu, Rahman Shiri, Ivy Shiue, Jo ̃ao P Silva, Mari Smith, Soheila Sobhani, Dan J Stein, Rafael Tabar ́es-Seisdedos, Marcos R Tovani-Palone, Bach X Tran, Tung Thanh Tran, Amanuel T Tsegay, Irfan Ullah, Narayanaswamy Venketasubramanian, Vasily Vlassov, Yuan-Pang Wang, Jordan Weiss, Ronny Westerman, Tissa Wijeratne, Grant M.A. Wyper, Yuichiro Yano, Ebrahim M Yimer, Naohiro Yonemoto, Mahmoud Yousefifard, Zoubida Zaidi, Zohreh Zare, Theo Vos, Valery L. Feigin, and Christopher J L Mur- ray. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurology, 18(1):88–106, January 2019.spa
dc.relation.referencesOfer Pasternak, Nir Sochen, Yaniv Gur, Nathan Intrator, and Yaniv Assaf. Free water elimination and mapping from diffusion MRI. Magnetic Resonance in Medicine, 62(3):717–730, 2009.spa
dc.relation.referencesR. C. Petersen. Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3):183–194, 2004.spa
dc.relation.referencesRonald C. Petersen. Mild cognitive impairment. New England Journal of Medicine, 364(23):2227–2234, 2011. PMID: 21651394.spa
dc.relation.referencesR. I. Pfeffer, T. T. Kurosaki, C. H. Harrah, J. M. Chance, and S. Filos. Measurement of functional activities in older adults in the community. Journal of Gerontology, 37, 05 1982.spa
dc.relation.referencesClaudia Plant, Stefan J. Teipel, Annahita Oswald, Christian B ̈ohm, Thomas Meindl, Janaina Mourao-Miranda, Arun W. Bokde, Harald Hampel, and Michael Ewers. Au- tomated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage, 50(1):162 – 174, 2010.spa
dc.relation.referencesMartin James Prince, Anders Wimo, Maelenn Mari Guerchet, Gemma Claire Ali, Yu- Tzu Wu, and Matthew Prina. World Alzheimer Report 2015 - The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International, August 2015.spa
dc.relation.referencesOlivier Querbes, Florent Aubry, J ́er ́emie Pariente, Jean-Albert Lotterie, Jean-Fran ̧cois D ́emonet, V ́eronique Duret, Mich`ele Puel, Isabelle Berry, Jean-Claude Fort, and Pierre Celsis. Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cog- nitive reserve. Brain, 132(8):2036, 2009.spa
dc.relation.referencesSaima Rathore, Mohamad Habes, Muhammad Aksam Iftikhar, Amanda Shacklett, and Christos Davatzikos. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage, pages –, 2017.spa
dc.relation.referencesR.M. Reitan and D. Wolfson. The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. Halstead-Reitan neuropsychological test battery for adults. Neuropsychology Press, 1985.spa
dc.relation.referencesShannon L. Risacher, Wesley H. Anderson, Arnaud Charil, Peter F. Castelluccio, Sergey Shcherbinin, Andrew J. Saykin, and Adam J. Schwarz and. Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline. Neurology, 89(21):2176–2186, oct 2017.spa
dc.relation.referencesWG Rosen, RC. Mohs, and KL. Davis. A new rating scale for Alzheimer’s disease. American Journal of Psychiatry, 141(11):1356–1364, 1984. PMID: 6496779.spa
dc.relation.referencesAndrea Rueda, Fabio Gonzalez, and Eduardo Romero. Extracting salient brain pat- terns for imaging-based classification of neurodegenerative diseases. IEEE Transactions on Medical Imaging, 33(6):1262–1274, 2014.spa
dc.relation.referencesMarwan N. Sabbagh, Suzanne Hendrix, and John E. Harrison. FDA position statement “Early Alzheimer’s disease: Developing drugs for treatment, guidance for industry”. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5:13 – 19, 2019.spa
dc.relation.referencesDavid H. Salat, Douglas N. Greve, Jennifer L. Pacheco, Brian T. Quinn, Karl G. Helmer, Randy L. Buckner, and Bruce Fischl. Regional white matter volume differences in nondemented aging and Alzheimer’s disease. NeuroImage, 44(4):1247–1258, 2009.spa
dc.relation.referencesJorge Samper-Gonz ́alez, Ninon Burgos, Simona Bottani, Sabrina Fontanella, Pascal Lu, Arnaud Marcoux, Alexandre Routier, J ́er ́emy Guillon, Michael Bacci, Junhao Wen, Anne Bertrand, Hugo Bertin, Marie-Odile Habert, Stanley Durrleman, Theodoros Evgeniou, and Olivier Colliot. Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI and PET data. NeuroImage, 183:504 – 521, 2018.spa
dc.relation.referencesP Scheltens, F Barkhof, J Valk, PR Algra, RG van der Hoop, J Nauta, and EC Wolters. White matter lesions on magnetic resonance imaging in clinically di- agnosed Alzheimer’s disease. evidence for heterogeneity. Brain, 115(3):735–748, 1992.spa
dc.relation.referencesP Scheltens, D Leys, F Barkhof, D Huglo, H C Weinstein, P Vermersch, M Kuiper, M Steinling, E C Wolters, and J Valk. Atrophy of medial temporal lobes on MRI in ”probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsycho- logical correlates. Journal of Neurology, Neurosurgery & Psychiatry, 55(10):967–972, 1992.spa
dc.relation.referencesPhilip Scheltens, Kaj Blennow, Monique M B Breteler, Bart de Strooper, Giovanni B Frisoni, Stephen Salloway, and Wiesje Maria Van der Flier. Alzheimer’s disease. The Lancet, pages –, 2016.spa
dc.relation.referencesMaartje H. N. Schermer and Edo Richard. On the reconceptualization of Alzheimer’s disease. Bioethics, 33(1):138–145, 2019.spa
dc.relation.referencesDaniel Schmitter, Alexis Roche, B ́en ́edicte Mar ́echal, Delphine Ribes, Ahmed Abdulka- dir, Meritxell Bach-Cuadra, Alessandro Daducci, Cristina Granziera, Stefan Kl ̈oppel, Philippe Maeder, Reto Meuli, and Gunnar Krueger. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. NeuroImage: Clinical, 7:7 – 17, 2015.spa
dc.relation.referencesNorbert Schuff, Duygu Tosun, Philip S. Insel, Gloria C. Chiang, Diana Truran, Paul S. Aisen, Clifford R. Jack, and Michael W. Weiner. Nonlinear time course of brain volume loss in cognitively normal and impaired elders. Neurobiology of Aging, 33(5):845–855, May 2012.spa
dc.relation.referencesClaire E. Sexton, Ukwuori G. Kalu, Nicola Filippini, Clare E. Mackay, and Klaus P. Ebmeier. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 32(12):2322.e5 – 2322.e18, 2011.spa
dc.relation.referencesHiral Shah, Emiliano Albanese, Cynthia Duggan, Igor Rudan, Kenneth M Langa, Maria C Carrillo, Kit Yee Chan, Yves Joanette, Martin Prince, Martin Rossor, Shekhar Saxena, Heather M Snyder, Reisa Sperling, Mathew Varghese, Huali Wang, Marc Wortmann, and Tarun Dua. Research priorities to reduce the global burden of dementia by 2025. The Lancet Neurology, 15(12):1285 – 1294, 2016.spa
dc.relation.referencesHanne Struyfs, Diana Maria Sima, Melissa Wittens, Annemie Ribbens, Nuno Pedrosa de Barros, Thanh Vˆan Phan, Maria Ines Ferraz Meyer, Lene Claes, Ellis Niemantsver- driet, Sebastiaan Engelborghs, Wim Van Hecke, and Dirk Smeets. Automated MRI volumetry as a diagnostic tool for Alzheimer’s disease: Validation of icobrain dm. NeuroImage: Clinical, 26:102243, 2020.spa
dc.relation.referencesHanne Struyfs, Wim Van Hecke, Jelle Veraart, Jan Sijbers, Sylvie Slaets, Maya De Belder, Laura Wuyts, Benjamin Peters, Kristel Sleegers, and Caroline et al. Rob- berecht. Diffusion kurtosis imaging: A possible MRI biomarker for AD diagnosis? Journal of Alzheimer’s Disease, 48(4):937–948, 2015.spa
dc.relation.referencesL. Sørensen, A. Pai, C. Anker, I. Balas, M. Lillholm, C. Igel, and M. Nielsen. Dementia diagnosis using MRI cortical thickness, shape, texture, and volumetry. Proc MICCAI Workshop Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data, pages 111–118, 01 2014.spa
dc.relation.referencesLauge Sørensen, Christian Igel, Naja Liv Hansen, Merete Osler, Martin Lauritzen, Egill Rostrup, Mads Nielsen, for the Alzheimer’s Disease Neuroimaging Initiative, the Australian Imaging Biomarkers, and Lifestyle Flagship Study of Ageing. Early detec- tion of Alzheimer’s disease using MRI hippocampal texture. Human Brain Mapping, 37(3):1148–1161, 2016.spa
dc.relation.referencesAlexander N.W. Taylor, Lana Kambeitz-Ilankovic, Benno Gesierich, Lee Simon- ́ Araque Caballero, Sophia M ̈ Vermot, Nicolai Franzmeier, Miguel A. uller, Liu Hes- heng, Birgit Ertl-Wagner, Katharina B ̈ urger, Michael W. Weiner, Martin Dichgans, Marco Duering, Michael Ewers, and Alzheimer’s Disease Neuroimaging Initiative (ADNI). Tract-specific white matter hyperintensities disrupt neural network function in Alzheimer’s disease. Alzheimer’s & Dementia, 13(3):225–235, 2017.spa
dc.relation.referencesStefan Teipel, Alexander Drzezga, Michel J Grothe, Henryk Barthel, Ga ̈el Ch ́etelat, Norbert Schuff, Pawel Skudlarski, Enrica Cavedo, Giovanni B Frisoni, Wolfgang Hoff- mann, Jochen Ren ́e Thyrian, Chris Fox, Satoshi Minoshima, Osama Sabri, and An- dreas Fellgiebel. Multimodal imaging in Alzheimer's disease: validity and usefulness for early detection. The Lancet Neurology, 14(10):1037–1053, October 2015.spa
dc.relation.referencesStefan J. Teipel, Michel J. Grothe, Massimo Filippi, Andreas Fellgiebel, Martin Dyrba, Giovanni B. Frisoni, Thomas Meindl, Arun L.W. Bokde, Harald Hampel, and Stefan Kloppel. Fractional anisotropy changes in Alzheimer’s disease depend on the under- lying fiber tract architecture: A multiparametric DTI study using joint independent component analysis. Journal of Alzheimer’s Disease, 41(1):69–83, 2014.spa
dc.relation.referencesMara ten Kate, Ellen Dicks, Pieter Jelle Visser, Wiesje M van der Flier, Charlotte E Teunissen, Frederik Barkhof, Philip Scheltens, Betty M Tijms, and Alzheimer’s Dis- ease Neuroimaging Initiative. Atrophy subtypes in prodromal Alzheimer’s disease are associated with cognitive decline. Brain, 141(12):3443–3456, 10 2018.spa
dc.relation.referencesPaul M. Thompson, Kiralee M. Hayashi, Greig de Zubicaray, Andrew L. Janke, Stephen E. Rose, James Semple, David Herman, Michael S. Hong, Stephanie S. Dittmer, David M. Doddrell, and Arthur W. Toga. Dynamics of gray matter loss in Alzheimer’s disease. The Journal of Neuroscience, 23(3):994–1005, 2003.spa
dc.relation.referencesBetty M Tijms and Pieter Jelle Visser. Capturing the Alzheimer’s disease pathological cascade. The Lancet Neurology, 17(3):199–200, mar 2018.spa
dc.relation.referencesMatthew Toews, William Wells III, D. Louis Collins, and Tal Arbel. Feature-based morphometry: Discovering group-related anatomical patterns. NeuroImage, 49(3):2318 – 2327, 2010.spa
dc.relation.referencesManuela Tondelli, Gordon K. Wilcock, Paolo Nichelli, Celeste A. De Jager, Mark Jenkinson, and Giovanna Zamboni. Structural MRI changes detectable up to ten years before clinical Alzheimer’s disease. Neurobiology of Aging, 33(4):825.e25 – 825.e36, 2012.spa
dc.relation.referencesJ-Donald Tournier. Diffusion mri in the brain – theory and concepts. Progress in Nuclear Magnetic Resonance Spectroscopy, 112-113:1 – 16, 2019.spa
dc.relation.referencesJ-Donald Tournier, Fernando Calamante, and Alan Connelly. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super- resolved spherical deconvolution. NeuroImage, 35(4):1459 – 1472, 2007.spa
dc.relation.referencesJ.-Donald Tournier, Fernando Calamante, David G. Gadian, and Alan Connelly. Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution. NeuroImage, 23(3):1176–1185, 2004.spa
dc.relation.referencesDallas P. Veitch, Michael W. Weiner, Paul S. Aisen, Laurel A. Beckett, Nigel J. Cairns, Robert C. Green, Danielle Harvey, Clifford R. Jack, William Jagust, John C. Morris, Ronald C. Petersen, Andrew J. Saykin, Leslie M. Shaw, Arthur W. Toga, and John Q. Trojanowski. Understanding disease progression and improving Alzheimer’s disease clinical trials: Recent highlights from the Alzheimer’s disease neuroimaging initiative. Alzheimer’s & Dementia, 15(1):106 – 152, 2019.spa
dc.relation.referencesPrashanthi Vemuri, Jeffrey L. Gunter, Matthew L. Senjem, Jennifer L. Whitwell, Kejal Kantarci, David S. Knopman, Bradley F. Boeve, Ronald C. Petersen, and Clifford R. Jack Jr. Alzheimer’s disease diagnosis in individual subjects using structural MR images: Validation studies. NeuroImage, 39(3):1186 – 1197, 2008.spa
dc.relation.referencesChristian Wachinger, David H. Salat, Michael Weiner, Martin Reuter, and for the Alzheimer’s Disease Neuroimaging Initiative. Whole-brain analysis reveals increased neuroanatomical asymmetries in dementia for hippocampus and amygdala. Brain, 139(12):3253–3266, 10 2016.spa
dc.relation.referencesD. Wechsler. Wechsler Memory Scale-Revised: Manual. Harcourt Brace Jovanovich, 1987.spa
dc.relation.referencesMichael W. Weiner, Dallas P. Veitch, Paul S. Aisen, Laurel A. Beckett, Nigel J. Cairns, Robert C. Green, Danielle Harvey, Clifford R. Jack, William Jagust, John C. Morris, Ronald C. Petersen, Andrew J. Saykin, Leslie M. Shaw, Arthur W. Toga, and John Q. Trojanowski. Recent publications from the Alzheimer’s Disease Neuroimaging Initia- tive: Reviewing progress toward improved AD clinical trials. Alzheimer’s & Dementia, 13(4):e1 – e85, 2017.spa
dc.relation.referencesSandra Weintraub, Alissa H. Wicklund, and David P. Salmon. The neuropsychological profile of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(4), 2012.spa
dc.relation.referencesPhilip S.J. Weston, Ivor J.A. Simpson, Natalie S. Ryan, Sebastien Ourselin, and Nick C. Fox. Diffusion imaging changes in grey matter in Alzheimer’s disease: a po- tential marker of early neurodegeneration. Alzheimer’s Research & Therapy, 7(1):1–8, 2015.spa
dc.relation.referencesJennifer L Whitwell, Dennis W Dickson, Melissa E Murray, Stephen D Weigand, Nirubol Tosakulwong, Matthew L Senjem, David S Knopman, Bradley F Boeve, Joseph E Parisi, and Ronald C et al. Petersen. Neuroimaging correlates of patho- logically defined subtypes of Alzheimer’s disease: a case-control study. The Lancet Neurology, 11(10):868–877, 2012.spa
dc.relation.referencesJing Zhang, Chunshui Yu, Guilian Jiang, Weifang Liu, and Longzheng Tong. 3D texture analysis on MRI images of Alzheimer’s disease. Brain Imaging and Behavior, 6(1):61–69, 2011.spa
dc.relation.referencesLin Zhuang, Perminder S. Sachdev, Julian N. Trollor, Simone Reppermund, Nicole A. Kochan, Henry Brodaty, and Wei Wen. Microstructural white matter changes, not hippocampal atrophy, detect early amnestic mild cognitive impairment. PLOS ONE, 8(3):1–10, 03 2013.spa
dc.relation.referencesChen Zu, Biao Jie, Mingxia Liu, Songcan Chen, Dinggang Shen, and Daoqiang Zhang. Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment. Brain Imaging and Behavior, pages 1–12, 2015.spa
dc.relation.referencesM. S. Bartlett. The statistical conception of mental factors. British Journal of Psychol- ogy. General Section, 28(1):97–104, jul 1937.spa
dc.relation.referencesMark W. Bondi, Emily C. Edmonds, Amy J. Jak, Lindsay R. Clark, Lisa Delano-Wood, Carrie R. McDonald, Daniel A. Nation, David J. Libon, Rhoda Au, Douglas Galasko, and David P. Salmon. Neuropsychological criteria for mild cognitive impairment im- proves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer’s Disease, 42(1):275–289, 2014.spa
dc.relation.referencesLeo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.spa
dc.relation.referencesMalika Charrad, Nadia Ghazzali, V ́eronique Boiteau, and Azam Niknafs. NbClust: An R package for determining the relevant number of clusters in a data set. Journal of Statistical Software, Articles, 61(6):1–36, 2014.spa
dc.relation.referencesPaul K. Crane, Adam Carle, Laura E. Gibbons, Philip Insel, R. Scott Mackin, Alden Gross, Richard N. Jones, Shubhabrata Mukherjee, S. McKay Curtis, Danielle Harvey, Michael Weiner, Dan Mungas, and for the Alzheimer’s Disease Neuroimaging Initiative. Development and assessment of a composite score for memory in the Alzheimer’s disease neuroimaging initiative (ADNI). Brain Imaging and Behavior, 6(4):502–516, Dec 2012.spa
dc.relation.referencesRobert Cudeck. Exploratory factor analysis. In Howard E.A. Tinsley and Steven D. Brown, editors, Handbook of Applied Multivariate Statistics and Mathematical Modeling, pages 265 – 296. Academic Press, San Diego, 2000.spa
dc.relation.referencesR ́emi Cuingnet, Emilie Gerardin, J ́erˆome Tessieras, Guillaume Auzias, St ́ephane Leh ́ericy, Marie-Odile Habert, Marie Chupin, Habib Benali, and Olivier Colliot. Auto- matic classification of patients with Alzheimer’s disease from structural MRI: A com- parison of ten methods using the adni database. NeuroImage, 56(2):766 – 781, 2011. Multivariate Decoding and Brain Reading.spa
dc.relation.referencesEmily C. Edmonds, Lisa Delano-Wood, Lindsay R. Clark, Amy J. Jak, Daniel A. Nation, Carrie R. McDonald, David J. Libon, Rhoda Au, Douglas Galasko, David P. Salmon, and Mark W. Bondi. Susceptibility of the conventional criteria for mild cognitive im- pairment to false-positive diagnostic errors. Alzheimer’s & Dementia, 11(4):415 – 424, 2015.spa
dc.relation.referencesEmily C. Edmonds, Joel Eppig, Mark W. Bondi, Kelly M. Leyden, Bailey Goodwin, Lisa Delano-Wood, and Carrie R. McDonald. Heterogeneous cortical atrophy patterns in MCI not captured by conventional diagnostic criteria. Neurology, 87(20):2108–2116, 2016.spa
dc.relation.referencesEmily C. Edmonds, Carrie R. McDonald, Anisa Marshall, Kelsey R. Thomas, Joel Ep- pig, Alexandra J. Weigand, Lisa Delano-Wood, Douglas R. Galasko, David P. Salmon, and Mark W. Bondi. Early versus late MCI: Improved MCI staging using a neuropsy- chological approach. Alzheimer’s & Dementia, 15(5):699 – 708, 2019.spa
dc.relation.referencesJoel S. Eppig, Emily C. Edmonds, Laura Campbell, Mark Sanderson-Cimino, Lisa Delano-Wood, and Mark W. Bondi. Statistically derived subtypes and associations with cerebrospinal fluid and genetic biomarkers in mild cognitive impairment: A latent profile analysis. Journal of the International Neuropsychological Society, 23(7):564–576, 2017.spa
dc.relation.referencesYong Fan, Susan M. Resnick, Xiaoying Wu, and Christos Davatzikos. Structural and functional biomarkers of prodromal Alzheimer’s disease: A high-dimensional pattern classification study. NeuroImage, 41(2):277 – 285, 2008.spa
dc.relation.referencesYoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.spa
dc.relation.referencesLeticia Garcia-Alvarez, Jesus J. Gomar, Amber Sousa, Maria P. Garcia-Portilla, and Terry E. Goldberg. Breadth and depth of working memory and executive function compromises in mild cognitive impairment and their relationships to frontal lobe mor- phometry and functional competence. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 11:170–179, December 2019.spa
dc.relation.referencesTamar H. Gollan, Gali H. Weissberger, Elin Runnqvist, Rosa I. Montoya, and Cyn- thia M. Cera. Self-ratings of spoken language dominance: A multilingual naming test (MINT) and preliminary norms for young and aging spanish–english bilinguals. Bilin- gualism: Language and Cognition, 15(3):594–615, August 2011.spa
dc.relation.referencesH. Goodglass and E. Kaplan. The Assessment of Aphasia and Related Disorders. Num- ber v. 2 in The Assessment of Aphasia and Related Disorders. Lea & Febiger, 1983.spa
dc.relation.referencesDevendra Goyal, Donna Tjandra, Raymond Q. Migrino, Bruno Giordani, Zeeshan Syed, and Jenna Wiens. Characterizing heterogeneity in the progression of Alzheimer’s disease using longitudinal clinical and neuroimaging biomarkers. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 10:629 – 637, 2018.spa
dc.relation.referencesJames W. Grice. Computing and evaluating factor scores. Psychological Methods, 6, 2001.spa
dc.relation.referencesYifan Huang, Kaori Ito, Clare B. Billing, and Richard J. Anziano. Development of a straightforward and sensitive scale for MCI and early AD clinical trials. Alzheimer’s & Dementia, 11(4):404 – 414, 2015.spa
dc.relation.referencesMark Jenkinson, Peter Bannister, Michael Brady, and Stephen Smith. Improved opti- mization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2):825–841, 2002.spa
dc.relation.referencesMark Jenkinson, Christian F. Beckmann, Timothy E.J. Behrens, Mark W. Woolrich, and Stephen M. Smith. FSL. NeuroImage, 62(2):782–790, 2012. 20 YEARS OF fMRI.spa
dc.relation.referencesE. Kaplan, H. Goodglass, and S. Weintraub. The Boston Naming Test. Lea and Febiger, 1989.spa
dc.relation.referencesPeter J. Rousseeuw Leonard Kaufman. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley Series in Probability and Statistics. Wiley-Interscience, 1 edi- tion, 2005.spa
dc.relation.referencesDaniel A. Llano, Genevieve Laforet, and Viswanath Devanarayan. Derivation of a new ADAS-cog composite using tree-based multivariate analysis. Alzheimer Disease & Associated Disorders, 25(1):73–84, 2011.spa
dc.relation.referencesDavid A. Loewenstein, Raymond M.D. Ownby, Lynn Schram, Amarilis Acevedo, Mark Rubert, and Trinidad Argelles. An evaluation of the NINCDS-ADRDA neuropsycho- logical criteria for the assessment of Alzheimers disease: A confirmatory factor analysis of single versus multi-factor models. Journal of Clinical and Experimental Neuropsy- chology (Neuropsychology, Development and Cognition: Section A), 23(3):274–284, jun 2001.spa
dc.relation.referencesIan B. Malone, David Cash, Gerard R. Ridgway, David G. MacManus, Sebastien Ourselin, Nick C. Fox, and Jonathan M. Schott. Miriad—public release of a multi- ple time point Alzheimer’s MR imaging dataset. NeuroImage, 70:33–36, 2013.spa
dc.relation.referencesDaniel S. Marcus, Tracy H. Wang, Jamie Parker, John G. Csernansky, John C. Morris, and Randy L. Buckner. Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19(9):1498–1507, 09 2007.spa
dc.relation.referencesDev Mehta, Robert Jackson, Gaurav Paul, Jiong Shi, and Marwan Sabbagh. Why do trials for Alzheimer’s disease drugs keep failing? a discontinued drug perspective for 2010-2015. Expert Opinion on Investigational Drugs, 26(6):735–739, 2017. PMID: 28460541.spa
dc.relation.referencesJ. C. Morris, A. Heyman, R. C. Mohs, J. P. Hughes, G. van Belle, G. Fillenbaum, E. D. Mellits, and C. Clark. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assesment of Alzheimer’s disease. Neurology, 39, 09 1989.spa
dc.relation.referencesLovingly Quitania Park, Alden L. Gross, Donald G. McLaren, Judy Pa, Julene K. Johnson, Meghan Mitchell, and Jennifer J. Manly. Confirmatory factor analysis of the ADNI neuropsychological battery. Brain Imaging and Behavior, 6(4):528–539, 2012.spa
dc.relation.referencesTelma Pereira, Francisco L. Ferreira, Sandra Cardoso, Dina Silva, Alexandre de Men- don ̧ca, Manuela Guerreiro, Sara C. Madeira, and for the Alzheimer’s Disease Neu- roimaging Initiative. Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer’s disease: a feature selection ensemble combining stability and predictability. BMC Medical Informatics and Decision Making, 18(1):137, Dec 2018.spa
dc.relation.referencesTelma Pereira, Lu ́ıs Lemos, Sandra Cardoso, Dina Silva, Ana Rodrigues, Isabel San- tana, Alexandre de Mendon ̧ca, Manuela Guerreiro, and Sara C. Madeira. Predicting progression of mild cognitive impairment to dementia using neuropsychological data: a supervised learning approach using time windows. BMC Medical Informatics and Decision Making, 17(1):110, Jul 2017.spa
dc.relation.referencesessica Peter, Ahmed Abdulkadir, Christoph Kaller, Dorothee K ̈ ummerer, Michael H ̈ ull, Werner Vach, and Stefan Kl ̈oppel. Subgroups of Alzheimer’s disease: Stability of em- pirical clusters over time. Journal of Alzheimer’s Disease, 42(2):651 – 661, 2014.spa
dc.relation.referencesClaudia Plant, Stefan J. Teipel, Annahita Oswald, Christian B ̈ohm, Thomas Meindl, Janaina Mourao-Miranda, Arun W. Bokde, Harald Hampel, and Michael Ewers. Au- tomated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage, 50(1):162 – 174, 2010.spa
dc.relation.referencesNandini Raghavan, Mahesh N. Samtani, Michael Farnum, Eric Yang, Gerald No- vak, Michael Grundman, Vaibhav Narayan, Allitia DiBernardo, and Alzheimer’s Dis- ease Neuroimaging Initiative. The ADAS-Cog revisited: Novel composite scales based on ADAS-Cog to improve espa
dc.relation.referencesNandini Raghavan, Mahesh N. Samtani, Michael Farnum, Eric Yang, Gerald No- vak, Michael Grundman, Vaibhav Narayan, Allitia DiBernardo, and Alzheimer’s Dis- ease Neuroimaging Initiative. The ADAS-Cog revisited: Novel composite scales based on ADAS-Cog to improve efficiency in MCI and early AD trials. Alzheimer’s & Demen- tia, 9(1S):S21–S31, 2013.spa
dc.relation.referencesR.M. Reitan and D. Wolfson. The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. Halstead-Reitan neuropsychological test battery for adults. Neuropsychology Press, 1985.spa
dc.relation.referencesA. P. Reynolds, G. Richards, B. de la Iglesia, and V. J. Rayward-Smith. Clustering rules: A comparison of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):475–504, Dec 2006.spa
dc.relation.referencesYves Rosseel. lavaan: An R package for structural equation modeling. Journal of Statistical Software, Articles, 48(2):1–36, 2012.spa
dc.relation.referencesYossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.spa
dc.relation.referencesChris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. RUS- boost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40(1):185–197, 2010.spa
dc.relation.referencesCurtis Tatsuoka, Huiyun Tseng, Judith Jaeger, Ferenc Varadi, Mark A Smith, Tomoko Yamada, Kathleen A Smyth, and Alan J Lerner and. Modeling the heterogeneity in risk of progression to Alzheimer’s disease across cognitive profiles in mild cognitive impairment. Alzheimer’s Research & Therapy, 5(2):14, 2013.spa
dc.relation.referencesKelsey R. Thomas, Joel S. Eppig, Alexandra J. Weigand, Emily C. Edmonds, Christina G. Wong, Amy J. Jak, Lisa Delano-Wood, Douglas R. Galasko, David P. Salmon, Steven D. Edland, and Mark W. Bondi. Artificially low mild cognitive im- pairment to normal reversion rate in the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s & Dementia, 15(4):561 – 569, 2019.spa
dc.relation.referencesEric Westman, Andrew Simmons, Yi Zhang, J-Sebastian Muehlboeck, Catherine Tun- nard, Yawu Liu, Louis Collins, Alan Evans, Patrizia Mecocci, Bruno Vellas, Magda Tsolaki, Iwona Kloszewska, Hilkka Soininen, Simon Lovestone, Christian Spenger, and Lars-Olof Wahlund. Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. NeuroImage, 54(2):1178 – 1187, 2011.spa
dc.relation.referencesRobin Wolz, Valtteri Julkunen, Juha Koikkalainen, Eini Niskanen, Dong Ping Zhang, Daniel Rueckert, Hilkka Soininen, Jyrki L ̈otj ̈onen, and the Alzheimer’s Disease Neu- roimaging Initiative. Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS ONE, 6(10):1–9, 10 2011.spa
dc.relation.referencesDaoqiang Zhang, Yaping Wang, Luping Zhou, Hong Yuan, and Dinggang Shen. Multi- modal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55(3):856 – 867, 2011.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.otherEnfermedad de Alzheimerspa
dc.subject.otherAlzheimer Diseaseeng
dc.subject.otherDiagnóstico por Imagenspa
dc.subject.otherDiagnostic Imagingeng
dc.subject.proposalNeuroimagingeng
dc.subject.proposalMedical image processingeng
dc.subject.proposalMagnetic resonance imagingeng
dc.subject.proposalCognitive impairmenteng
dc.subject.proposalNeuroimágenesspa
dc.subject.proposalProcesamiento de imágenes médicasspa
dc.subject.proposalImágenes de resonancia magnéticaspa
dc.subject.proposalDeterioro cognitivospa
dc.subject.proposalZiekte van Alzheimerother
dc.subject.proposalNeurobeeldvormingother
dc.subject.proposalMedische Beeldverwerkingother
dc.subject.proposalMagnetische Resonantie Beeldvormingother
dc.subject.proposalCognitieve Stoornisother
dc.subject.unescoMedicina preventivaspa
dc.subject.unescoPreventive medicineeng
dc.titleComputational anatomy strategies for characterization of brain patterns associated with Alzheimer's diseaseeng
dc.title.translatedEstrategias de anatomía computacional para la caracterización de patrones cerebrales asociados a la enfermedad de Alzheimerspa
dc.title.translatedComputationele anatomie strategieën voor karakterisering van hersenpatronen geassocieerd met de ziekte van Alzheimerother
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConvocatoria 727 de 2015spa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032394718.2022.pdf
Tamaño:
12.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería

Bloque de licencias

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4.docx.pdf
Tamaño:
230.62 KB
Formato:
Adobe Portable Document Format
Descripción: