Dynamics of the cold solar chromosphere observed with ALMA

dc.contributor.advisorCalvo Mozo, Benjamínspa
dc.contributor.authorOrdoñez Araujo, Francisco Javierspa
dc.contributor.googlescholarFrancisco Javier Ordonez Araujo [https://scholar.google.com/citations?user=mxqYk8gAAAAJ&hl=en&authuser=1]spa
dc.contributor.orcidOrdoñez Araujo, Francisco Javier [https://orcid.org/0000-0002-7329-4877]spa
dc.contributor.refereeJafarzadeh, Shahinspa
dc.contributor.refereePinzon Estrada, Giovannispa
dc.contributor.refereeLarrañaga, Eduardspa
dc.contributor.researchgroupGrupo de Astronomía, Astrofísica y Cosmología, línea de Astrofísica Solar, GoSAspa
dc.contributor.supervisorGuevara Gómez, Juan Camilospa
dc.date.accessioned2024-04-02T01:16:53Z
dc.date.available2024-04-02T01:16:53Z
dc.date.issued2024-04-01
dc.descriptionilustraciones, diagramasspa
dc.description.abstractIn this thesis, a dynamic study of cold regions of the solar chromosphere observed by the Atacama Large Millimeter/submillimeter Array (ALMA) in band 3 is presented. The analysis integrates data from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), focusing specifically on the quiet sun region D06 from the Solar ALMA Science Archive (SALSA) database. In the data processing before the study carried out in the thesis, an alignment method was developed based on the helioprojective coordinates of the SDO, using the Pearson Correlation Coefficient and the Structural Similarity Index to estimate images correlation. The analysis revealed that the cold structures detected in ALMA band 3 are mainly located in internetwork areas, which are characterized by having a weak vertical magnetic field. A total of 44 cold events in ALMA were identified. Through the use of time-distance diagrams in a 6×6 arcsec window, periodic increases and decreases in the temperature were observed. This fluctuation pattern was also observed in IRIS 2796 Å and AIA 1600 Å time-distance diagrams. In these observations, the IRIS 2796 Å and ALMA band 3 data exhibited temporal delays of 20.4 and 100.2 seconds compared to AIA 1600 Å. This suggests the propagation of shock waves from the upper convective zone to chromospheric heights. Using a shock wave speed of 8.0 ± 1.0 km/s and a formation height of 430 ± 185 km for AIA 1600 Å, formation heights of 597 ± 194 km, 1231 ± 230 km for IRIS 2796 Å and ALMA band 3 were estimated. These results are in accordance with formation heights estimated in 3D simulations. Additionally, the distribution of pixels within the cold events corroborated that they are mainly confined to internetwork regions, with typical sizes close to photospheric granulations, suggesting a relationship between the generation of shock waves in intergranular regions and their propagation to upper layers. The distribution of the lifetimes of the events indicated that shock waves pass through the chromosphere approximately every 3 minutes. On the other hand, by measuring the displacement of the center of mass between consecutive frames, we estimated the speed of dark features. Our analysis revealed that the speed distribution peaked at 8.5 km/s, with an average speed of 21 km/s. These speed values were observed in simulations of the propagation of shock waves at chromospheric heights, reinforcing the hypothesis that indeed the dark regions are post-shock regions. This study not only contributes to the understanding of the thermal dynamics of the solar chromosphere but also provides valuable information for future research and the refinement of numerical models in solar astrophysics. However, more detailed statistical analyses are required for a deeper understanding.eng
dc.description.abstractEn esta tesis, se presenta un estudio dinámico de las regiones frías de la cromosfera solar observadas por el Atacama Large Millimeter/submillimeter Array (ALMA) en la banda 3. El análisis integra datos del Solar Dynamics Observatory (SDO) y del Interface Region Imaging Spectrograph (IRIS), enfocándose específicamente en la región del sol tranquilo D06 del Solar ALMA Science Archive (SALSA). En el procesamiento de datos antes del estudio realizado en la tesis, se desarrolló un método de alineación basado en las coordenadas helioproyectivas del SDO, utilizando el Coeficiente de Correlación de Pearson y el Índice de Similitud Estructural para estimar la correlación de las imágenes. El análisis reveló que las estructuras frías detectadas en la banda 3 de ALMA están principalmente ubicadas en áreas de internetwork, las cuales se caracterizan por tener un campo magnético vertical débil. Se identificaron un total de 44 eventos fríos en ALMA. Mediante el uso de diagramas de tiempo-distancia en una ventana de 6×6 arcsec, se observaron aumentos y disminuciones periódicas en la temperatura. Este patrón de fluctuación también se observó en los diagramas de tiempo-distancia de IRIS 2796 Å y AIA 1600 Å. En estas observaciones, los datos de IRIS 2796 Å y ALMA banda 3 exhibieron retrasos temporales de 20.4 y 100.2 segundos comparados con AIA 1600 Å. Esto sugiere la propagación de ondas de choque desde la zona convectiva superior hacia alturas cromosféricas. Utilizando una velocidad de onda de choque de 8.0 ± 1.0 km/s y una altura de formación de 430 ± 185 km para AIA 1600 Å, se estimaron alturas de formación de 597 ± 194 km, 1231 ± 230 km para IRIS 2796 Å y ALMA banda 3. Estos resultados están en acuerdo con las alturas de formación estimadas en simulaciones 3D. Adicionalmente, la distribución de píxeles dentro de los eventos fríos corroboró que están principalmente confinados a regiones de internetwork, con tamaños típicos cercanos a las granulaciones fotosféricas, sugiriendo una relación entre la generación de ondas de choque en regiones intergranulares y su propagación a capas superiores. La distribución de las duraciones de los eventos indicó que las ondas de choque pasan por la cromosfera aproximadamente cada 3 minutos. Por otro lado, al medir el desplazamiento del centro de masa entre cuadros consecutivos, estimamos la velocidad de las características oscuras. Nuestro análisis reveló que la distribución de la velocidad alcanzó un pico de 8.5 km/s, con una velocidad promedio de 21 km/s. Estos valores de velocidad se observaron en simulaciones de la propagación de ondas de choque en alturas cromosféricas, reforzando la hipótesis de que, de hecho, las regiones oscuras son regiones post-choque. Este estudio no solo contribuye a la comprensión de la dinámica térmica de la cromosfera solar, sino que también proporciona información valiosa para investigaciones futuras y el refinamiento de modelos numéricos en astrofísica solar. Sin embargo, se requieren análisis estadísticos más detallados para una comprensión más profunda. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Astronomíaspa
dc.description.researchareaFísica solarspa
dc.format.extentxxiv, 79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85838
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomíaspa
dc.relation.referencesD. G. Altman and J. M. Bland. Standard deviations and standard errors. BMJ: British Medical Journal, 331(7521):903, October 15 2005. ISSN 0959-8138. doi: 10.1136/bmj.331. 7521.903.spa
dc.relation.referencesT. R. Ayres. Thermal bifurcation in the solar outer atmosphere. The Astrophysical Journal, 244:1064, Mar. 1981. ISSN 0004-637X, 1538-4357. doi: 10.1086/158776. URL http: //adsabs.harvard.edu/doi/10.1086/158776.spa
dc.relation.referencesT. R. Ayres. CO and the Temperature Structure of the Solar Atmosphere. Journal Article, New Eyes to See Inside the Sun and Stars, Jan. 1997. URL https://ui.adsabs.harvard. edu/abs/1997STIN...9914335A. Provided by the SAO/NASA Astrophysics Data Systemspa
dc.relation.referencesT. R. Ayres. Carbon Monoxide and the Temperature Structure of the Solar Atmosphere. In F.-L. Deubner, J. Christensen-Dalsgaard, and D. Kurtz, editors, New Eyes to See Inside the Sun and Stars, pages 403–414. Springer Netherlands, Dordrecht, 1998. ISBN 978-0-7923-5076-7 978-94-011-4982-2. doi: 10.1007/978-94-011-4982-2_92. URL https: //ui.adsabs.harvard.edu/abs/1997STIN...9914335A/abstract.spa
dc.relation.referencesT. R. Ayres. Does the sun have a full-time COmosphere? The Astrophysical Journal, 575 (2):1104–1115, aug 2002. doi: 10.1086/341428. URL https://ui.adsabs.harvard.edu/ abs/1981ApJ...244.1064A/abstractspa
dc.relation.referencesT. R. Ayres. Resolution of the COmosphere Controversy. In A. A. Pevtsov and H. Uiten- broek, editors, Current Theoretical Models and Future High Resolution Solar Observations: Preparing for ATST, volume 286 of Astronomical Society of the Pacific Conference Series, page 431, Jan. 2003spa
dc.relation.referencesT. R. Ayres and D. Rabin. Observations of Solar Carbon Monoxide with an Imaging Infrared Spectrograph. I. Thermal Bifurcation Revisited. ApJ, 460:1042, Apr. 1996. doi: 10.1086/ 177031spa
dc.relation.referencesAyres, T. R. and Linsky, J. L. The MG II H and K lines. II. Comparison with synthesized pro- files and CA II K. Final Report National Bureau of Standards, Boulder, CO. Astrophysics Div., Aug. 1975. URL https://ui.adsabs.harvard.edu/abs/1975STIN...7722038A. Provided by the SAO/NASA Astrophysics Data Systemspa
dc.relation.referencesJ. M. Beckers and P. E. Tallant. Chromospheric Inhomogeneities in Sunspot Umbrae. solphys, 7(3):351–365, June 1969. doi: 10.1007/BF00146140. URL https://ui.adsabs.harvard. edu/abs/1969SoPh....7..351B. Provided by the SAO/NASA Astrophysics Data Systemspa
dc.relation.referencesD. Brown, S. Regnier, M. Marsh, and D. Bewsher. Working with data from the Solar Dynamics Observatory. 2010spa
dc.relation.referencesD. J. Callaghan. Development of a two element correlating radio telescope interferometer. Master of Engineering in Electronic Engineering, Durban University of Technology, Dur- ban, South Africa, 2015. URL http://hdl.handle.net/10321/1386spa
dc.relation.referencesM. Carlsson and R. Stein. Chromospheric dynamics. In M. Carlsson, editor, Chromospheric Dynamics, page 47. University of Oslo, Oslo, Norway, 1994. ISBN 82-7121-013-0 (converted 978-82-7121-013-7)spa
dc.relation.referencesM. Carlsson and R. Stein. Astrophys. j. lett. 440:L29, 1995spa
dc.relation.referencesM. Carlsson and R. F. Stein. Non-LTE Radiating Acoustic Shocks and CA II K2V Bright Points. ApJ, 397:L59, Sept. 1992, 1994, 1997, 2002. doi: 10.1086/186544spa
dc.relation.referencesP. Cortes, C. Vlahakis, A. Hales, J. Carpenter, B. Dent, S. Kameno, R. Loomis, B. Vila Vi- laro, A. Biggs, A. Miotello, R. Rosen, F. Stoehr, and K. Saini. ALMA Cycle 10 Technical Handbook. Apr. 2023. doi: 10.5281/ZENODO.4511521. URL https://zenodo.org/ record/4511521. Publisher: Zenodo Version Number: Cycle 10; Doc. 10.3; version 1.1spa
dc.relation.referencesJ. M. Da Silva Santos, J. De La Cruz Rodríguez, S. M. White, J. Leenaarts, G. J. M. Vissers, and V. H. Hansteen. ALMA observations of transient heating in a solar active region. Astronomy & Astrophysics, 643:A41, Nov. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361/202038755. URL https://www.aanda.org/10.1051/0004-6361/202038755spa
dc.relation.referencesB. De Pontieu, A. M. Title, J. R. Lemen, G. D. Kushner, D. J. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, J. F. Drake, D. W. Duncan, S. Freeland, G. F. Hey- man, C. Hoffman, N. E. Hurlburt, R. W. Lindgren, D. Mathur, R. Rehse, D. Sabolish, R. Seguin, C. J. Schrijver, T. D. Tarbell, J.-P. Wülser, C. J. Wolfson, C. Yanari, J. Mudge, N. Nguyen-Phuc, R. Timmons, R. van Bezooijen, I. Weingrod, R. Brookner, G. Butcher, B. Dougherty, J. Eder, V. Knagenhjelm, S. Larsen, D. Mansir, L. Phan, P. Boyle, P. N. Cheimets, E. E. DeLuca, L. Golub, R. Gates, E. Hertz, S. McKillop, S. Park, T. Perry, W. A. Podgorski, K. Reeves, S. Saar, P. Testa, H. Tian, M. Weber, C. Dunn, S. Ec- cles, S. A. Jaeggli, C. C. Kankelborg, K. Mashburn, N. Pust, L. Springer, R. Carvalho, L. Kleint, J. Marmie, E. Mazmanian, T. M. D. Pereira, S. Sawyer, J. Strong, S. P. Wor- den, M. Carlsson, V. H. Hansteen, J. Leenaarts, M. Wiesmann, J. Aloise, K.-C. Chu, R. I. Bush, P. H. Scherrer, P. Brekke, J. Martinez-Sykora, B. W. Lites, S. W. McIn- tosh, H. Uitenbroek, T. J. Okamoto, M. A. Gummin, G. Auker, P. Jerram, P. Pool, and N. Waltham. The Interface Region Imaging Spectrograph (IRIS). Solar Physics, 289(7): 2733–2779, July 2014. ISSN 0038-0938, 1573-093X. doi: 10.1007/s11207-014-0485-y. URL http://link.springer.com/10.1007/s11207-014-0485-yspa
dc.relation.referencesG. A. Doschek, U. Feldman, and H. E. Mason. EUV limb spectra of a surge observed from Skylab. A&A, 78(3):342–348, Oct. 1979spa
dc.relation.referencesH. Eklund. Deep solar ALMA neural network estimator for image refinement and estimates of small-scale dynamics. Astronomy & Astrophysics, 669:A106, Jan. 2023. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202244484. URL https://www.aanda.org/10.1051/ 0004-6361/202244484spa
dc.relation.referencesH. Eklund, S. Wedemeyer, M. Szydlarski, S. Jafarzadeh, and J. C. Guevara Gómez. The Sun at millimeter wavelengths: II. Small-scale dynamic events in ALMA Band 3. Astronomy & Astrophysics, 644:A152, Dec. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 202038250. URL https://www.aanda.org/10.1051/0004-6361/202038250spa
dc.relation.referencesH. Eklund, S. Wedemeyer, M. Szydlarski, and S. Jafarzadeh. The Sun at millimeter wave- lengths: III. Impact of the spatial resolution on solar ALMA observations. Astronomy & Astrophysics, 656:A68, Dec. 2021. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 202140972. URL https://www.aanda.org/10.1051/0004-6361/202140972spa
dc.relation.referencesB. Fleck and F. Schmitz. The 3-min oscillations of the solar chromosphere - A basic physical effect? aap, 250(1):235–244, Oct. 1991. URL https://ui.adsabs.harvard.edu/abs/ 1991A&A...250..235F. Provided by the SAO/NASA Astrophysics Data Systemspa
dc.relation.referencesJ. M. Fontenla, E. H. Avrett, and R. Loeser. Energy Balance in the Solar Transition Region. III. Helium Emission in Hydrostatic, Constant-Abundance Models with Diffusion. ApJ, 406:319, Mar. 1993. doi: 10.1086/172443spa
dc.relation.referencesA. Fossum and M. Carlsson. Response Functions of the Ultraviolet Filters of TRACE and the Detectability of High-Frequency Acoustic Waves. The Astrophysical Journal, 625(1): 556–562, May 2005. ISSN 0004-637X, 1538-4357. doi: 10.1086/429614. URL https: //iopscience.iop.org/article/10.1086/429614spa
dc.relation.referencesB. Freytag, M. Steffen, and B. Dorch. Spots on the surface of Betelgeuse – Results from new 3D stellar convection models. Astronomische Nachrichten, 323(3-4):213–219, Aug. 2002. ISSN 00046337, 15213994. doi: 10.1002/1521-3994(200208)323:3/4<213:: AID-ASNA213>3.0.CO;2-H. URL https://onlinelibrary.wiley.com/doi/10.1002/ 1521-3994(200208)323:3/4<213::AID-ASNA213>3.0.CO;2-Hspa
dc.relation.referencesF. Galton. Typical laws of heredity. Nature, pages 1–4, Apr. 1877. doi: https://doi.org/10. 1038/015492a0. URL https://www.nature.com/articles/015492a0spa
dc.relation.referencesM. Grubecka, B. Schmieder, A. Berlicki, P. Heinzel, K. Dalmasse, and P. Mein. Height formation of bright points observed by IRIS in Mg II line wings during flux emergence. Astronomy & Astrophysics, 593:A32, Sept. 2016. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361/201527358. URL http://www.aanda.org/10.1051/0004-6361/201527358spa
dc.relation.referencesB. V. Gudiksen, M. Carlsson, V. H. Hansteen, W. Hayek, J. Leenaarts, and J. Martínez- Sykora. The stellar atmosphere simulation code Bifrost. Code description and validation. A&A, 531:A154, July 2011. doi: 10.1051/0004-6361/201116520spa
dc.relation.referencesJ. C. Guevara Gómez, S. Jafarzadeh, S. Wedemeyer, and M. Szydlarski. Propagation of trans- verse waves in the solar chromosphere probed at different heights with ALMA sub-bands. Astronomy & Astrophysics, 665:L2, Sept. 2022. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361/202244387. URL https://www.aanda.org/10.1051/0004-6361/202244387spa
dc.relation.referencesJ. C. Guevara Gómez, S. Jafarzadeh, S. Wedemeyer, S. D. T. Grant, H. Eklund, and M. Szyd- larski. The Sun at millimeter wavelengths: IV. Magnetohydrodynamic waves in small- scale bright features. Astronomy & Astrophysics, 671:A69, Mar. 2023. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202244228. URL https://www.aanda.org/10.1051/ 0004-6361/202244228spa
dc.relation.referencesJ. B. Gurman. Sunspot umbral oscillations in Mg ii k. solphys, 108(1):61–75, Mar. 1987. doi: 10.1007/BF00152077. URL https://ui.adsabs.harvard.edu/abs/1987SoPh..108... 61G. Provided by the SAO/NASA Astrophysics Data Systemspa
dc.relation.referencesY. He, T. Hu, and D. Zeng. Scan-flood Fill(SCAFF): an Efficient Automatic Precise Region Filling Algorithm for Complicated Regions, June 2019. URL http://arxiv.org/abs/ 1906.03366. arXiv:1906.03366 [cs]spa
dc.relation.referencesV. M. J. Henriques, S. Jafarzadeh, J. C. Guevara Gómez, H. Eklund, S. Wedemeyer, M. Szydlarski, S. V. H. Haugan, and A. Mohan. The Solar ALMA Science Archive (SALSA): First release, SALAT, and FITS header standard. Astronomy & Astrophysics, 659:A31, Mar. 2022. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/202142291. URL https://www.aanda.org/10.1051/0004-6361/202142291spa
dc.relation.referencesY. D. Hezaveh, N. Dalal, D. P. Marrone, Y.-Y. Mao, W. Morningstar, D. Wen, R. D. Blandford, J. E. Carlstrom, C. D. Fassnacht, G. P. Holder, A. Kemball, P. J. Marshall, N. Murray, L. Perreault Levasseur, J. D. Vieira, and R. H. Wechsler. Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. ApJ, 823(1):37, May 2016. doi: 10.3847/0004-637X/823/1/37spa
dc.relation.referencesS. Jafarzadeh, J. C. G. Gomez, S. Wedemeyer, and S. Aannerud. Solaralma/salat: v1.0, Sept. 2021a. URL https://doi.org/10.5281/zenodo.5466873spa
dc.relation.referencesS. Jafarzadeh, S. Wedemeyer, B. Fleck, M. Stangalini, D. B. Jess, R. J. Morton, M. Szyd- larski, V. M. J. Henriques, X. Zhu, T. Wiegelmann, J. C. Guevara Gómez, S. D. T. Grant, B. Chen, K. Reardon, and S. M. White. An overall view of temperature oscil- lations in the solar chromosphere with ALMA. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2190):rsta.2020.0174, 20200174, Feb. 2021b. ISSN 1364-503X, 1471-2962. doi: 10.1098/rsta.2020.0174. URL https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0174spa
dc.relation.referencesH. Karttunen, P. Kröger, H. Oja, M. Poutanen, and K. Donner. Fundamental Astronomy. Springer, 2017. ISBN 978-3-662-53045-0spa
dc.relation.referencesE. P. Kontar, I. G. Hannah, and A. L. MacKinnon. Chromospheric magnetic field and density structure measurementsusing hard X-rays in a flaring coronal loop. Astronomy & Astrophysics, 489(3):L57–L60, Oct. 2008. ISSN 0004-6361, 1432-0746. doi: 10.1051/ 0004-6361:200810719. URL http://www.aanda.org/10.1051/0004-6361:200810719.spa
dc.relation.referencesJ. Leenaarts and S. Wedemeyer-Böhm. Time-dependent hydrogen ionisation in 3D simula- tions of the solar chromosphere. Methods and first results. A&A, 460(1):301–307, Dec. 2006. doi: 10.1051/0004-6361:20066123spa
dc.relation.referencesJ. Leenaarts, T. M. D. Pereira, M. Carlsson, H. Uitenbroek, and B. De Pontieu. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h&k LINES IN THE SOLAR ATMOSPHERE. The Astrophysical Journal, 772(2):90, July 2013. ISSN 0004-637X, 1538-4357. doi: 10.1088/0004-637X/772/2/90. URL https: //iopscience.iop.org/article/10.1088/0004-637X/772/2/90spa
dc.relation.referencesR. B. Leighton, R. W. Noyes, and G. W. Simon. Velocity Fields in the Solar Atmosphere. I. Preliminary Report. apj, 135:474, Mar. 1962. doi: 10.1086/147285. URL https: //ui.adsabs.harvard.edu/abs/1962ApJ...135..474L. Provided by the SAO/NASA Astrophysics Data Systemspa
dc.relation.referencesE. Lellouch, R. Moreno, T. Müller, S. Fornasier, P. Santos-Sanz, A. Moullet, M. Gurwell, J. Stansberry, R. Leiva, B. Sicardy, B. Butler, and J. Boissier. The thermal emission of Centaurs and trans-Neptunian objects at millimeter wavelengths from ALMA observa- tions. A&A, 608:A45, Dec. 2017. doi: 10.1051/0004-6361/201731676spa
dc.relation.referencesJ. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, J. F. Drake, D. W. Duncan, C. G. Edwards, F. M. Friedlaender, G. F. Heyman, N. E. Hurlburt, N. L. Katz, G. D. Kushner, M. Levay, R. W. Lindgren, D. P. Mathur, E. L. McFeaters, S. Mitchell, R. A. Rehse, C. J. Schrijver, L. A. Springer, R. A. Stern, T. D. Tarbell, J.-P. Wuelser, C. J. Wolfson, C. Yanari, J. A. Bookbinder, P. N. Cheimets, D. Caldwell, E. E. Deluca, R. Gates, L. Golub, S. Park, W. A. Podgorski, R. I. Bush, P. H. Scherrer, M. A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D. L. Windt, S. Beardsley, M. Clapp, J. Lang, and N. Waltham. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):17–40, Jan. 2012. ISSN 0038-0938, 1573- 093X. doi: 10.1007/s11207-011-9776-8. URL https://link.springer.com/10.1007/ s11207-011-9776-8spa
dc.relation.referencesM. Loukitcheva, S. K. Solanki, M. Carlsson, and S. M. White. Millimeter radiation from a 3D model of the solar atmosphere: I. Diagnosing chromospheric thermal structure. Astronomy & Astrophysics, 575:A15, Mar. 2015. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 201425238. URL http://www.aanda.org/10.1051/0004-6361/201425238spa
dc.relation.referencesJ. M. Marr, R. L. Snell, and S. Kurtz. Fundamentals of radio astronomy: observational methods. Series in astronomy and astrophysics. CRC Press, Taylor & Francis Group, Boca Raton, 2016. ISBN 978-1-4200-7676-9. OCLC: ocn932380297spa
dc.relation.referencesNoyes, Robert W, Hall, and Donald N. B. Thermal Oscillations in the High Solar Photo- sphere. The Astrophysical Journal, 176:L89, Sept. 1972. ISSN 0004-637X, 1538-4357. doi: 10.1086/181027. URL http://adsabs.harvard.edu/doi/10.1086/181027spa
dc.relation.referencesF. J. Ordoñez Araujo, J. C. Guevara Gómez, and B. Calvo Mozo. Alignment-of-iris-alma-and-sdo-images. https://github.com/JavierOrdonezA/ Alignment-of-IRIS-ALMA-and-SDO-images.git, Apr. 2023. Accessed on April 13th, 2023spa
dc.relation.referencesS. Patsourakos, C. E. Alissandrakis, A. Nindos, and T. S. Bastian. Observations of solar chromospheric oscillations at 3 mm with ALMA. Astronomy & Astrophysics, 634:A86, Feb. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/201936618. URL https: //www.aanda.org/10.1051/0004-6361/201936618spa
dc.relation.referencesT. M. D. Pereira and H. Uitenbroek. RH 1.5D: a massively parallel code for multi-level ra- diative transfer with partial frequency redistribution and Zeeman polarisation. Astronomy & Astrophysics, 574:A3, Feb. 2015. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/ 201424785. URL http://www.aanda.org/10.1051/0004-6361/201424785.spa
dc.relation.referencesT. M. D. Pereira, J. Leenaarts, B. De Pontieu, M. Carlsson, and H. Uitenbroek. The formation ofirisdiagnostics. iii. near-ultraviolet spectra and images. The Astrophysical Journal, 778(2):143, Nov. 2013. ISSN 1538-4357. doi: 10.1088/0004-637x/778/2/143. URL http://dx.doi.org/10.1088/0004-637X/778/2/143.spa
dc.relation.referencesW. D. Pesnell, B. J. Thompson, and P. C. Chamberlin. The Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):3–15, Jan. 2012. ISSN 0038-0938, 1573-093X. doi: 10.1007/ s11207-011-9841-3. URL http://link.springer.com/10.1007/s11207-011-9841-3.spa
dc.relation.referencesL. M. Pérez, J. M. Carpenter, S. M. Andrews, L. Ricci, A. Isella, H. Linz, A. I. Sargent, D. J. Wilner, T. Henning, A. T. Deller, C. J. Chandler, C. P. Dullemond, J. Lazio, K. M. Menten, S. A. Corder, S. Storm, L. Testi, M. Tazzari, W. Kwon, N. Calvet, J. S. Greaves, R. J. Harris, and L. G. Mundy. Spiral density waves in a young protoplanetary disk. Science, 353(6307):1519–1521, Sept. 2016. ISSN 1095-9203. doi: 10.1126/science.aaf8296. URL http://dx.doi.org/10.1126/science.aaf8296.spa
dc.relation.referencesK. P. Reardon, H. Uitenbroek, and G. Cauzzi. The solar chromosphere at high resolution with IBIS. III. Comparison of Ca II K and Ca II 854.2 nm imaging. aap, 500(3):1239–1247, June 2009. doi: 10.1051/0004-6361/200811223. URL https://ui.adsabs.harvard.edu/ abs/2009A&A...500.1239R. Provided by the SAO/NASA Astrophysics Data System.spa
dc.relation.referencesC. S. Rosenthal, T. J. Bogdan, M. Carlsson, S. B. F. Dorch, V. Hansteen, S. W. McIntosh, A. McMurry, Nordlund, and R. F. Stein. Waves in the magnetized solar atmosphere. i. basic processes and internetwork oscillations. The Astrophysical Journal, 564(1):508, jan 2002. doi: 10.1086/324214. URL https://dx.doi.org/10.1086/324214.spa
dc.relation.referencesR. J. Rutten. RADIATIVE TRANSFER IN STELLAR ATMOSPHERES. May .spa
dc.relation.referencesR. J. Rutten and H. Uitenbroek. Ca uc(ii) H2v and K2v cell grains. Sol. Phys., 134(1):15–71, July 1991. doi: 10.1007/BF00148739.spa
dc.relation.referencesP. H. Scherrer, J. Schou, R. I. Bush, A. G. Kosovichev, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, J. Zhao, A. M. Title, C. J. Schrijver, T. D. Tarbell, and S. Tom- czyk. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):207–227, Jan. 2012. ISSN 0038-0938, 1573- 093X. doi: 10.1007/s11207-011-9834-2. URL http://link.springer.com/10.1007/ s11207-011-9834-2spa
dc.relation.referencesN. Scoville, K. Sheth, H. Aussel, P. V. Bout, P. Capak, A. Bongiorno, C. M. Casey, L. Murchikova, J. Koda, J. Álvarez Márquez, N. Lee, C. Laigle, H. J. McCracken, O. Il- bert, A. Pope, D. Sanders, J. Chu, S. Toft, R. J. Ivison, and S. Manohar. Ism masses and the star formation law at z = 1 to 6: Alma observations of dust continuum in 145 galaxies in the cosmos survey field. The Astrophysical Journal, 820(2):83, mar 2016. doi: 10.3847/ 0004-637X/820/2/83. URL https://dx.doi.org/10.3847/0004-637X/820/2/83spa
dc.relation.referencesB. Singh, K. Sharma, and A. K. Srivastava. On modelling the kinematics and evolution- ary properties of pressure-pulse-driven impulsive solar jets. Annales Geophysicae, 37(5): 891–902, 2019. doi: 10.5194/angeo-37-891-2019. URL https://angeo.copernicus.org/ articles/37/891/2019/spa
dc.relation.referencesSitnik G. F. and Pande M. Ch. Two Decay Processes for CO Molecules in the Solar Photo- sphere. azh, 44:732, Jan. 1967. URL https://ui.adsabs.harvard.edu/abs/1967AZh. ...44..732S. Provided by the SAO/NASA Astrophysics Data Systemspa
dc.relation.referencesR. Skartlien, R. F. Stein, and Nordlund. Excitation of chromospheric wave transients by collapsing granules. The Astrophysical Journal, 541(1):468, sep 2000. doi: 10.1086/309414. URL https://dx.doi.org/10.1086/309414spa
dc.relation.referencesSolanki S. K, Livingston W, and Ayres T.R. New Light on the Heart of Darkness of the Solar Chromosphere. Science, 263(5143):64–66, Jan. 1994. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.263.5143.64. URL https://www.science.org/doi/10.1126/science. 263.5143.64.spa
dc.relation.referencesP. Song. A model of the solar chromosphere: Structure and internal circulation. The Astrophysical Journal, 846(2):92, sep 2017. doi: 10.3847/1538-4357/aa85e1. URL https: //doi.org/10.3847/1538-4357/aa85e1spa
dc.relation.referencesV. Starovoitov, E. E.E., and I. K.T. Comparative analysis of the ssim index and the pear- son coefficient as a criterion for image similarity. Eurasian Journal of Mathematical and Computer Applications, 8:76–90, 01 2020. doi: 10.32523/2306-6172-2020-8-1-76-90spa
dc.relation.referencesThompson and Michael J. Helioseismology and the Sun’s interior. Astronomy & Geophysics, 45(4):4.21–4.25, 08 2004. ISSN 1366-8781. doi: 10.1046/j.1468-4004.2003.45421.x. URL https://doi.org/10.1046/j.1468-4004.2003.45421.xspa
dc.relation.referencesA. R. Thompson, G. B. Taylor, C. L. Carilli, and R. A. Perley. Synthesis Imaging in Radio Astronomy II, volume 180 of ASP Conference Series, pages 1–165. Astronomical Society of the Pacific, 1999. Lecture 2: Fundamentals of Radio Interferometryspa
dc.relation.referencesH. Uitenbroek. The co fundamental vibration-rotation lines in the solar spectrum. ii. non-lte transfer modeling in static and dynamic atmospheres. The Astrophysical Journal, 536(1): 481, jun 2000. doi: 10.1086/308933. URL https://dx.doi.org/10.1086/308933spa
dc.relation.referencesH. Uitenbroek. Multilevel Radiative Transfer with Partial Frequency Redistribution. ApJ, 557(1):389–398, Aug. 2001. doi: 10.1086/321659spa
dc.relation.referencesR. K. Ulrich. The Five-Minute Oscillations on the Solar Surface. apj, 162:993, Dec. 1970. doi: 10.1086/150731. URL https://ui.adsabs.harvard.edu/abs/1970ApJ...162..993U. Provided by the SAO/NASA Astrophysics Data System.spa
dc.relation.referencesJ. E. Vernazza. STRUCTURE OF THE SOLAR CHROMOSPHERE. I. BASIC COMPU- TATIONS AND SUMMARY OF THE RESULTS. ApJ. . ., 184(2), 1973.spa
dc.relation.referencesJ. E. Vernazza, E. H. Avrett, and R. Loeser. Structure of the solar chromosphere. II - The underlying photosphere and temperature-minimum region. The Astrophysical Journal Supplement Series, 30:1, Jan. 1976. ISSN 0067-0049, 1538-4365. doi: 10.1086/190356. URL http://adsabs.harvard.edu/doi/10.1086/190356.spa
dc.relation.referencesJ. E. Vernazza, E. H. Avrett, and R. Loeser. Structure of the solar chromosphere. III - Models of the EUV brightness components of the quiet-sun. The Astrophysical Journal Supplement Series, 45:635, Apr. 1981. ISSN 0067-0049, 1538-4365. doi: 10.1086/190731. URL http://adsabs.harvard.edu/doi/10.1086/190731.spa
dc.relation.referencesZ. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4):600–612, Apr. 2004. ISSN 1057-7149. doi: 10.1109/TIP.2003.819861. URL http://ieeexplore. ieee.org/document/1284395/.spa
dc.relation.referencesS. Wedemeyer, B. Freytag, M. Steffen, H.-G. Ludwig, and H. Holweger. Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere. Astronomy & Astrophysics, 414(3):1121–1137, Feb. 2004. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361:20031682. URL http://www.aanda.org/10.1051/0004-6361: 20031682.spa
dc.relation.referencesS. Wedemeyer, B. Fleck, M. Battaglia, N. Labrosse, G. Fleishman, H. Hudson, P. An- tolin, C. Alissandrakis, T. Ayres, J. Ballester, T. Bastian, J. Black, A. Benz, R. Bra- jsa, M. Carlsson, J. Costa, B. DePontieu, G. Doyle, G. Gimenez de Castro, S. Gunár, G. Harper, S. Jafarzadeh, M. Loukitcheva, V. Nakariakov, R. Oliver, B. Schmieder, C. Selhorst, M. Shimojo, P. Simões, R. Soler, M. Temmer, S. Tiwari, T. Van Doors- selaere, A. Veronig, S. White, P. Yagoubov, and T. Zaqarashvili. ALMA Observations of the Sun in Cycle 4 and Beyond. arXiv e-prints, art. arXiv:1601.00587, Jan. 2016a. URL https://ui.adsabs.harvard.edu/abs/2016arXiv160100587W. Provided by the SAO/NASA Astrophysics Data System.spa
dc.relation.referencesS. Wedemeyer, T. Bastian, R. Brajša, H. Hudson, G. Fleishman, M. Loukitcheva, B. Fleck, E. P. Kontar, B. De Pontieu, P. Yagoubov, S. K. Tiwari, R. Soler, J. H. Black, P. Antolin, E. Scullion, S. Gunár, N. Labrosse, H.-G. Ludwig, A. O. Benz, S. M. White, P. Hauschildt, J. G. Doyle, V. M. Nakariakov, T. Ayres, P. Heinzel, M. Karlicky, T. Van Doorsselaere, D. Gary, C. E. Alissandrakis, A. Nindos, S. K. Solanki, L. Rouppe van der Voort, M. Shi- mojo, Y. Kato, T. Zaqarashvili, E. Perez, C. L. Selhorst, and M. Barta. Solar Science with the Atacama Large Millimeter/Submillimeter Array—A New View of Our Sun. Space Science Reviews, 200(1-4):1–73, Apr. 2016b. ISSN 0038-6308, 1572-9672. doi: 10.1007/ s11214-015-0229-9. URL http://link.springer.com/10.1007/s11214-015-0229-9.spa
dc.relation.referencesS. Wedemeyer, M. Szydlarski, S. Jafarzadeh, H. Eklund, J. C. Guevara Gomez, T. Bastian, B. Fleck, J. de la Cruz Rodriguez, A. Rodger, and M. Carlsson. The Sun at millimeter wavelengths: I. Introduction to ALMA Band 3 observations. Astronomy & Astrophysics, 635:A71, Mar. 2020. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/201937122. URL https://www.aanda.org/10.1051/0004-6361/201937122.spa
dc.relation.referencesS. Wedemeyer, G. Fleishman, J. de la Cruz Rodríguez, S. Gunár, J. M. da Silva Santos, P. Antolin, J. C. Guevara Gómez, M. Szydlarski, and H. Eklund. Prospects and challenges of numerical modeling of the sun at millimeter wavelengths. Frontiers in Astronomy and Space Sciences, 9, 2022. ISSN 2296-987X. doi: 10.3389/fspas.2022.967878. URL https://www.frontiersin.org/articles/10.3389/fspas.2022.967878.spa
dc.relation.referencesS. Wedemeyer-Böhm, H. G. Ludwig, M. Steffen, J. Leenaarts, and B. Freytag. Inter-network regions of the Sun at millimetre wavelengths. Astronomy & Astrophysics, 471(3):977– 991, Sept. 2007. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361:20077588. URL http://www.aanda.org/10.1051/0004-6361:20077588.spa
dc.relation.referencesA. Wootten and A. R. Thompson. The Atacama Large Millimeter/submillimeter Array. Proceedings of the IEEE, 97(8):1463–1471, Aug. 2009. ISSN 0018-9219, 1558-2256. doi: 10. 1109/JPROC.2009.2020572. URL http://arxiv.org/abs/0904.3739. arXiv:0904.3739 [astro-ph].spa
dc.relation.referencesX. Zhou and H. Liang. The relationship between the 5-min oscillation and 3-min oscil- lations at the umbral/penumbral sunspot boundary. apss, 362(3):46, Mar. 2017. doi: 10.1007/s10509-016-3000-0. URL https://ui.adsabs.harvard.edu/abs/2017Ap&SS. 362...46Z. Provided by the SAO/NASA Astrophysics Data Systemspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.proposalShock waveseng
dc.subject.proposalWave propagationeng
dc.subject.proposalSolar chromosphereeng
dc.subject.proposalFormation heighteng
dc.subject.proposalSolar image alignmenteng
dc.subject.proposalOndas de choquespa
dc.subject.proposalPropagación de ondasspa
dc.subject.proposalCromosfera solarspa
dc.subject.proposalAltura de formaciónspa
dc.subject.proposalAlineación de imágenes solaresspa
dc.subject.unescoActividad solarspa
dc.subject.unescoSolar activityeng
dc.subject.unescoAstrofísicaspa
dc.subject.unescoAstrophysicseng
dc.subject.unescoCiencias del espaciospa
dc.subject.unescoSpace scienceseng
dc.titleDynamics of the cold solar chromosphere observed with ALMAeng
dc.title.translatedDinámica de la cromosfera solar fría observada con ALMAspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
franciscoordonezaraujo.2024.pdf
Tamaño:
52.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: