Control de calidad de paciente específico y dosimetría in vivo para la técnica TBI/VMAT sobre un simulador físico

dc.contributor.advisorSimbaqueba Ariza, Axel Dannyspa
dc.contributor.advisorPlazas De Pinzón, María Cristinaspa
dc.contributor.authorCastillo Martínez, Andrés Felipespa
dc.date.accessioned2023-06-22T19:43:32Z
dc.date.available2023-06-22T19:43:32Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractEste trabajo surge como continuación de un protocolo de irradiación corporal total (TBI) usando arcoterapia volumétrica de intensidad modulada (VMAT) desarrollado en el Instituto Nacional de Cancerología, debido a que es necesario establecer una metodología para ejecutar un programa de control de calidad de paciente específico y una dosimetría in vivo usando cristales termoluminiscentes (TLD) y diodos. Para ello, se parte desde una descripción detallada de los principios físicos básicos que subyacen cada uno de estos temas para lograr un entendimiento global de los objetivos. Luego, se aplican los protocolos y recomendaciones locales e internacionales para desarrollar las metas establecidas en el proyecto. Esto permitió comparar cualitativa y cuantitativamente los sistemas dosimétricos de estudio, resaltando las ventajas y desventajas que tienen entre si. También se toma en cuenta la importancia de las actividades de gestión de riesgos que puede llevar a cabo la entrega de un tratamiento especializado como es la TBI, evaluando controles de calidad basados en mediciones sobre fantomas que simulan la entrega de dosis y basados en software que determinan la exactitud en el cálculo de dosis del sistema de planeación de tratamiento. (Texto tomado de la fuente).spa
dc.description.abstractThis work arises as a continuation of a total body irradiation (TBI) protocol using volumetric modulated intensity arc therapy (VMAT) developed at the Instituto Nacional de Cancerología, because it is necessary to establish a methodology to execute a specific patient quality assurance program and in vivo dosimetry using thermoluminescent crystals (TLD) and diodes. To do this, it starts from a detailed description of the basic physical principles that underlie each of these issues to achieve a global understanding of the objectives. Then, local and international protocols and recommendations are applied to develop the goals established in the project. This allowed to qualitatively and quantitatively compare the dosimetric systems that were studied, highlighting the advantages and disadvantages that they have among themselves. The importance of risk management activities that can be carried out by the delivery of a specialized treatment such as TBI is also taken into account, evaluating quality controls based on measurements on phantoms that simulate the delivery of doses and based on software that determine the accuracy of the dose calculation of the treatment planning system.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.description.researchareaRadioterapiaspa
dc.format.extentxviii, 111 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84055
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.indexedBiremespa
dc.relation.referencesLeo, W. R. (1994). Techniques for Nuclear and Particle Physics Experiments: A How-to Approach. Springer.spa
dc.relation.referencesPodgorsak, E. B. (2018). Radiation Physics for Medical Physicists (3rd ed.). Springer.spa
dc.relation.referencesP. Andreo, D. Burns, A. Nahum, and J. Seuntjens, Fundamentals of Ionizing Radiation Dosimetry: Solutions to the Exercises. Fundamentals of Ionizing Radiation Dosimetry, Wiley, 2017.spa
dc.relation.referencesS. N. Corporation, ISORAD Detector Reference Guide. Sun Nuclear Corporation, 2021.spa
dc.relation.referencesS. N. Corporation, IVD 2 Reference Guide. Sun Nuclear Corporation, 2022.spa
dc.relation.referencesS. Kry, P. Alvarez, J. Cygler, L. DeWerd, R. Howell, S. Meeks, J. O’Daniel, C. Reft, G. Sawakuchi, E. Yukihara, and D. Mihailidis, “Aapm tg 191: Clinical use of luminescent dosimeters: Tlds and oslds,” Medical Physics, vol. 47, 10 2019.spa
dc.relation.referencesR. I. GmbH, Manual TLD Reader - TLD Cube. RadPro International GmbH, 2022.spa
dc.relation.referencesR. I. GmbH, TLD Annealing Oven - TLD Heat. RadPro International GmbH, 2022.spa
dc.relation.referencesR. I. GmbH, TLD Handling Devices. RadPro International GmbH, 2022.spa
dc.relation.referencesI. A. E. A. IAEA., Tecnicas de cuarto de moldes para teleterapia. Manual tecnico practico de radiacion, Organismo Internacional de Energia Atomica, 2004.spa
dc.relation.referencesF. Khan and J. Gibbons, Khan’s the Physics of Radiation Therapy. Ovid mono, Lippincott Williams & Wilkins, 2014.spa
dc.relation.referencesA. Berthelsen, J. Dobbs, E. Kjell´en, T. Landberg, T. M¨oller, P. Nilsson, L. Specht, and A. Wambersie, “What’s new in target volume definition for radiologists in icru report 71? how can the icru volume definitions be integrated in clinical practice?,” Cancer imaging : the official publication of the International Cancer Imaging Society, vol. 7, pp. 104–16, 02 2007.spa
dc.relation.referencesF. Khan, P. Sperduto, and J. Gibbons, Khan’s Treatment Planning in Radiation Oncology: . Wolters Kluwer Health, 2021spa
dc.relation.referencesE. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students, vol. 33. 06 2006.spa
dc.relation.referencesI. Varian Medical Systems, Eclipse Photon and Electron Algorithms Reference Guide. Varian Medical Systems, Inc, 2015.spa
dc.relation.referencesM. A. Morsy, “Left-side breast 3dcrt field-in-field technique planning radiotherapy.”spa
dc.relation.referencesE. Clementel and C. Corning, Patient-Specific Quality Assurance, pp. 449–451. Cham: Springer International Publishing, 2022.spa
dc.relation.referencesD. Low, W. Harms, S. Mutic, and J. Purdy, “Atechnique for the quantitative evaluation of dose distributions,” Phys Med, vol. 25, pp. 656–661, 01 1998.spa
dc.relation.referencesS. N. Corporation, ArcCHECK Reference Guide. Sun Nuclear Corporation, 2022.spa
dc.relation.referencesS. N. Corporation, SunCHECK Patient Reference Guide. Sun Nuclear Corporation, 2021.spa
dc.relation.referencesR. I. GmbH, Thermoluminescent Detectors. RadPro International GmbH, 2022spa
dc.relation.referencesF. Valcarcel, A. Torre, and J. Gayoso, “Total body irradiation in bone marrow transplantation,” Oncologia, vol. 24, pp. 16–28, 01 2001.spa
dc.relation.referencesJ. Y. Wong, A. R. Filippi, B. S. Dabaja, J. Yahalom, and L. Specht, “Total body irradiation: Guidelines from the international lymphoma radiation oncology group (ilrog),” International Journal of Radiation Oncology*Biology*Physics, vol. 101, no. 3, pp. 521– 529, 2018.spa
dc.relation.referencesE. Mu˜noz-Moral, A. Rodr´ıguez-Laguna, and J. A. Jim´enez-Acosta, “Implementation of total body irradiation using vmat,” AIP Conference Proceedings, vol. 2348, no. 1, p. 050029, 2021.spa
dc.relation.referencesDevelopment of Procedures for In Vivo Dosimetry in Radiotherapy. No. 8 in Human Health Reports, Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2013.spa
dc.relation.referencesA. B. Rosenfeld, “Semiconductor detectors in radiation medicine: Radiotherapy and related applications,” in Radiation Detectors for Medical Applications (S. Tavernier, A. Gektin, B. Grinyov, and W. W. Moses, eds.), (Dordrecht), pp. 111–147, Springer Netherlands, 2006.spa
dc.relation.referencesE. Yorke, R. Alecu, L. Ding, D. P. Fontenla, A. Kalend, D. G. L. Kaurin, M. E. Masterson-McGary, G. Marinello, T. Matzen, A. Saini, J. Shi, W. E. Simon, T. C. Zhu, X. R. Zhu, G. Rikner, and G. Nilsson, “Diode in vivo dosimetry for patients receiving external beam radiation therapy,” 2005.spa
dc.relation.referencesR. Pierret, Advanced Semiconductor Fundamentals. Modular series on solid state devices, Prentice Hall, 2003.spa
dc.relation.referencesR. Alecu, M. Alecu, and T. G. Ochran, “A method to improve the effectiveness of diode in vivo dosimetry.,” Medical physics, vol. 25 5, pp. 746–9, 1998.spa
dc.relation.referencesR. Carlson, Y. Sun, and H. Assalit, “Lifetime control in silicon power devices by electron or gamma irradiation,” IEEE Transactions on Electron Devices, vol. 24, no. 8, pp. 1103– 1108, 1977.spa
dc.relation.referencesJ. Shi, W. Simon, L. Ding, and D. Saini, “Important issues regarding diode performance in radiation therapyapplications,” vol. 3, pp. 1710–1713 vol.3, 02 2000.spa
dc.relation.referencesS. C. Klevenhagen, “Temperature response of silicon surface barrier semiconductor detectors operated in the dc–short circuit configuration,” Acta Radiologica: Therapy, Physics, Biology, vol. 12, no. 2, pp. 124–144, 1973. PMID: 4727265.spa
dc.relation.referencesE. Grusell and G. Rikner, “Evaluation of temperature effects in p-type silicon detectors,” Physics in Medicine & Biology, vol. 31, p. 527, may 1986spa
dc.relation.referencesJ. Shi, “Characteristics of the si diode as a radiation detector for the application of in-vivo dosimetry,” 1995.spa
dc.relation.referencesJ. N. Eveling, A. M. Morgan, and W. G. Pitchford, “Commissioning a p-type silicon diode for use in clinical electron beams,” Medical Physics, vol. 26, no. 1, pp. 100–107, 1999.spa
dc.relation.referencesC. B. Saw, J. Shi, and D. H. Hussey, “Energy dependence of a new solid state diode for low energy photon beam dosimetry,” Medical Dosimetry, vol. 23, no. 2, pp. 95–97, 1998spa
dc.relation.referencesD. Georg, B. De Ost, M.-T. Hoornaert, P. Pilette, J. Van Dam, M. Van Dycke, and D. Huyskens, “Build-up modification of commercial diodes for entrance dose measurements in ‘higher energy’ photon beams,” Radiotherapy and Oncology, vol. 51, no. 3, pp. 249–256, 1999.spa
dc.relation.referencesG. Rikner and E. Grusell, “General specifications for silicon semiconductors for use in radiation dosimetry,” Physics in Medicine and Biology, vol. 32, p. 1109, sep 1987.spa
dc.relation.referencesJ. Greig, R. Miller, and P. Okunieff, “An approach to dose measurement for total body irradiation,” International Journal of Radiation Oncology*Biology*Physics, vol. 36, no. 2, pp. 463–468, 1996.spa
dc.relation.referencesP. Almond, P. Biggs, B. Coursey, W. Hanson, M. S. Huq, R. Nath, and D. Rogers, “Aapm’s tg-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Medical physics, vol. 26, pp. 1847–70, 10 1999.spa
dc.relation.referencesM. Essers and B. Mijnheer, “In vivo dosimetry during external photon beam radiotherapy,” International Journal of Radiation Oncology*Biology*Physics, vol. 43, no. 2, pp. 245–259, 1999.spa
dc.relation.referencesD. P. Fontenla, R. Yaparpalvi, C.-S. Chui, and E. Briot, “The use of diode dosimetry in quality improvement of patient care in radiation therapy,” Medical Dosimetry, vol. 21, no. 4, pp. 235–241, 1996.spa
dc.relation.referencesT. Kron, “Thermoluminescence dosimetry and its applications in medicine–part 1: Physics, materials and equipment,” Australasian physical &; engineering sciences in medicine, vol. 17, p. 175—199, December 1994.spa
dc.relation.referencesF. Alghurabi, N. Sahib Mohammed, R. Ghafil, R. Gafel, and R. Ghafel, “A literature review on the fluorescence and phosphorescent,” American International Journal of Sciences and Engineering Research, vol. 2, pp. 47–55, 01 2019.spa
dc.relation.referencesJ. Frenkel, “On the transformation of light into heat in solids. i,” Phys. Rev., vol. 37, pp. 17–44, Jan 1931.spa
dc.relation.referencesJ. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Materials Research Bulletin, vol. 5, no. 8, pp. 721–729, 1970.spa
dc.relation.referencesJ. Cameron, “Radiation dosimetry,” Environmental Health Perspectives, vol. 91, pp. 45– 48, 1991spa
dc.relation.referencesA. Pinz´on, “Establecimiento de un protocolo para irradiaci´on corporal total con la t´ecnica de arcoterapia volum´etrica de intensidad modulada,” (Bogota), Universidad Nacional de Colombia, 2021.spa
dc.relation.referencesAccuracy Requirements and Uncertainties in Radiotherapy. No. 31 in Human Health Series, Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2016.spa
dc.relation.referencesJ. Van Dyk, The Modern Technology of Radiation Oncology: A Compendium for Medical Physicists and Radiation Oncologists. No. v. 1 in The Modern Technology of Radiation Oncology: A Compendium for Medical Physicists and Radiation Oncologists, Medical Physics Pub., 1999.spa
dc.relation.referencesC. Hurkmans, P. Remeijer, J. Lebesque, and B. Mijnheer, “Set-up verification using portal imaging; review of current clinical practice,” Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, vol. 58, pp. 105–20, 03 2001.spa
dc.relation.referencesD. White, J. Booz, R. Griffith, J. Spokas, and I. Wilson, “2. basic concepts,” Reports of the International Commission on Radiation Units and Measurements, vol. os-23, no. 1, p. 3–13, 1989d.spa
dc.relation.referencesD. White, J. Buckland-Wright, R. Griffith, L. Rothenberg, C. Showwalter, G. Williams, I. Wilson, and M. Zankl, “4. phantoms in radiotherapy,” Reports of the International Commission on Radiation Units and Measurements, vol. os-25, no. 1, p. 21–25, 1992.spa
dc.relation.referencesCIRS, ATOM Dosimetry Phantoms. CIRS, 2013.spa
dc.relation.referencesT. J. FitzGerald, M. Bishop-Jodoin, D. S. Followill, J. Galvin, M. V. Knopp, J. M. Michalski, M. A. Rosen, J. D. Bradley, L. K. Shankar, F. Laurie, M. G. Cicchetti, J. Moni, C. N. Coleman, J. A. Deye, J. Capala, and B. Vikram, “Imaging and data acquisition in clinical trials for radiation therapy,” 2016.spa
dc.relation.referencesJ. Hsieh and T. Flohr, “Computed tomography recent history and future perspectives,” Journal of Medical Imaging, vol. 8, no. 5, p. 052109, 2021.spa
dc.relation.referencesJ. J. Battista, W. D. Rider, and J. Van Dyk, “Computed tomography for radiotherapy planning,” International Journal of Radiation Oncology*Biology*Physics, vol. 6, no. 1, pp. 99–107, 1980.spa
dc.relation.referencesE. Aird and J. Conway, “Ct simulation for radiotherapy treatment planning,” The British journal of radiology, vol. 75, pp. 937–49, 01 2003spa
dc.relation.referencesG. Ausili C`efaro, D. Genovesi, and C. Perez, Delineating Organs at Risk in Radiation Therapy. 01 2013.spa
dc.relation.referencesN. Burnet, S. Thomas, K. Burton, and S. Jefferies, “Defining the tumour and target volumes for radiotherapy,” Cancer imaging : the official publication of the International Cancer Imaging Society, vol. 4, pp. 153–61, 02 2004.spa
dc.relation.referencesD. Jones, “Icru report 50—prescribing, recording and reporting photon beam therapy,” Medical Physics, vol. 21, no. 6, pp. 833–834, 1994.spa
dc.relation.referencesS. L. Morgan-Fletcher, “Prescribing, recording and reporting photon beam therapy (supplement to icru report 50), icru report 62. icru, pp. ix+52, 1999 (icru bethesda, md) $65.00 isbn 0-913394-61-0,” The British Journal of Radiology, vol. 74, no. 879, pp. 294–294, 2001.spa
dc.relation.referencesR. Gahbauer, T. Landberg, J. Chavaudra, J. Dobbs, N. Gupta, G. Hanks, J.-C. Horiot, K.-A. Johansson, T. M¨oller, N. Suzanne, J. Purdy, I. Santenac, N. Suntharalingam, and H. Svensson, “Report 71,” Journal of the ICRU, vol. 4, pp. NP–NP, 06 2004.spa
dc.relation.referencesJ. C. Stroom and B. J. Heijmen, “Limitations of the planning organ at risk volume (prv) concept,” International Journal of Radiation Oncology, Biology, Physics, vol. 66, pp. 279–286, Sep 2006.spa
dc.relation.referencesN. Hodapp, “[the icru report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (imrt)],” Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al], vol. 188, p. 97—99, January 2012.spa
dc.relation.referencesD. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, J. We, and T. R. Mackie, “Beam: A monte carlo code to simulate radiotherapy treatment units,” Medical Physics, vol. 22, no. 5, pp. 503–524, 1995.spa
dc.relation.referencesH. D. Basdemir, “Gaussian source beam diffraction by a perfect electromagnetic halfplane,” J. Opt. Soc. Am. A, vol. 37, pp. 930–939, Jun 2020.spa
dc.relation.referencesL. Tillikainen, H. Helminen, T. Torsti, S. Siljam¨aki, J. Alakuijala, J. Pyyry, and W. Ulmer, “A 3d pencil-beam based superposition algorithm for photon dose calculation in heterogeneous media,” Physics in medicine and biology, vol. 53, pp. 3821–39, 08 2008.spa
dc.relation.referencesI. Kawrakow and D. W. O. Rogers, “The egsnrc code system: Monte carlo simulation of electron and photon transport,” tech. rep. Collection / Collection : NRC Publications Archive / Archives des publications du CNRC.spa
dc.relation.referencesE. Soisson, “Imrt/vmat: Theory and definitions.”spa
dc.relation.referencesS. Webb, “The physical basis of imrt and inverse planning.,” The British journal of radiology, vol. 76 910, pp. 678–89, 2003.spa
dc.relation.referencesA. C., A. Simbaqueba, J. Rodr´ıguez, S. Veloza, and J. C., “Estudio preliminar de la aplicaci´on de la t´ecnica vmat en irradiaci´on corporal total: dise˜no de una camilla rotable,” Revista Investigaciones y Aplicaciones Nucleares, 10 2022.spa
dc.relation.referencesG. Krishnan, P. Kurup, M. Venkatraman, M. Manavalan, N. Bhuvaneshwari, and J. Velmurugan, “Patient dose analysis in total body irradiation through in vivo dosimetry,” Journal of medical physics / Association of Medical Physicists of India, vol. 37, pp. 214– 8, 10 2012.spa
dc.relation.referencesR. Patel, A. Warry, D. Eaton, C. Collis, and I. Rosenberg, “In vivo dosimetry for total body irradiation: Five-year results and technique comparison,” Journal of applied clinical medical physics / American College of Medical Physics, vol. 15, p. 4939, 09 2014.spa
dc.relation.referencesE. Veiga, R. Alfonso, and R. Caballero Pinelo, In Vivo Dosimetry in Total Body Irradiation, pp. 61–65. 05 2019.spa
dc.relation.referencesE. R. Zhang-Velten, D. Parsons, P. Lee, E. Chambers, R. Abdulrahman, N. B. Desai, T. Dan, Z. Wardak, R. Timmerman, M. Vusirikala, P. Patel, T. Simms-Waldrip, V. Aquino, A. Koh, J. Tan, Z. Iqbal, Y. Zhang, R. Reynolds, T. Chiu, M. Joo, B. Hrycushko, L. Ouyang, R. Lamphier, Y. Yan, S. B. Jiang, K. A. Kumar, and X. Gu, “Volumetric modulated arc therapy enabled total body irradiation (vmat-tbi): Six-year clinical experience and treatment outcomes,” Transplantation and Cellular Therapy, Official Publication of the American Society for Transplantation and Cellular Therapy, vol. 28, pp. 113.e1–113.e8, Feb 2022.spa
dc.relation.referencesY. Xu, K. Zhang, Z. Liu, B. Liang, X. Ma, W. Ren, K. Men, and J. Dai, “Treatment plan prescreening for patient-specific quality assurance measurements using independent monte carlo dose calculations,” Frontiers in Oncology, vol. 12, 2022.spa
dc.relation.referencesJ. M. Park, J.-i. Kim, S.-Y. Park, D. H. Oh, and S.-T. Kim, “Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans,” Radiation Oncology, vol. 13, p. 175, Sep 2018.spa
dc.relation.referencesG. A. Ezzell, J. W. Burmeister, N. Dogan, T. LoSasso, J. Mechalakos, D. Mihailidis, A. Molineu, J. R. Palta, C. R. Ramsey, B. J. Salter, J. Shi, P. Xia, and N. J. Yue, “Imrt commissioning: Multiple-institution planning and dosimetry Based on TG-119,” Medical Physics, vol. 36, no. 11, pp. 5359–5373, 2009.spa
dc.relation.referencesS. N. Corporation, 3DVH Reference Guide. Sun Nuclear Corporation, 2022.spa
dc.relation.referencesT. Kosaka, J. Takatsu, T. Inoue, N. Hara, T. Mitsuhashi, M. Suzuki, and N. Shikama, “Effective clinical applications of monte carlo-based independent secondary dose verification software for helical tomotherapy,” Phys Med, vol. 104, pp. 112–122, Dec 2022.spa
dc.relation.referencesE. Simiele, L. Skinner, Y. Yang, E. S. Blomain, R. T. Hoppe, S. M. Hiniker, and N. Kovalchuk, “A step toward making vmat tbi more prevalent: Automating the treatment planning process,” Practical Radiation Oncology, vol. 11, pp. 415–423, Sep 2021.spa
dc.relation.referencesJ. R. Teruel, S. Taneja, A. McCarthy, P. Galavis, M. Malin, S. Osterman, N. K. Gerber, D. Barbee, and C. Hitchen, “Robust vmat-based total body irradiation (tbi) treatment planning assisted by eclipse scripting,” International Journal of Radiation Oncology, Biology, Physics, vol. 105, pp. E788–E789, Sep 2019.spa
dc.relation.referencesJ. R. Teruel, S. Taneja, P. E. Galavis, K. S. Osterman, A. McCarthy, M. Malin, N. K. Gerber, C. Hitchen, and D. L. Barbee, “Automatic treatment planning for vmat-based total body irradiation using eclipse scripting,” Journal of Applied Clinical Medical Physics, vol. 22, no. 3, pp. 119–130, 2021.spa
dc.relation.referencesP. H. B. Cardoso, “Development and evaluation of a perpendicular frame-by-frame patient-specific qa method for large vmat fields using the truebeam electronic portal imaging system,” dukespace.lib.duke.edu, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.lembDosimetría (radiación)spa
dc.subject.lembRadiation - dosageeng
dc.subject.lembTermoluminiscenciaspa
dc.subject.lembThermoluminescenceeng
dc.subject.lembCáncer-tratamientospa
dc.subject.lembCancer-treatmenteng
dc.subject.proposalVMATeng
dc.subject.proposalTBIeng
dc.subject.proposalDosimetríaspa
dc.subject.proposalDosimetryeng
dc.subject.proposalVivospa
dc.subject.proposalVivoeng
dc.subject.proposalControlspa
dc.subject.proposalControleng
dc.subject.proposalCalidadspa
dc.subject.proposalTBIspa
dc.subject.proposalVMATspa
dc.subject.proposalTLDspa
dc.subject.proposalTLDeng
dc.subject.proposalAssuranceeng
dc.subject.proposalPacientespa
dc.subject.proposalEspecíficospa
dc.subject.proposalSpecificeng
dc.subject.proposalPatienteng
dc.titleControl de calidad de paciente específico y dosimetría in vivo para la técnica TBI/VMAT sobre un simulador físicospa
dc.title.translatedSpecific patient quality control and in vivo dosimetry for the TBI/VMAT technique on a physical simulatoreng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085317413.2023.pdf
Tamaño:
19.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: