Implementación de analítica descriptiva y predictiva a partir de una arquitectura serverless en la nube para pymes

dc.contributor.advisorEspinosa Bedoya, Albeiro
dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.authorLópez Saldarriaga, Diego Alejandro
dc.contributor.orcidEspinosa Bedoya, Albeiro [000000017292987X]
dc.contributor.orcidBranch Bedoya, John Willian [0000-00020378028X]
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial
dc.date.accessioned2025-11-18T19:58:08Z
dc.date.available2025-11-18T19:58:08Z
dc.date.issued2025-11-17
dc.description.abstractLa computación en la nube y las arquitecturas serverless han surgido como una alternativa estratégica para que las pequeñas y medianas empresas (PYMES) accedan a capacidades de analítica avanzada sin incurrir en altos costos de infraestructura. Sin embargo, la adopción integral de enfoques de Infrastructure as Code (IaC) y analítica predictiva en este contexto aún presenta vacíos de investigación y práctica en América Latina. Se llevó a cabo una revisión sistemática de la literatura para identificar beneficios, limitaciones y tendencias en IaC y arquitecturas serverless. Posteriormente, se diseñó e implementó una arquitectura serverless en AWS, utilizando tanto CloudFormation como Terraform para comparar flexibilidad y mantenibilidad. Con datos anonimizados de pacientes, se construyeron y evaluaron modelos predictivos (Regresión Logística, Random Forest, Gradient Boosting y KNN) desplegados en Glue Jobs. Finalmente, se desarrolló un reporte descriptivo en Amazon QuickSight, consolidando tanto las transformaciones en la capa gold como las predicciones generadas. La revisión evidenció que AWS es el proveedor con mayor adopción y soporte para PYMES, que CloudFormation ofrece mayor granularidad en configuraciones específicas y que Terraform facilita portabilidad multi-nube. En la arquitectura implementada, S3 junto con Glue y Athena demostraron ser soluciones costo-eficientes y escalables, mientras que AWS Glue Jobs se consolidó como la mejor opción para cargas predictivas al superar las limitaciones de tamaño de librerías en Lambda. En el modelo predictivo, Gradient Boosting alcanzó la mayor exactitud con 61,57%, seguido de Regresión Logística con 61,11%, evidenciando la viabilidad de recomendaciones automáticas aun con variables limitadas. El tablero en QuickSight integró métricas descriptivas y predictivas en cuatro páginas, mostrando de manera visual patrones históricos y predicciones. Se pudo concluir que la adopción de arquitecturas serverless con IaC es viable y costo-eficiente para PYMES, siempre que se consideren las limitaciones técnicas de cada servicio. De los resultados se concluye que Glue Jobs complementa a Lambda en escenarios de analítica avanzada, mientras que QuickSight constituye una herramienta práctica para consolidar la analítica descriptiva y predictiva en tableros interactivos. En conjunto, la investigación demuestra que las PYMES pueden acceder a soluciones analíticas robustas y escalables en la nube, fortaleciendo su capacidad competitiva. (Texto tomado de la fuente)spa
dc.description.abstractCloud computing and serverless architecture have emerged as a strategic alternative for small and medium-sized enterprises (SMEs) to access advanced analytics capabilities without incurring high infrastructure costs. However, the comprehensive adoption of Infrastructure as Code (IaC) and predictive analytics in this context still presents research and practice gaps in Latin America. A systematic literature review was conducted to identify benefits, limitations, and trends in IaC and serverless architectures. Subsequently, serverless architecture was designed and implemented in AWS using both CloudFormation and Terraform to compare flexibility and maintainability. With anonymized patient data, predictive models (Logistic Regression, Random Forest, Gradient Boosting, and KNN) were built and evaluated, deployed through AWS Glue Jobs. Finally, a descriptive analytics report was developed in Amazon QuickSight, consolidating both the transformations in the gold layer and the generated predictions. The review showed that AWS is the provider with the highest adoption and support for SMEs, that CloudFormation offers greater granularity in specific configurations, and that Terraform enables multi-cloud portability. In the implemented architecture, S3 combined with Glue and Athena proved to be cost-efficient and scalable, while Glue Jobs emerged as the best option for predictive workloads, overcoming Lambda’s library size limitations. In predictive modeling, Gradient Boosting achieved the highest accuracy at 61.57%, followed by Logistic Regression at 61.11%, demonstrating the feasibility of automated recommendations even with limited variables. The QuickSight dashboard integrated descriptive and predictive metrics into four pages, visually displaying historical patterns and predictions. It can be concluded that adopting serverless architectures with IaC is both viable and cost-efficient for SMEs, provided that the technical limitations of each service are considered. The results show that Glue Jobs complement Lambda in advanced analytics scenarios, while QuickSight is a practical tool to consolidate descriptive and predictive analytics into interactive dashboards. Overall, the study demonstrates that SMEs can access robust and scalable cloud-based analytics solutions, strengthening their competitiveness.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería - Analítica
dc.description.researchareaCloud computing
dc.format.extent1 recurso en línea (107 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89135
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analítica
dc.relation.referencesN. Al Mudawi, N. Beloff, and M. White, “Issues and Challenges: Cloud Computing e-Government in Developing Countries,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 4, pp. 7–11, Jun. 2020, doi: 10.14569/IJACSA.2020.0110402.
dc.relation.referencesI. Ángel, B. Parejo, L. David, and W. Nuñez, “Análisis de la transformación digital de las empresas en Colombia: dinámicas globales y desafíos actuales,” vol. 12, pp. 129–141, Accessed: Mar. 29, 2024. [Online]. Available: https://dialnet.unirioja.es/descarga/articulo/8458751.pdf
dc.relation.referencesD. Chahal, S. C. Palepu, and R. Singhal, “Scalable and Cost-effective Serverless Architecture for Information Extraction Workflows,” HiPS 2022 - Proceedings of the 2nd Workshop on High Performance Serverless Computing, co-located with HPDC 2022, vol. 22, pp. 15–23, Jun. 2022, doi: 10.1145/3526060.3535458.
dc.relation.referencesG. Vial, “Understanding digital transformation: A review and a research agenda,” The Journal of Strategic Information Systems, vol. 28, no. 2, pp. 118–144, Jun. 2019, doi: 10.1016/j.jsis.2019.01.003.
dc.relation.referencesI. y T. Ministerio de Comercio, “Colombia cerró 2023 con número histórico de empresas activas,” https://www.mincit.gov.co/prensa/noticias/industria/colombia-cerro-2023-con-historico-empresas-activas.
dc.relation.referencesJ. González and M. Llanes, “Una mirada a las mipymes en Colombia,” BBVA Research, no. https://www.bbvaresearch.com/wp-content/uploads/2024/02/202401_MiPymes_Colombia-1.pdf, Feb. 2024.
dc.relation.referencesEquipo de investigación de ANIF and M. S. María Salamanca, “Retos y oportunidades de las Pymes,” Centro de Estudios Económicos: Comentario económico del día, no. https://www.anif.com.co/comentarios-economicos-del-dia/retos-y-oportunidades-de-las-pymes, Dec. 2021.
dc.relation.referencesI. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. Ullah Khan, “The rise of ‘big data’ on cloud computing: Review and open research issues,” Inf Syst, vol. 47, pp. 98–115, Jan. 2015, doi: 10.1016/j.is.2014.07.006.
dc.relation.referencesA.-R. Tawil, M. Mohamed, X. Schmoor, K. Vlachos, and D. Haidar, “Trends and Challenges Towards an Effective Data-Driven Decision Making in UK SMEs: Case Studies and Lessons Learnt from the Analysis of 85 SMEs,” May 2023.
dc.relation.referencesM. Armbrust et al., “A view of cloud computing,” Commun ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010, doi: 10.1145/1721654.1721672.
dc.relation.referencesV. Lannurien, L. D’Orazio, O. Barais, and J. Boukhobza, “Serverless Cloud Computing: State of the Art and Challenges,” Lecture Notes on Data Engineering and Communications Technologies, vol. 162, pp. 275–316, 2023, doi: 10.1007/978-3-031-26633-1_11/COVER.
dc.relation.referencesR. A. P. Rajan, “Serverless Architecture - A Revolution in Cloud Computing,” 2018 10th International Conference on Advanced Computing, ICoAC 2018, pp. 88–93, Dec. 2018, doi: 10.1109/ICOAC44903.2018.8939081.
dc.relation.referencesG. Adzic and R. Chatley, “Serverless computing: economic and architectural impact,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, New York, NY, USA: ACM, Aug. 2017, pp. 884–889. doi: 10.1145/3106237.3117767.
dc.relation.references“¿Qué es la infraestructura como código? - Explicación de IaC - AWS.” Accessed: Jan. 25, 2025. [Online]. Available: https://aws.amazon.com/es/what-is/iac/
dc.relation.referencesV. Tankov, D. Valchuk, Y. Golubev, T. Bryksin, and J. Research, “Infrastructure in Code: Towards Developer-Friendly Cloud Applications”, doi: https://doi.org/10.48550/arXiv.2108.07842.
dc.relation.referencesB. Berisha, E. Mëziu, and I. Shabani, “Big data analytics in Cloud computing: an overview,” Journal of Cloud Computing, vol. 11, no. 1, p. 24, Aug. 2022, doi: 10.1186/s13677-022-00301-w.
dc.relation.referencesC. Yang, Q. Huang, Z. Li, K. Liu, and F. Hu, “Big Data and cloud computing: innovation opportunities and challenges,” Int J Digit Earth, vol. 10, no. 1, pp. 13–53, Jan. 2017, doi: 10.1080/17538947.2016.1239771.
dc.relation.referencesAlkis Simitsis, Spiros Skiadopoulos, and Panos Vassiliadis, The History, Present, and Future of ETL Technology. 2023.
dc.relation.referencesD. Delen and H. Demirkan, “Data, information and analytics as services,” Decis Support Syst, vol. 55, no. 1, pp. 359–363, Apr. 2013, doi: 10.1016/j.dss.2012.05.044.
dc.relation.referencesT. Doleck, D. J. Lemay, R. B. Basnet, and P. Bazelais, “Predictive analytics in education: a comparison of deep learning frameworks,” Educ Inf Technol (Dordr), vol. 25, no. 3, pp. 1951–1963, May 2020, doi: 10.1007/s10639-019-10068-4.
dc.relation.referencesSeetharaman A., P. Gupta, and J. R. Raj, “The usage and adoption of cloud computing by small and medium businesses,” International Journal of Information Management Volume 33, Issue 5, Pages 861 - 874, Oct. 2013, doi: https://doi.org/10.1016/j.ijinfomgt.2013.07.001.
dc.relation.referencesC. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic Markets, vol. 31, no. 3, pp. 685–695, Sep. 2021, doi: 10.1007/s12525-021-00475-2.
dc.relation.referencesA. K. Sharma, D. M. Sharma, N. Purohit, S. K. Rout, and S. A. Sharma, “Analytics Techniques: Descriptive Analytics, Predictive Analytics, and Prescriptive Analytics,” 2022, pp. 1–14. doi: 10.1007/978-3-030-82763-2_1.
dc.relation.referencesJ. Gurevitch, J. Koricheva, S. Nakagawa, and G. Stewart, “Meta-analysis and the science of research synthesis,” Nature, vol. 555, no. 7695, pp. 175–182, Mar. 2018, doi: 10.1038/nature25753.
dc.relation.referencesM. J. Page et al., “Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas,” Rev Esp Cardiol, vol. 74, no. 9, pp. 790–799, Sep. 2021, doi: 10.1016/j.recesp.2021.06.016.
dc.relation.referencesL. R. de Carvalho and A. Patricia Favacho de Araujo, “Performance Comparison of Terraform and Cloudify as Multicloud Orchestrators,” in 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), IEEE, May 2020, pp. 380–389. doi: 10.1109/CCGrid49817.2020.00-55.
dc.relation.referencesN. M. K. Koneru, “Infrastructure as Code (IaC) for Enterprise Applications: A Comparative Study of Terraform and CloudFormation,” American Journal of Technology, vol. 4, no. 1, pp. 1–29, May 2025, doi: 10.58425/ajt.v4i1.351.
dc.relation.referencesVenkata Ramana Gudelli, “Cloud Formation and Terraform: Advancing Multi-Cloud Automation Strategies,” International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences, vol. 11, no. 2, Apr. 2023, doi: 10.37082/IJIRMPS.v11.i2.232164.
dc.relation.referencesS. Mondal, D. Mondal, and C. K. Roy, “Investigating Technology Usage Span by Analyzing Users’ Q&A Traces in Stack Overflow,” Dec. 2023.
dc.relation.referencesKevin Troy, “Download Stack Overflow’s 2017 Developer Survey Data,” Stack Overflow Developer Survey. Accessed: Jun. 13, 2025. [Online]. Available: https://stackoverflow.blog/2017/06/15/download-stack-overflows-2017-developer-survey-data/
dc.relation.referencesStack Overflow Staff, “Developer Survey 2024,” StackOverflow Survey. Accessed: Jun. 13, 2025. [Online]. Available: https://survey.stackoverflow.co/2024/
dc.relation.referencesOlakunle Jayeola, Shafie Sidek, Azmawani Abd Rahman, Anuar Shah Bali Mahomed, and Jimin Hu, “Cloud Computing Adoption in Small and Medium Enterprises (SMEs): A Systematic Literature Review and Directions for Future Research,” International Journal of Business and Society, vol. 23, no. 1, pp. 226–243, Mar. 2022, doi: 10.33736/ijbs.4610.2022.
dc.relation.referencesC. Fisher, “Cloud versus On-Premise Computing,” American Journal of Industrial and Business Management, vol. 08, no. 09, pp. 1991–2006, 2018, doi: 10.4236/ajibm.2018.89133.
dc.relation.referencesW. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless Computing: An Investigation of Factors Influencing Microservice Performance,” in 2018 IEEE International Conference on Cloud Engineering (IC2E), IEEE, Apr. 2018, pp. 159–169. doi: 10.1109/IC2E.2018.00039.
dc.relation.referencesS. Wu, C. Denninnart, X. Li, Y. Wang, and M. A. Salehi, “Descriptive and Predictive Analysis of Aggregating Functions in Serverless Clouds: the Case of Video Streaming,” in 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), IEEE, Dec. 2020, pp. 19–26. doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00004.
dc.relation.referencesStackOverflow Survey, “Developer Survey 2024 - Technology,” https://survey.stackoverflow.co/2024/technology.
dc.relation.referencesA. Bhat, M. Roy, and H. Park, “Evaluating Serverless Architecture for Big Data Enterprise Applications,” Oct. 2021.
dc.relation.referencesJ. Nielsen, “Finding usability problems through heuristic evaluation,” in Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’92, New York, New York, USA: ACM Press, 1992, pp. 373–380. doi: 10.1145/142750.142834.
dc.relation.referencesT. Bodner, T. Radig, D. Justen, D. Ritter, and T. Rabl, “An Empirical Evaluation of Serverless Cloud Infrastructure for Large-Scale Data Processing,” Jan. 2025.
dc.relation.referencesA. Mbata, Y. Sripada, and M. Zhong, “A Survey of Pipeline Tools for Data Engineering,” Jun. 2024.
dc.relation.referencesL. Chen, R. Li, Y. Liu, R. Zhang, and D. M. Woodbridge, “Machine learning-based product recommendation using Apache Spark,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, Aug. 2017, pp. 1–6. doi: 10.1109/UIC-ATC.2017.8397470.
dc.relation.referencesAmazon Web Services, “Análisis big data | Ejecución marcos Hadoop | Amazon EMR.” Accessed: Jun. 13, 2025. [Online]. Available: https://aws.amazon.com/es/emr/?did=ap_card&trk=ap_card
dc.relation.referencesAmazon Web Services, “Análisis de big data con marcos de código abierto | Amazon EMR sin servidor.” Accessed: Jun. 13, 2025. [Online]. Available: https://aws.amazon.com/es/emr/serverless/
dc.relation.referencesN. Armenatzoglou et al., “Amazon Redshift Re-invented,” in Proceedings of the 2022 International Conference on Management of Data, New York, NY, USA: ACM, Jun. 2022, pp. 2205–2217. doi: 10.1145/3514221.3526045.
dc.relation.referencesH. Bian, D. Geng, P. Guo, Y. Chai, and A. Ailamaki, “Serverless Query Processing with Flexible Performance SLAs and Prices,” Sep. 2024, Accessed: Jun. 18, 2025. [Online]. Available: https://arxiv.org/pdf/2409.01388
dc.relation.referencesM. Armbrust et al., “Delta Lake: High-Performance ACID Table Storage over Cloud Object Stores,” Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 3411–3424, Aug. 2020, doi: 10.14778/3415478.3415560.
dc.relation.referencesM. Elhemali et al., “Amazon DynamoDB: A Scalable, Predictably Performant, and Fully Managed NoSQL Database Service,” in Proceedings of the 2022 USENIX Annual Technical Conference, ATC 2022, Carlsbad, California, USA: USENIX Association, Jul. 2022, pp. 1037–1048.
dc.relation.referencesJ. Oakley and H. Ferhatosmanoglu, “FSD-Inference: Fully Serverless Distributed Inference with Scalable Cloud Communication,” Distributed, Parallel, and Cluster Computing, Mar. 2024.
dc.relation.referencesA. Ali, R. Pinciroli, F. Yan, and E. Smirni, “BATCH: Machine Learning Inference Serving on Serverless Platforms with Adaptive Batching,” in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, IEEE, Nov. 2020, pp. 1–15. doi: 10.1109/SC41405.2020.00073.
dc.relation.referencesAmazon Web Services, “Deploy models with Amazon SageMaker Serverless Inference - Amazon SageMaker AI.” Accessed: Jun. 18, 2025. [Online]. Available: https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
dc.relation.referencesAmazon Web Services, “Configuring job properties for Python shell jobs in AWS Glue - AWS Glue.” Accessed: Jun. 18, 2025. [Online]. Available: https://docs.aws.amazon.com/glue/latest/dg/add-job-python.html
dc.relation.referencesJ. Choudhury and S. S. Gill, “Performance Analysis of Machine Learning Models for Data Visualisation in SME,” in Applications of AI for Interdisciplinary Research, Boca Raton: CRC Press, 2024, pp. 171–184. doi: 10.1201/9781003467199-15.
dc.relation.referencesAmazon Web Services, “Lambda quotas - AWS Lambda.” Accessed: Aug. 09, 2025. [Online]. Available: https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
dc.relation.referencesAmazon Web Services, “AWS Glue versions - AWS Glue.” Accessed: Aug. 09, 2025. [Online]. Available: https://docs.aws.amazon.com/glue/latest/dg/release-notes.html
dc.relation.referencesAmazon Web Services, “Amazon QuickSight.” Accessed: Jun. 18, 2025. [Online]. Available: https://aws.amazon.com/es/quicksight/?amazon-quicksight-whats-new.sort-by=item.additionalFields.postDateTime&amazon-quicksight-whats-new.sort-order=desc
dc.relation.referencesD. Patel, C. Maiti, and S. Muthuswamy, “Real-Time Performance Monitoring of a CNC Milling Machine using ROS 2 and AWS IoT Towards Industry 4.0,” in IEEE EUROCON 2023 - 20th International Conference on Smart Technologies, IEEE, Jul. 2023, pp. 776–781. doi: 10.1109/EUROCON56442.2023.10199020.
dc.relation.referencesP. Dubey, A. Kumar Tiwari, and R. Raja, Amazon Web Services: the Definitive Guide for Beginners and Advanced Users. BENTHAM SCIENCE PUBLISHERS, 2023. doi: 10.2174/97898151658211230101.
dc.relation.referencesC. M. . Bishop, Pattern recognition and machine learning. Springer Science + Business Media, 2009.
dc.relation.referencesAmazon Web Services, “Precio de los servicios de la nube | AWS.” Accessed: Aug. 20, 2025. [Online]. Available: https://aws.amazon.com/es/pricing/?aws-products-pricing.sort-by=item.additionalFields.productNameLowercase&aws-products-pricing.sort-order=asc&awsf.Free%20Tier%20Type=*all&awsf.tech-category=*all
dc.relation.referencesAmazon Web Services, “Free Cloud Computing Services - AWS Free Tier.” Accessed: Aug. 20, 2025. [Online]. Available: https://aws.amazon.com/es/free
dc.relation.referencesAmazon Web Services, “Capacidad informática para Amazon Redshift Serverless - Amazon Redshift.” Accessed: Jun. 18, 2025. [Online]. Available: https://docs.aws.amazon.com/es_es/redshift/latest/mgmt/serverless-capacity.html
dc.relation.referencesAmazon Web Services, “How Aurora Serverless v2 works - Amazon Aurora.” Accessed: Jun. 18, 2025. [Online]. Available: https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.how-it-works.html
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.armarcAnalisis predictivo
dc.subject.armarcAmazon Glue
dc.subject.armarcInfraestructura como servicio
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.subject.lembCiencia de datos
dc.subject.proposalComputación en la nubespa
dc.subject.proposalArquitectura serverlessspa
dc.subject.proposalInfraestructura como Código (IaC)spa
dc.subject.proposalCloudFormationspa
dc.subject.proposalTerraformspa
dc.subject.proposalAnalítica predictivaspa
dc.subject.proposalAmazon Glue, Amazon QuickSightspa
dc.subject.proposalPYMESspa
dc.subject.proposalCiencia de datos en la nubespa
dc.subject.proposalCloud computingeng
dc.subject.proposalServerless architectureeng
dc.subject.proposalInfrastructure as Code (IaC)eng
dc.subject.proposalCloudFormationeng
dc.subject.proposalTerraformeng
dc.subject.proposalPredictive analytics
dc.subject.proposalAWS Glueeng
dc.subject.proposalAmazon QuickSighteng
dc.subject.proposalSMEseng
dc.subject.proposalCloud data scienceeng
dc.subject.wikidataComputación en la nube
dc.titleImplementación de analítica descriptiva y predictiva a partir de una arquitectura serverless en la nube para pymesspa
dc.title.translatedImplementation of descriptive and predictive analytics based on a serverless cloud architecture for SMEseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleImplementación de analítica descriptiva y predictiva a partir de una arquitectura serverless en la nube para PYMES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Implementación de analítica descriptiva y predictiva a partir de una arquitectura serverless en la nube para PYMES.pdf
Tamaño:
2.2 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: