Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá

dc.contributor.advisorPedraza Bonilla, Cesar Augusto
dc.contributor.advisorDarghan Contreras, Aquiles Enrique
dc.contributor.authorSandoval Pineda, Alejandro
dc.date.accessioned2022-06-01T17:16:16Z
dc.date.available2022-06-01T17:16:16Z
dc.date.issued2022-05-31
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractLos accidentes de tránsito son eventos generalmente involuntarios y aleatorios generados por al menos un vehículo en movimiento que causa daños a personas y bienes involucrados en él. En Bogotá, estos son la segunda causa más importante de muerte violenta, cuestan en promedio un equivalente al 2,9% del Producto Interno Bruto de la ciudad y afectan la movilidad de aproximadamente 7 millones de habitantes, por lo que constituyen un problema transversal de salud, economía y movilidad. La estructura urbana de la ciudad establecida por los habitantes, los usos del suelo y la movilidad representan un factor ambiental de interés que se relaciona con los accidentes de tránsito. Un método para analizar la relación de estas variables con los accidentes de tránsito es mediante datos de área. El presente estudio tuvo como fin evaluar el impacto de variables socioeconómicas, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en el suelo urbano de Bogotá mediante el análisis de las unidades espaciales: Zonas de Análisis de Transporte y Unidades Territoriales de Análisis de Movilidad. Para ello, se evaluó el desempeño de modelos de regresión espacial y de soporte vectorial en la predicción de dos índices de accidentalidad vehicular que relacionan el total de accidentes de tránsito y las muertes ocasionadas por estos con el perímetro vial por unidad espacial, a partir de variables socioeconómicas, del uso del suelo y de movilidad. Se encontró que los modelos de regresión de soporte vectorial permiten modelar la autocorrelación espacial y tienen mejor rendimiento predictivo y bondad de ajuste que los modelos de regresión espacial. Además, los modelos en el nivel de Unidades Territoriales de Análisis de Movilidad tuvieron un mejor desempeño que en el nivel Zonas de Análisis de Transporte en la predicción de los índices de accidentalidad. Finalmente, se identificó que la tasa de viajes por persona en taxi y en motocicleta fueron las variables con mayor impacto en el incremento del total de accidentes de tránsito y las muertes ocasionadas por estos. (Texto tomado de la fuente)spa
dc.description.abstractTraffic crashes are generally involuntary and random events generated by at least one moving vehicle that cause damage to people and property involved in it. In Bogotá, these are the second most important cause of violent death, they cost on average an equivalent to 2.9% of the city's Gross Domestic Product and affect the mobility of approximately 7 million inhabitants, for which they constitute a transversal health, economy, and mobility problem. The urban structure of the city established by population, land uses, and mobility represent an environmental factor of interest that is related to traffic crashes. One method to analyze the relationship of these variables with traffic crashes is through area data. The purpose of this study was to evaluate the impact of socioeconomic, land use and mobility variables on the frequency of traffic accidents in the urban area of Bogotá through the analysis of spatial units: Transport Analysis Zones and Territorial Mobility Analysis Units. To do this, the performance of spatial regression and vector support models was evaluated in the prediction of two vehicular accident rates that relate the total number of traffic crashes and the deaths caused by them with the road perimeter per spatial unit, based on socioeconomic, land use and mobility variables. It was found that support vector regression models allow spatial autocorrelation to be modeled and have better predictive performance and goodness of fit than spatial regression models. In addition, the models at the level of Territorial Mobility Analysis Units had a better performance than at the level of Transport Analysis Zones in predicting accident rates. Finally, it was identified that the rate of trips per person by taxi and by motorcycle were the variables with the greatest impact on the increase in total traffic accidents and the deaths caused by them.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaTecnologías geoespacialesspa
dc.format.extentxix, 133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81473
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.referencesAbdel-Aty, M., Siddiqui, C., Huang, H., & Wang, X. (2011). Integrating trip and roadway characteristics to manage safety in traffic analysis zones. Transportation Research Record, 2213, 20–28. https://doi.org/10.3141/2213-04spa
dc.relation.referencesAbellán, J. J., Marténez-Beneito, M. A., Zurriaga, O., Jorques, G., Ferrándiz, J., & López-Quélez, A. (2002). Procesos puntuales como herramienta para el análisis de posibles fuentes de contaminación. Gaceta Sanitaria / S.E.S.P.A.S, 16(5), 445–449. https://doi.org/10.1016/S0213-9111(02)71956-0spa
dc.relation.referencesAguero-Valverde, J., & Jovanis, P. P. (2008). Analysis of Road Crash Frequency with Spatial Models. Transportation Research Record: Journal of the Transportation Research Board, 2061(1), 55–63. https://doi.org/10.3141/2061-07spa
dc.relation.referencesAlbalate, D., & Fernández-Villadangos, L. (2010). Motorcycle injury severity in Barcelona: The role of vehicle type and congestion. Traffic Injury Prevention, 11(6), 623–631. https://doi.org/10.1080/15389588.2010.506932spa
dc.relation.referencesAnselin, L. (1988). Spatial econometrics: Methods and models. Kluwer Academic Publishers.spa
dc.relation.referencesAnselin, Luck, & Bera, A. K. (1996). Spatial Dependence in linear Regression Models with an Introduction to Spatial Econometrics. 257–259. https://doi.org/10.1201/9781482269901-36spa
dc.relation.referencesAwad, M., & Khanna, R. (2015). Support Vector Regression. In Efficient Learning Machines: Theories, concepts, and applications for engineers and system designers (pp. 67–80).spa
dc.relation.referencesBao, J., Liu, P., & Ukkusuri, S. V. (2019). A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data. Accident Analysis and Prevention, 122(October 2018), 239–254. https://doi.org/10.1016/j.aap.2018.10.015spa
dc.relation.referencesBeaver, R. J., Beaver, B. M., & Mendenhall, W. (2006). Introducción a la probabilidad y estadística (13th ed.). Cencage Learning.spa
dc.relation.referencesBermúdez, J. (2019). Identificación de puntos calientes de accidentalidad vial en la Ciudad de Bogotá para el primer semestre de 2018.spa
dc.relation.referencesBermúdez, S. (2016). Metodología para la evaluación espacio temporal de la accidentalidad vial en Bogotá: caso Avenida Boyacá. http://bdigital.unal.edu.co/56979/7/SoniaC.BermúdezArias.2016.pdfspa
dc.relation.referencesBernal, A. (2005). La familia como ámbito educativo (Rialp).spa
dc.relation.referencesBivand, R. (2022). R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data. Geographical Analysis. https://doi.org/10.1111/gean.12319spa
dc.relation.referencesBivand, R., Millo, G., & Piras, G. (2021). A Review of Software for Spatial Econometrics in R. Mathematics, 9(11). https://doi.org/10.3390/math9111276spa
dc.relation.referencesBorrego, J. (2018). Modelos de Regresión para Datos Espaciales. Universidad de Sevilla.spa
dc.relation.referencesBoser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, 144–152.spa
dc.relation.referencesBoulton, A. J., & Williford, A. (2018). Analyzing skewed continuous outcomes with many zeros: A tutorial for social work and youth prevention science researchers. Journal of the Society for Social Work and Research, 9(4), 721–740. https://doi.org/10.1086/701235spa
dc.relation.referencesCai, Q., Abdel-Aty, M., Sun, Y., Lee, J., & Yuan, J. (2019). Applying a deep learning approach for transportation safety planning by using high-resolution transportation and land use data. Transportation Research Part A: Policy and Practice, 127(July), 71–85. https://doi.org/10.1016/j.tra.2019.07.010spa
dc.relation.referencesCalderón, D. H., & Vargas Sora, D. F. (2019). Análisis de accidentalidad vehicular usando técnicas de minería de datos. http://repository.udistrital.edu.co/bitstream/11349/15763/1/SoraVargasDiegoFelipe2019.pdfspa
dc.relation.referencesCantillo, V., Garcés, P., & Márquez, L. (2016). Factors influencing the occurrence of traffic accidents in urban roads: A combined GIS-Empirical Bayesian approach. DYNA (Colombia), 83(195), 21–28. https://doi.org/10.15446/dyna.v83n195.47229spa
dc.relation.referencesCantillo, V., Márquez, L., & Díaz, C. J. (2020). An exploratory analysis of factors associated with traffic crashes severity in Cartagena, Colombia. Accident Analysis and Prevention, 146(July). https://doi.org/10.1016/j.aap.2020.105749spa
dc.relation.referencesChasco Yrigoyen, C. (2003). Métodos gráficos del análisis exploratorio de datos espaciales. Universidad Autónoma de Madrid.spa
dc.relation.referencesChiou, Y. C., Fu, C., & Hsieh, C. W. (2014). Incorporating spatial dependence in simultaneously modeling crash frequency and severity. Analytic Methods in Accident Research, 2, 1–11. https://doi.org/10.1016/j.amar.2013.12.001spa
dc.relation.referencesCressie, N. (1993). Statistics for Spatial Data (John Wiley & Sons (ed.)).spa
dc.relation.referencesDANE. (2015). Metodología de estratificación socioeconómica urbana para servicios públicos domiciliarios. Plan Nacional de Restauración: Restauración Ecológica, Rehabilitación y Recuperación de Áreas Disturbadas, 98.spa
dc.relation.referencesDANE. (2019). Censo nacional de poblacional y vivienda 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018spa
dc.relation.referencesDangond, C., Jean-François, J., Monteoliva, A., & Rojas, F. (2011). Algunas reflexiones sobre la movilidad urbana en Colombia desde la perspectiva del desarrollo humano. 16(2), 485–514. http://www.scielo.org.co/pdf/papel/v16n2/v16n2a07.pdfspa
dc.relation.referencesDe Guevara, F. L., Washington, S. P., & Oh, J. (2004). Forecasting crashes at the planning level : Simultaneous negative binomial crash model applied in Tucson, Arizona. Transportation Research Record, 1897, 191–199. https://doi.org/10.3141/1897-25spa
dc.relation.referencesDeng, T., & Nelson, J. D. (2011). Recent developments in bus rapid transit: A review of the literature. Transport Reviews, 31(1), 69–96. https://doi.org/10.1080/01441647.2010.492455spa
dc.relation.referencesDing, C., Chen, P., & Jiao, J. (2018). Non-linear effects of the built environment on automobile-involved pedestrian crash frequency: A machine learning approach. Accident Analysis and Prevention, 112(August 2017), 116–126. https://doi.org/10.1016/j.aap.2017.12.026spa
dc.relation.referencesDong, N., Huang, H., & Zheng, L. (2015). Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects. Accident Analysis and Prevention, 82, 192–198. https://doi.org/10.1016/j.aap.2015.05.018spa
dc.relation.referencesEfroymson, M. A. (1960). Multiple regression analysis (A. Ralston & H. S. Wilf (eds.)).spa
dc.relation.referencesElhorst, J. P. (2013). Spatial Econometrics From Cross-Sectional Data to Spatial Panels (Vol. 16). https://doi.org/10.1007/978-3-642-40340-8spa
dc.relation.referencesFan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Jen Lin, C. (2008). LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research.spa
dc.relation.referencesFisher, M., & Wang, J. (2011). Spatial Daya Analysis. Models, Methods and Techniques. In Springer (Ed.), Media (Issue January).spa
dc.relation.referencesFuentes, C., & Hernández, V. (2009). La estructura espacial urbana y la incidencia de accidentes de tránsito en Tijuana, Baja California ( 2003-2004). Frontera Norte, 21(42), 5. https://doi.org/10.17428/rfn.v21i42.966spa
dc.relation.referencesGao, D., Li, X., Yang, C., & Zhang, Y. (2012). Spatial patterns analysis of urban road traffic accidents based on gis. IET Conference Publications, 2012(598 CP), 1898–1901. https://doi.org/10.1049/cp.2012.1363spa
dc.relation.referencesGiraldo, R. (2002). Introducción a la geoestadística.spa
dc.relation.referencesGoodchild, M. (1987). Spatial Analytical Perspective on Geographical Information Systems. International Journal of Geographical Information Systems.spa
dc.relation.referencesGoueset, V. (2018). Bogotá: Nacimiento de una metrópoli (T. editores Institut français d’études andines (ed.)). https://doi.org/10.4000/books.ifea.3252spa
dc.relation.referencesGriffith, D., & Chun, Y. (2019). Spatial Regression Analysis Using Eigenvector Spatial Filtering (Academic Press (ed.)). https://doi.org/https://doi.org/10.1016/B978-0-12-815043-6.00001-Xspa
dc.relation.referencesGujarati, D. N., & Porter, D. C. (2010). Econometría (Quinta). Mc Graw Hill.spa
dc.relation.referencesGuzman, D. P. (2011). Determinación de los factores de riesgo en accidentes donde están involucradas motocicletas en Bogotá. Universidad Javeriana.spa
dc.relation.referencesHadayeghi, A., Shalaby, A. S., & Persaud, B. N. (2003). Macrolevel Accident Prediction Models for Evaluating Safety of Urban Transportation Systems. Transportation Research Record, 1840, 87–95. https://doi.org/10.3141/1840-10spa
dc.relation.referencesHadayeghi, A., Shalaby, A. S., & Persaud, B. N. (2007). Safety prediction models: Proactive tool for safety evaluation in urban transportation planning applications. Transportation Research Record, 2019, 225–236. https://doi.org/10.3141/2019-27spa
dc.relation.referencesHernández-Hernández, V., & De Haro-De León, L. (2014). La Relación Entre La Centralidad Urbana Y Los Atropellamientos En Ciudad Juárez, México. Hacia La Promoción de La Salud, 19(2), 81–94.spa
dc.relation.referencesHezaveh, A. M., Arvin, R., & Cherry, C. R. (2019). A geographically weighted regression to estimate the comprehensive cost of traffic crashes at a zonal level. Accident Analysis and Prevention, 131(May), 15–24. https://doi.org/10.1016/j.aap.2019.05.028spa
dc.relation.referencesHuang, H., Song, B., Xu, P., Zeng, Q., Lee, J., & Abdel-Aty, M. (2016). Macro and micro models for zonal crash prediction with application in hot zones identification. Journal of Transport Geography, 54, 248–256. https://doi.org/10.1016/j.jtrangeo.2016.06.012spa
dc.relation.referencesIzadi, A., Jamshidpour, F., Safari, D., & Gilani, V. N. M. (2020). Accident analysis of bus rapid transit system: Before and after construction. European Transport - Trasporti Europei, 79. https://doi.org/10.48295/et.2020.79.9spa
dc.relation.referencesJaromczyk, J. W., & Toussaint, G. T. (1992). Relative Neighborhood Graphs and Their Relatives. Proceedings of the IEEE, 80(9), 1502–1517. https://doi.org/10.1109/5.163414spa
dc.relation.referencesKaratzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). “kernlab – An S4 Package for Kernel Methods in R". Journal of Statistical Software, 1–20. https://doi.org/10.18637/jss.v011.i09spa
dc.relation.referencesKassambara, A. (2017). Practical Guide To Principal Component Methods in R. Sthda, 2, 1–155. http://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-component-analysis-python/spa
dc.relation.referencesKim, K., Made Brunner, I., & Yamashita, E. Y. (2006). Influence of land use, population, employment, and economic activity on accidents. Transportation Research Record, 1953, 56–64. https://doi.org/10.3141/1953-07spa
dc.relation.referencesKim, K., Pant, P., & Yamashita, E. (2010). Measuring influences of demographic and land use variables in Honolulu, Hawaii. Transportation Research Record, 2147, 9–17. https://doi.org/10.3141/2147-02spa
dc.relation.referencesKim, K., & Yamashita, E. (2002). Motor vehicle crashes and land use empirical analysis from Hawaii. Transportation Research Record, 1784, 73–79. https://doi.org/10.3141/1784-10spa
dc.relation.referencesKusselson, S. (2013). Investigating how land use patterns affect traffic accident rates near frontage road cross-sectiones: A case study on interstate 610 in Houston, Texas. 1–11.spa
dc.relation.referencesLACEA. (2021). LACEA-LAMES 2021 Annual Meeting.spa
dc.relation.referencesLankarani, K. B., Heydari, S. T., Aghabeigi, M. R., Moafian, G., Hoseinzadeh, A., & Vossoughi, M. (2014). The impact of environmental factors on traffic accidents in Iran. Journal of Injury and Violence Research, 6(2). https://doi.org/10.5249/jivr.v6i2.318spa
dc.relation.referencesLe, K. G., Liu, P., & Lin, L. T. (2020). Traffic accident hotspot identification by integrating kernel density estimation and spatial autocorrelation analysis: a case study. International Journal of Crashworthiness, 0(0), 1–11. https://doi.org/10.1080/13588265.2020.1826800spa
dc.relation.referencesLee, D., Guldmann, J., & Von-Rabenau, B. (2013). Macro-Level Analysis of the Impacts of Urban Factors on Traffic Crashes : A Case Study of Central Ohio. February.spa
dc.relation.referencesLeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. In Introduction to Spatial Econometrics. https://doi.org/10.1111/j.1467-985x.2010.00681_13.xspa
dc.relation.referencesLi, X., Lord, D., Zhang, Y., & Xie, Y. (2008). Predicting motor vehicle crashes using Support Vector Machine models. Accident Analysis and Prevention, 40(4), 1611–1618. https://doi.org/10.1016/j.aap.2008.04.010spa
dc.relation.referencesLi, Z., Liu, P., Wang, W., & Xu, C. (2012). Using support vector machine models for crash injury severity analysis. Accident Analysis and Prevention, 45, 478–486. https://doi.org/10.1016/j.aap.2011.08.016spa
dc.relation.referencesLizarazo, C., & Valencia, V. (2018). Macroscopic spatial analysis of pedestrian crashes in Medellin, Colombia. Transportation Research Record, 2672(31), 54–62. https://doi.org/10.1177/0361198118758639spa
dc.relation.referencesMehdi, M. (2018). Spatial and spatio-temporal point patterns on linear networks. Universidad de Jaume.spa
dc.relation.referencesMesa-Arango, R., Valencia-Alaix, V. G., Pineda-Mendez, R. A., & Eissa, T. (2018). Influence of socioeconomic conditions on crash injury severity for an urban area in a developing country. Transportation Research Record, 2672(31), 41–53. https://doi.org/10.1177/0361198118758684spa
dc.relation.referencesMohammadi, M., Shafabakhsh, G., & Naderan, A. (2017). Macro-level modeling of urban transportation safety: Case-study of Mashhad (Iran). Transport and Telecommunication, 18(4), 282–288. https://doi.org/10.1515/ttj-2017-0025spa
dc.relation.referencesMoncada, I. (2018). Análisis espacio-temporal de los accidentes de tránsito en Bogotá utilizando patrones puntuales. Universidad Nacional de Colombia.spa
dc.relation.referencesMoran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika.spa
dc.relation.referencesNaderan, A., & Shahi, J. (2010). Aggregate crash prediction models: Introducing crash generation concept. Accident Analysis and Prevention, 42(1), 339–346. https://doi.org/10.1016/j.aap.2009.08.020spa
dc.relation.referencesOkabe, A., Satoh, T., & Sugihara, K. (2009). A kernel density estimation method for networks, its computational method and a GIS-based tool. International Journal of Geographical Information Science, 23(1), 7–32. https://doi.org/10.1080/13658810802475491spa
dc.relation.referencesOlaya, R. A. (2015). Modelo Espacial De Muertes Por Accidentes De Tránsito En La Zona Urbana De Cali, Colombia Durante El Periodo 2004-2014. 1.spa
dc.relation.referencesPace, R. K., & LeSage, J. P. (2006). Interpreting spatial econometric models. Handbook of Regional Science, 1535–1552.spa
dc.relation.referencesPérez-Cantor, J. C. (2019). Análisis de Accidentalidad vial de motocicletas mediante Sistemas de Información Geográfico. Caso estudio: Tunja-Boyacá. Pensamiento y Acción, 28, 3–17. https://doi.org/10.19053/01201190.n28.2020.10740spa
dc.relation.referencesPljakić, M., Jovanović, D., Matović, B., & Mićić, S. (2019). Macro-level accident modeling in Novi Sad: A spatial regression approach. Accident Analysis and Prevention, 132(July). https://doi.org/10.1016/j.aap.2019.105259spa
dc.relation.referencesPulugurtha, S. S., Duddu, V. R., & Kotagiri, Y. (2013). Traffic analysis zone level crash estimation models based on land use characteristics. Accident Analysis and Prevention, 50, 678–687. https://doi.org/10.1016/j.aap.2012.06.016spa
dc.relation.referencesQuddus, M. A. (2008). Modelling area-wide count outcomes with spatial correlation and heterogeneity: An analysis of London crash data. Accident Analysis and Prevention, 40(4), 1486–1497. https://doi.org/10.1016/j.aap.2008.03.009spa
dc.relation.referencesRahman, M. S., Abdel-Aty, M., Hasan, S., & Cai, Q. (2019). Applying machine learning approaches to analyze the vulnerable road-users’ crashes at statewide traffic analysis zones. Journal of Safety Research, 70, 275–288. https://doi.org/10.1016/j.jsr.2019.04.008spa
dc.relation.referencesRamírez, A. F., & Valencia, C. (2021). Spatiotemporal correlation study of traffic accidents with fatalities and injuries in Bogota (Colombia). Accident Analysis and Prevention, 149(October 2020), 1–18. https://doi.org/10.1016/j.aap.2020.105848spa
dc.relation.referencesResnick, S. I. (2002). Adventures in Stochastic Processes. https://doi.org/https://doi.org/10.1007/978-1-4612-0387-2spa
dc.relation.referencesRhee, K. A., Kim, J. K., Lee, Y. I., & Ulfarsson, G. F. (2016). Spatial regression analysis of traffic crashes in Seoul. Accident Analysis and Prevention, 91, 190–199. https://doi.org/10.1016/j.aap.2016.02.023spa
dc.relation.referencesRojas, Y. (2020). Relación entre los eventos públicos y los accidentes de tránsito a partir del análisis de datos en Bogotá.spa
dc.relation.referencesSacristán, L. (2016). Análisis estadístico sobre las influencias del entorno en los accidentes de tránsito en la ciudad de Bogotá. Universidad de los Andes.spa
dc.relation.referencesSaha, D., Alluri, P., Gan, A., & Wu, W. (2018). Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models. Accident Analysis and Prevention, 118(February), 166–177. https://doi.org/10.1016/j.aap.2018.02.014spa
dc.relation.referencesSanchez, J. (2018). Estructuración de un mapa de riesgo de accidentes de tránsito en Tunja mediante SIG (Vol. 151, Issue 2). Universidad Pedadógica y Tecnológica de Colombia.spa
dc.relation.referencesSchabenberger, O., & Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis (Chapman &). Taylor & Francis Group.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2017). Observatorio de Movilidad Bogotá D.C. de 2017. 219.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2019). Caracterización de la movilidad - Encuesta de Movilidad de Bogotá 2019.spa
dc.relation.referencesSecretaría Distrital de Movilidad. (2020a). Anuario de siniestralidad vial de Bogotá 2019. 206. https://www.simur.gov.co/portal-simur/wp-content/uploads/2019/files/datos-abiertos/documentos/anuario/Anuario_de_Siniestralidad_Vial_de_Bogota_2018.pdfspa
dc.relation.referencesSecretaría Distrital de Movilidad. (2020b). Diagnóstico sectorial de movilidad en Bogotá 2016 - 2019. https://www.movilidadbogota.gov.co/web/sites/default/files/Paginas/27-11-2019/informe_1_diagnostico_sectorial_27-11-2019.pdfspa
dc.relation.referencesSecretaría Distrital de Planeación. (2018a). Estudio de crecimiento y evolución de la huella urbana para los Municipios que conforman el área Bogotá región.spa
dc.relation.referencesSecretaría Distrital de Planeación. (2018b). Monografía Bogotá D.C. 2017 Diagnóstico de los principales aspectos territoriales, de infraestructura, demográficos y socioeconómicos.spa
dc.relation.referencesShen, Q. (2000). The Spatial and Social Dimensions of Commuting. Journal of the American Planning Association.spa
dc.relation.referencesSiabato, W., & Guzmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografia: Revista Colombiana de Geografia, 28(1), 1–22. https://doi.org/10.15446/rcdg.v28n1.76919spa
dc.relation.referencesSiddiqui, C., Abdel-Aty, M., & Choi, K. (2012). Macroscopic spatial analysis of pedestrian and bicycle crashes. Accident Analysis and Prevention, 45, 382–391. https://doi.org/10.1016/j.aap.2011.08.003spa
dc.relation.referencesSiddiqui, C., Abdel-Aty, M., & Huang, H. (2012). Aggregate nonparametric safety analysis of traffic zones. Accident Analysis and Prevention, 45, 317–325. https://doi.org/10.1016/j.aap.2011.07.019spa
dc.relation.referencesStewart, I. (1977). Conceptos de matemática moderna (Alianza (ed.)).spa
dc.relation.referencesTabachnick, B. G., & Fidell, L. S. (2001). Using Multivariate Statistics. In Studies in Nonlinear Dynamics and Econometrics (Vol. 20, Issue 1). https://doi.org/10.1515/snde-2014-0102spa
dc.relation.referencesTasic, I., & Porter, R. J. (2016). Modeling spatial relationships between multimodal transportation infrastructure and traffic safety outcomes in urban environments. Safety Science, 82, 325–337. https://doi.org/10.1016/j.ssci.2015.09.021spa
dc.relation.referencesTobler, W. R. (1970). A computer model simulation of urban growth in the Detroit region. In Economic Geaography.spa
dc.relation.referencesUtts, J. M. (1982). The rainbow test for lack of fit in regression. Communications in Statistics - Theory and Methods, 11(24), 2801–2815. https://doi.org/10.1080/03610928208828423spa
dc.relation.referencesVapnik, V. (1995). The nature of statistical learning theory.spa
dc.relation.referencesVapnik, V. (1998). Statistical Learning Theory.spa
dc.relation.referencesVargas, D. (2018). Identificación de problemas de movilidad en la ciudad de Bogotá. Universidad Católica de Colombia.spa
dc.relation.referencesVargas, W., Mozo, E., & Herrera, E. (2012). Análisis de los puntos más críticos de accidentes de tránsito en Bogotá. Azimut.spa
dc.relation.referencesVer Hoef, J. M., Cressie, N. A. C., & Glenn-Lewin, D. C. (1993). Spatial models for spatial statistics: some unification. Journal of Vegetation Science, 4(4), 441–452. https://doi.org/10.2307/3236071spa
dc.relation.referencesWang, J., Huang, H., & Zeng, Q. (2017). The effect of zonal factors in estimating crash risks by transportation modes: Motor vehicle, bicycle and pedestrian. Accident Analysis and Prevention, 98, 223–231. https://doi.org/10.1016/j.aap.2016.10.018spa
dc.relation.referencesWHO. (2011). Plan mundial para el decenio de acción para la seguridad vial 2011-2020. Technical report. World Health Organization, 4(190), 13–14.spa
dc.relation.referencesWier, M., Weintraub, J., Humphreys, E. H., Seto, E., & Bhatia, R. (2009). An area-level model of vehicle-pedestrian injury collisions with implications for land use and transportation planning. Accident Analysis and Prevention, 41(1), 137–145. https://doi.org/10.1016/j.aap.2008.10.001spa
dc.relation.referencesXie, Z., & Yan, J. (2008). Kernel Density Estimation of traffic accidents in a network space. Computers, Environment and Urban Systems, 32(5), 396–406. https://doi.org/10.1016/j.compenvurbsys.2008.05.001spa
dc.relation.referencesZhang, C., Yan, X., Ma, L., & An, M. (2014). Crash prediction and risk evaluation based on traffic analysis zones. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/987978spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalaccidentes de tránsitospa
dc.subject.proposalmodelos de regresión espacialspa
dc.subject.proposalregresión de soporte vectorialspa
dc.subject.proposaldatos de áreaspa
dc.subject.proposalíndice de accidentalidad vehicular perímetro vialspa
dc.subject.proposaltraffic accidentseng
dc.subject.proposalspatial regression modelseng
dc.subject.proposalsupport vector regressioneng
dc.subject.proposallatticeseng
dc.subject.unescoReducción del riesgo de desastresspa
dc.subject.unescoDisaster risk reductioneng
dc.subject.unescoAccidentespa
dc.subject.unescoAccidentseng
dc.titleImpacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotáspa
dc.title.translatedImpact of socioeconomic, mobility and land use zone factors over traffic crashes frequency on Bogotáeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019110220.2022.pdf
Tamaño:
12.04 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: