Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X

dc.contributor.advisorRoberto Enrique, Martínez Martínez
dc.contributor.authorDaniel Guillermo, Martínez Gómez
dc.contributor.researchgroupGrupo de Física Teórica de Altas Energíasspa
dc.date.accessioned2022-10-11T05:33:15Z
dc.date.available2022-10-11T05:33:15Z
dc.date.issued2022-09-26
dc.descriptionilustraciones, tablasspa
dc.description.abstractEl momento magnético anómalo del muón es una cantidad que ha sido medida con alta precisión que depende de parámetros fundamentales de la Física de partículas que permiten poner a prueba la exactitud del Modelo Estándar (SM). El experimento Muon g − 2, realizado por el laboratorio Fermilab, encontró una diferencia de 4.2σ respecto del valor teórico del SM. Este resultado abre la puerta para considerar física más allá del SM. Por lo tanto, el modelo no-universal U(1)X puede explicar la distancia entre estos dos resultados. En el marco de esta teoría se estudiaron los diagramas adicionales de Feynman a 1-loop que contribuyen al g − 2 del muón. En este sentido, se tuvo en cuenta que el modelo proporciona un conjunto diferente de acoples de Yukawa cuando se consideran las masas de los neutrinos en Ordenamiento Normal u Ordenamiento Inverso. Al realizar un análisis de Montecarlo de los parámetros relacionados a las correcciones radiativas, se encontró que la contribución adicional resultante de dichos diagramas ajusta el valor teórico dentro la incertidumbre del promedio experimental. (Texto tomado de la fuente)spa
dc.description.abstractThe anomalous magnetic moment of the muon is a quantity measured with a high precision which depends on the fundamental parameters of the particle physics that allows for testing the accuracy of the Standard Model (SM). The Muon g − 2 experiment, executed by the Fermilab laboratory, obtained a difference of 4.2σ concerning the theoretical value of SM. This discrepancy opens the door to physics beyond the SM. Hence, the Non-Universal U(1)X model could explain the distance between those two results. Under this framework, the additional 1-loop Feynman diagrams that contribute to the g − 2 of the muon were studied. In this regard, it was taken into account that the model provides a different set of Yukawa couplings for the Normal Ordering and Inverse Ordering of the neutrino masses. Performing a Montecarlo analysis for the model parameters related to the radiative corrections, it was found that the contribution made by such diagrams fit the theoretical value into the experimental average’s uncertainty.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Físicaspa
dc.description.researchareaFísica de Altas Energíasspa
dc.format.extentxiv, 70 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82360
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesGerald W Bennett, B Bousquet, HN Brown, G Bunce, RM Carey, P Cushman, GT Danby, PT Debevec, M Deile, H Deng, et al. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Physical Review D, 73(7):072003,2006spa
dc.relation.referencesBabak Abi, T Albahri, S Al-Kilani, D Allspach, LP Alonzi, A Anastasi, A Anisenkov, F Azfar, K Badgley, S Baeßler, et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Physical Review Letters, 126(14):141801, 2021.spa
dc.relation.referencesTatsumi Aoyama, Nils Asmussen, Maurice Benayoun, Johan Bijnens, T Blum, M Bruno, I Caprini, CM Carloni Calame, M Ce, Gilberto Colangelo, et al. The anomalous magnetic moment of the muon in the Standard Model. Physics reports, 887:1–166, 2020.spa
dc.relation.referencesSF Mantilla, R Martinez, and F Ochoa. Neutrino and C P-even Higgs boson masses in a non-universal U(1)’ extension. Physical Review D, 95(9):095037, 2017.spa
dc.relation.referencesSheldon L Glashow. Partial-symmetries of weak interactions. Nuclear physics, 22(4):579–588, 1961.spa
dc.relation.referencesA Salam. Elementary particle theory, Nobel symposium No. 8. ed. N. Svartholm, Almqvist and Wiksell, 1969.spa
dc.relation.referencesSteven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967.spa
dc.relation.referencesPeter W Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16):508, 1964.spa
dc.relation.referencesHanneke, S Fogwell, and G Gabrielse. New measurement of the electron magnetic moment and the fine structure constant. Physical Review Letters, 100(12):120801, 2008.spa
dc.relation.referencesJulian Schwinger. On quantum-electrodynamics and the magnetic moment of the electron. Physical Review, 73(4):416, 1948.spa
dc.relation.referencesJulian Schwinger. Quantum electrodynamics. III. the electromagnetic properties of the electron-radiative corrections to scattering. Physical Review, 76(6):790, 1949.spa
dc.relation.referencesP Kusch and HM Foley. The magnetic moment of the electron. Physical Review, 74(3):250, 1948.spa
dc.relation.referencesRichard L Garwin, DP Hutchinson, S Penman, and G Shapiro. Accurate Determination of the μ+Magnetic Moment. Physical Review, 118(1):271, 1960.spa
dc.relation.referencesAndrzej Czarnecki and William J Marciano. Muon anomalous magnetic moment: A harbinger for “new physics”. Physical Review D, 64(1):013014, 2001.spa
dc.relation.referencesJames P Miller, Eduardo de Rafael, and B Lee Roberts. Muon (g-2): experiment and theory. Reports on Progress in Physics, 70(5):795, 2007.spa
dc.relation.referencesGustavo Castelo Branco, PM Ferreira, L Lavoura, MN Rebelo, Marc Sher, and Joao P Silva. Theory and phenomenology of two-Higgs-doublet models. Physics reports, 516(1-2):1–102, 2012.spa
dc.relation.referencesTanmoy Mondal and Hiroshi Okada. Inverse seesaw and (g-2) anomalies in B-L extended two Higgs doublet model. Nuclear Physics B, page 115716, 2022.spa
dc.relation.referencesLuigi Delle Rose, Shaaban Khalil, and Stefano Moretti. Explaining electron and muon g-2 anomalies in an Aligned 2-Higgs Doublet Model with right-handed neutrinos. Physics Letters B, 816:136216, 2021.spa
dc.relation.referencesTomohiro Abe, Ryosuke Sato, and Kei Yagyu. Lepton-specific two Higgs doublet model as a solution of muon g-2 anomaly. Journal of High Energy Physics, 2015(7):64, 2015.spa
dc.relation.referencesEung Jin Chun The muon g-2 in two-Higgs-doublet models Pramana, 87(3):41, 2016.spa
dc.relation.referencesS Gabriel and S Nandi. A new two Higgs doublet model. Physics Letters B, 655(3-4):141–147, 2007.spa
dc.relation.referencesG De Conto and V Pleitez. Electron and muon anomalous magnetic dipole moment in a 331 model. Journal of High Energy Physics, 2017(5):1–32, 2017.spa
dc.relation.referencesTianjun Li, Junle Pei, and Wenxing Zhang. Muon anomalous magnetic moment and Higgs potential stability in the 331 model from SU(6) The European Physical Journal C, 81(7):1–10, 2021.spa
dc.relation.referencesChris Kelso, HN Long, R Martinez, and Farinaldo S Queiroz.Connection of g−2μ electroweak, dark matter, and collider constraints on 331 models. Physical Review D, 90(11):113011, 2014.spa
dc.relation.referencesManfred Lindner, Moritz Platscher, and Farinaldo S Queiroz. A call for new physics: the muon anomalous magnetic moment and lepton flavor violation. Physics Reports, 731:1–82, 2018.spa
dc.relation.referencesMario Reig, José WF Valle, and CA1397 Vaquera-Araujo. Unifying left–right symmetry and 331 electroweak theories. Physics Letters B, 766:35–40, 2017.spa
dc.relation.referencesDominik Stöckinger. The muon magnetic moment and supersymmetry. Journal of Physics G: Nuclear and Particle Physics, 34(2):R45, 2006.spa
dc.relation.referencesB Paul Padley, Kuver Sinha, and Kechen Wang. Natural supersymmetry, muon g−2, and the last crevices for the top squark. Physical Review D, 92(5):055025, 2015spa
dc.relation.referencesJonathan L Feng and Konstantin T Matchev. Supersymmetry and the anomalous anomalous magnetic moment of the muon. Physical Review Letters, 86(16):3480, 2001.spa
dc.relation.referencesHeerak Banerjee, Pritibhajan Byakti, and Sourov Roy. Supersymmetric gauged u(1)Lμ−Lτ model for neutrinos and the muonn (g−2) anomaly. Physical Review D, 98(7):075022, 2018.spa
dc.relation.referencesR Martinez, J Nisperuza, F Ochoa, and JP Rubio. Some phenomenological aspects of a new u(1) model. Physical Review D, 89(5):056008, 2014.spa
dc.relation.referencesHarald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997.spa
dc.relation.referencesHarald Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B, 73(3):317–322, 1978.spa
dc.relation.referencesTP Cheng and Marc Sher. Mass-matrix ansatz and flavor nonconservation in models with multiple Higgs doublets. Physical Review D, 35(11):3484, 1987.spa
dc.relation.referencesA Carcamo, R Martinez, and J-A Rodriguez. Different kind of textures of Yukawa coupling matrices in the two Higgs doublet model type III. The European Physical Journal C, 50(4):935–948, 2007.spa
dc.relation.referencesMatthew D Schwartz. Quantum field theory and the standard model. Cambridge University Press, 2014.spa
dc.relation.referencesWalter Grimus and Luís Lavoura. The seesaw mechanism at arbitrary order: disentangling the small scale from the large scale. Journal of High Energy Physics, 2000(11):042, 2001.spa
dc.relation.referencesShaaban Khalil. TeV-scale gauged B- L symmetry with inverse seesaw mechanism. Physical Review D, 82(7):077702, 2010.spa
dc.relation.referencesNouredine Zettili. Quantum mechanics: concepts and applications, 2003spa
dc.relation.referencesFred Jegerlehner.The anomalous magnetic moment of the muon. Springer.spa
dc.relation.referencesKevin J Kelly, Pedro AN Machado, Stephen J Parke, Yuber F Perez-Gonzalez, and Renata Zukanovich Funchal. Neutrino mass ordering in light of recent data. Physical Review D, 103(1):013004, 2021.spa
dc.relation.referencesStefano Gariazzo, Maria Archidiacono, PF de Salas, O Mena, CA Ternes, and M Tórtola. Neutrino masses and their ordering: Global Data, Priors and Models. Journal of Cosmology and Astroparticle Physics, 2018(03):011, 2018.spa
dc.relation.referencesMaria Concepción Gonzalez-Garcia, Michele Maltoni, and Thomas Schwetz. Global analyses of neutrino oscillation experiments. Nuclear Physics B, 908:199–217, 2016.spa
dc.relation.referencesMaria Concepcion Gonzalez-Garcia, Michele Maltoni, and Thomas Schwetz. Nu-FIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments. Universe, 7(12):459, 2021spa
dc.relation.referencesIvan Esteban, Maria Conceptión González-Garc’aa, Michele Maltoni, Thomas Schwetz, and Albert Zhou. The fate of hints: updated global analysis of three-flavor neutrino oscillations. Journal of High Energy Physics, 2020(9):1–22, 2020.spa
dc.relation.referencesMC Gonzalez-Garcia and M Yokoyama. 14. Neutrino Masses, Mixing, and Oscillations. M. Tanabashi et al.(Particle Data Group), Phys. Rev. D, 98:030001, 2018.spa
dc.relation.referencesFlorian Kaether, Wolfgang Hampel, Gerd Heusser, Juergen Kiko, and Till Kirsten. Reanalysis of the GALLEX solar neutrino flux and source experiments. Physics Letters B, 685(1):47–54, 2010.spa
dc.relation.referencesJN Abdurashitov, VN Gavrin, VV Gorbachev, PP Gurkina, TV Ibragimova, AV Kalikhov, NG Khairnasov, TV Knodel, IN Mirmov, AA Shikhin, et al. Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period. Physical Review C, 80(1):015807, 2009.spa
dc.relation.referencesJ Hosaka, K Ishihara, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, M Nakahata, T Namba, et al. Solar neutrino measurements in Super-Kamiokande-I.Physical Review D 73(11):112001, 2006.spa
dc.relation.referencesJP Cravens, K Abe, T Iida, K Ishihara, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, et al. Solar neutrino measurements in Super-Kamiokande-II. Physical Review D, 78(3):032002, 2008.spa
dc.relation.referencesK Abe, Y Hayato, T Iida, M Ikeda, C Ishihara, K Iyogi, J Kameda, K Kobayashi, Y Koshio, Y Kozuma, et al. Solar neutrino results in Super-Kamiokande-III. Physical Review D, 83(5):052010, 2011.spa
dc.relation.referencesGianpaolo Bellini, J Benziger, D Bick, G Bonfini, D Bravo, B Caccianiga, L Cadonati, Frank Calaprice, A Caminata, P Cavalcante, et al. Neutrinos from the primary proton-proton fusion process in the Sun. Nature, 512(7515):383, 2014.spa
dc.relation.referencesMG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, Maryon Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Physical Review D, 91(7):072004, 2015.spa
dc.relation.referencesAzusa Gando, Y Gando, H Hanakago, H Ikeda, K Inoue, K Ishidoshiro, H Ishikawa, M Koga, R Matsuda, S Matsuda, et al. Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88(3):033001, 2013.spa
dc.relation.referencesP Adamson, I Anghel, C Backhouse, G Barr, M Bishai, A Blake, GJ Bock, D Bogert, SV Cao, D Cherdack, et al. Electron neutrino and antineutrino appearance in the full MINOS data sample. Physical review letters, 110(17):171801, 2013.spa
dc.relation.referencesGeorge Leibbrandt. Introduction to the technique of dimensional regularization. Reviews of Modern Physics, 47(4):849, 1975.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.lembMagnetic fieldseng
dc.subject.lembCampos magnéticosspa
dc.subject.lembMagnéticaspa
dc.subject.lembMagneticseng
dc.subject.proposalMomento magnético anómalo del muónspa
dc.subject.proposalg − 2spa
dc.subject.proposalcorrecciones radiativasspa
dc.subject.proposalThe anomalous magnetic moment of the muoneng
dc.subject.proposalg − 2,eng
dc.subject.proposalRadiative correctionseng
dc.titleContribución al momento magnético anómalo del muón de la extensión no-universal U (1)Xspa
dc.title.translatedContribution to the anomalous magnetic moment of the muon from the non-universal extension U(1)Xeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024525623.2022.pdf
Tamaño:
1.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: