Evaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombia

dc.contributor.advisorDiaz Almanza, Eliecer David
dc.contributor.authorHernández Guzmán, Francisco Javier
dc.contributor.refereeVega Rodriguez, Emel Enrique
dc.contributor.refereeCadena, Martha Cecilia
dc.coverage.countryColombia
dc.date.accessioned2021-06-23T22:08:32Z
dc.date.available2021-06-23T22:08:32Z
dc.date.issued2021-06-18
dc.descriptionDisertación de tesis de maestría en Ciencias -Meteorología en formato PDF.spa
dc.descriptionilustraciones, mapasspa
dc.description.abstractEl agua es uno de los componentes más importantes de nuestro planeta, está presente en la naturaleza en tres estados, así como en la atmósfera, superficie de la tierra y océanos. La humedad del suelo es una de las variables agroclimáticas esenciales debido a su importancia en los flujos de agua y energía entre la tierra y la atmósfera. En las últimas décadas su estimación a escala regional ha cobrado relevancia para resolver problemas hidrológicos, meteorológicos y agronómicos; en este sentido las redes de sensores in situ sobre el territorio colombiano no son suficientes para caracterizar adecuadamente la condición de humedad de las zonas agrícolas. En este contexto, el objetivo de la tesis fue evaluar métodos de estimación oportuna de las condiciones de humedad superficial para el territorio colombiano, determinando por regiones cuál o cuáles serían las fuentes más promisorias para la implementación de aplicaciones en diversas disciplinas, que contribuyan en la toma de decisiones tanto para agricultores, líderes nacionales, regionales y locales, así como para técnicos del sector, investigadores y pronosticadores, entre otros. Para ello, se aplicó la metodología de control de calidad desarrollada para la Red Internacional de Humedad de Suelo (ISMN, por sus siglas en inglés) ajustada a las condiciones ecuatoriales de Colombia. Con las mediciones de humedad de suelo consideradas buenas se realizó el análisis espacio-temporal de la variable con el fin de determinar cuál es la relación entre la humedad de suelo, con las variables atmosféricas, características físicas, topográficas y de cobertura vegetal. Con el fin de evaluar las estimaciones de humedad superficial, se realizó la revisión bibliográfica de fuentes de estimación remota por microondas y/o modelos de superficie, sus características, ventajas y desventajas, metodologías de validación, que pudieran ser aplicadas de manera efectiva para las condiciones particulares del territorio colombiano. Basándose en la revisión de fuentes de estimación, se realizó la selección de fuentes de estimación de humedad concentrándose en las bandas de recuperación que tuvieran mayor potencial (L y C), adicionando también productos de estimación en la banda X, productos de combinación de radares activos-pasivos y productos de reanálisis con el fin de realizar una revisión lo más completa posible de la diversidad de fuentes de estimación. Posteriormente se realizó la validación de ocho (8) fuentes de estimación (5 de satélite de misión única, 1 de combinación de misiones satelitales radares activos-pasivos y 2 fuentes de reanálisis) desglosados en 23 productos de estimación de humedad superficial. Entre los principales resultados, se encontró que las estimaciones de combinaciones de diversidad de bandas, pasos de órbitas y misiones presentan los mejores rendimientos, regiones con condiciones de baja cobertura vegetal, pendientes suaves y clasificaciones climáticas cálidas presentan las mejores métricas de validación. Sin embargo, para regiones con topografía montañosa, vegetación densa y climas fríos los modelos de superficie son una fuente de estimación promisoria, que con las parametrizaciones adecuadas se pueden mejorar significativamente las estimaciones de la humedad superficial. (Texto tomado de la fuente)spa
dc.description.abstractWater is one of the most important components of our planet, it is present in nature in three states, as well as in the atmosphere, the earth's surface and the oceans. Soil moisture is one of the essential agroclimatic variables due to its importance in the flow of water and energy between the earth and the atmosphere. In recent decades, its estimation on a regional scale has gained relevance in solving hydrological, meteorological and agronomic problems; In this sense, in situ sensor networks on Colombian territory are not sufficient to adequately characterize the humidity condition of agricultural areas. In this context, the objective of the thesis was to evaluate methods for the timely estimation of surface humidity conditions for the Colombian territory, determining by regions which or which would be the most promising sources for the implementation of applications in various disciplines, which contribute to the decision-making for farmers, national, regional and local leaders, as well as for sector technicians, researchers and forecasters, among others. For this, the quality control methodology developed for the International Soil Moisture Network (ISMN) was applied, adjusted to the equatorial conditions of Colombia. With the soil moisture measurements considered good, the spatio-temporal analysis of the variable was carried out to determine what is the relationship between the soil moisture, with the atmospheric variables, physical, topographic and plant cover characteristics. To evaluate the surface moisture estimates, a bibliographic review of remote estimation sources by microwaves and / or surface models, their characteristics, advantages and disadvantages, validation methodologies, that could be applied effectively for the particular conditions of the Colombian territory. Based on the review of estimation sources, the selection of humidity estimation sources was made, concentrating on the recovery bands that had the greatest potential (L and C), also adding estimation products in the X band, radar combination products active-passive radar and products of a reanalysis to carry out a review as complete as possible of the diversity of sources of estimation. Subsequently, the validation of eight (8) estimation sources was carried out (5 from single mission satellites, 1 from a combination of active-passive radar satellite missions and 2 reanalysis sources) broken down into 23 surface moisture estimation products. Among the main results, it was found that the estimates of combinations of band diversity, orbital passages and missions present the best performance, regions with conditions of low vegetation cover, gentle slopes and warm climatic classifications present the best validation metrics. However, for regions with mountainous topography, dense vegetation and cold climates, surface models are a promising source of estimation, which with the appropriate parameterization can significantly improve the estimates of surface moisture. (Texto tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Meteorologíaspa
dc.description.researchareaMeteorología Agrícola y Meteorología Aplicadaspa
dc.description.sponsorshipFEDEARROZ - FEDERACION NACIONAL DE ARROCEROS, con la administración del Fondo Nacional del Arroz, parafiscal recaudado por la venta de arroz paddy verde en Colombia que corresponde al 0.5% del valor comercial del paddy al momento de la comercialización. Financia la investigación para el cultivo de arroz en Colombia y la adopción de capacidades de los investigadores adscritos al Fondo Nacional del Arroz, en la ampliación de las capacidades de los investigadores mediante la realización de estudios de maestría.spa
dc.format.extent254 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79696
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Meteorologíaspa
dc.relation.referencesFranklyn, R., Arango C, D. J., and D, G. (2012). Climatología trimestral de colombia - nota técnica ideam. Technical report, Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM).spa
dc.relation.referencesMADR (2012). Plan mitigación de los efectos del fenómeno el niño en el sector agropecuario, acuícola y pesquero. Technical report, Ministerio de Agricultura y Desarrollo Rural de Colombia, Bogotá Colombia.spa
dc.relation.referencesRodriguez-Iturbe, I., Porporato, A., Laio, F., and Ridolfi, L. (2001). Plants in wáter controlled ecosystems: Active role in hydrologic processes and responce to wáter stress i. scope and general outline. Advances in Water Resources, 24:695–705.spa
dc.relation.referencesUPRA (2017a). Identificación general de la frontera agrícola en colombia. Technical report, Unidad de Planificación Rural Agropecuaria (MADR-UPRA).spa
dc.relation.referencesUPRA (2017b). Zonificación general de tierras con fines de irrigación para colombia. Technical report, Unidad de Planificación Rural Agropecuaria (MADR-UPRA).spa
dc.relation.referencesZhuo, L., Han, D., Dai, Q., Islam, T., and Srivastava, P. (2015). Appraisal of nldas-2 multi-model simulated soil moistures for hydrological modelling. Water Resources Management, 29.spa
dc.relation.referencesCampbell, G. (1988). Soil water potential measurement: An overview. Irrigation Science, 9:265–273.spa
dc.relation.referencesCrow, W. T. (2019). Chapter three - utility of soil moisture data products for natural disaster applications. In Maggioni, V. and Massari, C., editors, Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment, pages 65–85. Elsevier.spa
dc.relation.referencesCui, H., Jiang, L., Du, J., Zhao, S., Wang, G., Lu, Z., and Wang, J. (2017). Evaluation and analysis of amsr-2, smos, and smap soil moisture products in the genhe area of china. Journal of Geophysical Research: Atmospheres, 122.spa
dc.relation.referencesEngman, T. (1991). Application of microwave remote sensing of soil moisture for water re-sources and agriculture. Remote Sensing of Environment, 35:213–226.spa
dc.relation.referencesFlorentino, A. (2014). Métodos para medir el contenido de humedad en el suelo. Technical report, Venesuelos.spa
dc.relation.referencesFu, B.-J., Wang, J., Chen, L.-D., and Qiu, Y. (2003). The effects of land use on soil moisture variation in the danangou catchment of the loess plateau, china. CATENA, 54:197–213.spa
dc.relation.referencesIDEAM, SINCHI, I. P. Y. M. (2015). Capa nacional de cobertura de la tierra (periodo 2010-2012): Metodología corine land cover adaptada para colombia escala 1:100.000 v 1.0. colombia, bogotá (colombia).spa
dc.relation.referencesIMKO (2006). Trime-ez /-ezc /-it /-itc user manual, imko micromodultechnik gmbh.spa
dc.relation.referencesMittelbach, H., Lehner, I., and Seneviratne, S. (2012). Comparison of four soil moisture sensor types under field conditions in switzerland. Journal of Hydrology, 430:39–49.spa
dc.relation.referencesNeilson, R. (1991). Climatic constraints and issues of scale controlling regional biomes. pages 31–51.spa
dc.relation.referencesReichle, R. and Koster, R. (2004). Bias reduction in short records of satellite soil moisture Geophysical Research Letters, 31.spa
dc.relation.referencesUllah, W., Wang, G., Gao, Z., Hagan, D., and Lou, D. (2017). Comparisons of remote sensing and reanalysis soil moisture products over the tibetan plateau, china. Cold Regions Science and Technology, 146.spa
dc.relation.referencesWMO (2008). Guide to hydrological practices No 168. Obtenido http://www.whycos.org/hwrp/guide/index.php.spa
dc.relation.referencesYetbarek, E. and Ojha, R. (2020). Spatio-temporal variability of soil moisture in a cropped agricultural plot within the ganga basin, india. Agricultural Water Management, 234:106108.spa
dc.relation.referencesAbraham. Savitzky, M. J. E. G. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36:1627–1639.spa
dc.relation.referencesAssouline, S. and Ben-Hur, M. (2006). Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. CATENA, 66:211–220.spa
dc.relation.referencesBeljaars, A., Viterbo, P., Miller, M., and Betts, A. (1996). The anomalous rainfall over the united states during july 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Monthly Weather Review, 124:362–383.spa
dc.relation.referencesBrowning, J. and Schneider, C. (2017). R-package ’snht’.spa
dc.relation.referencesBrutsaert, W. (2014). Daily evaporation from drying soil: Universal parameterization with similarity. Water Resources Research, 50.spa
dc.relation.referencesCao, W., Sheng, Y., Wu, J.-c., and Li, J. (2017). Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of bayan har mountains in qinghai-tibet plateau. Journal of Mountain Science, 14.spa
dc.relation.referencesChen, X., Zhang, Z., Chen, X., and Shi, P. (2009). The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest china. Environmental Earth Sciences, 59:811–820.spa
dc.relation.referencesDari, J., Morbidelli, R., Saltalippi, C., Massari, C., and Brocca, L. (2019). Spatial-temporal variability of soil moisture: Addressing the monitoring at the catchment scale. Journal of Hydrology, 570.spa
dc.relation.referencesDeng, L., Wang, K., Li, J., Zhao, G., and Shangguan, Z. (2016). Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the loess plateau, china. Ecological Engineering, 94:525–531.spa
dc.relation.referencesDorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Dostálová, A., Sanchis-Dufau, A., Za-mojski, D., Cordes, C., Wagner, W., and Drusch, M. (2013). Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone Journal, 12.spa
dc.relation.referencesEndla Reintam, Kersti Vennik, K. K. L. K. (2017). Predicting soil freezing depth for traffica-bility.spa
dc.relation.referencesGaur, N. and Mohanty, B. (2013). Evolution of physical controls for soil moisture in humid and subhumid watersheds. Water Resources Research, 49:1244–1258.spa
dc.relation.referencesHaimberger, L. (2007). Homogenization of radiosonde temperature time series using innovation statistics. Journal of Climate - J CLIMATE, 20:1377–1403.spa
dc.relation.referencesHe, Z., Zhao, W., Liu, H., and Chang, X. (2012). The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: A case study in northwestern china’s qilian mountains. Journal of Hydrology, 420:183–190.spa
dc.relation.referencesHeer, E. (2017). Evaluation and enhancement of automated quality control procedures for the international soil moisture network. Master’s thesis, Tu Wien.spa
dc.relation.referencesHouser, C. (2010). Soil moisture: A central and unifying theme in physical geography. Progress in Physical Geography, 35:65–86.spa
dc.relation.referencesHuang, J., Wu, P., and Zhao, X. (2013). Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. CATENA, 104:93– 102.spa
dc.relation.referencesHubbard, K. (2001). Automated weather stations for application in agriculture and water resources management: current use and future perspectives.spa
dc.relation.referencesHubbard, K., Goddard, S., Sorensen, W., Wells, N., and Osugi, T. (2005). Performance of quality assurance procedures for an acis. Journal of Atmospheric and Oceanic Technology - J ATMOS OCEAN TECHNOL, 22:105–112.spa
dc.relation.referencesIGAC (2014). Estudio general de suelos y zonificación de tierras. colombia, bogotá (colombia).spa
dc.relation.referencesJaramillo, A. and Chaves, B. (2000). Distribución de la precipitación en colombia analizada mediante conglomeración estadística. 51:102–113.spa
dc.relation.referencesJoshi, C. and Mohanty, B. (2010). Physical controls of near-surface soil moisture across varying spatial scales in an agricultural landscape during smex02. Water Resources Research. WATER RESOUR RES, 46.spa
dc.relation.referencesJournée, M. and Bertrand, C. (2011). Quality control of solar radiation data within the rmib solar measurements network. Solar Energy - SOLAR ENERG, 85:72–86.spa
dc.relation.referencesLetian, Z., Liu, Y., and Jiao, F. (2012). Time series analysis of spatial variability of soil moisture in loess hilly region. Procedia Earth and Planetary Science, 5:346–353.spa
dc.relation.referencesLiu, M., Wang, Q., Guo, L., Yi, J., Lin, H., Zhu, Q., Fan, B., and Zhang, H. (2020). Influence of canopy and topographic position on soil moisture response to rainfall in a hilly catchment of three gorges reservoir area, china. Journal of Geographical Sciences, 30:949–968.spa
dc.relation.referencesMEEK, D. and Hatfield, J. (1994). Data quality checking for single station meteorological databases. Agricultural and Forest Meteorology - AGR FOREST METEOROL, 69:85–109.spa
dc.relation.referencesMo, K., Long, L., Xia, Y., Yang, S.-K., Schemm, J., and Ek, M. (2011). Drought indices based on the climate forecast system reanalysis and ensemble nldas. Journal of Hydrometeorology, 12.spa
dc.relation.referencesMu, W., Yu, F., Li, C., Yuebo, X., Tian, J., Liu, J., and Zhao, N. (2015a). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water (Switzerland), 7:2990–3008.spa
dc.relation.referencesMu, W., Yu, F., Li, C., Yuebo, X., Tian, J., Liu, J., and Zhao, N. (2015b). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water (Switzerland), 7:2990–3008.spa
dc.relation.referencesOscar, S., Brunet, M., Aguilar, E., Sigró, J., and López, D. (2004). Thesis, grupo de investigación del cambio climático, unitat de geografía. universitat rovira i virgili, tarragona.spa
dc.relation.referencesPan, Y.-X., Wang, X.-P., Jia, R.-L., Chen, Y.-W., and He, M.-Z. (2008). Spatial variability of surface soil moisture content in a re-vegetated desert area in shapotou, northern china. Journal of Arid Environments, 72:1675–1683.spa
dc.relation.referencesW.A., D., Gruber, A., de Jeu, R., W., W., T., S., Loew, A., Albergel, C., Brocca, L., D., C., Parinussa, R., and R., K. (2015). Evaluation of the esa cci soil moisture product using ground-based observations. Remote Sensing of Environment, 162:380–395.spa
dc.relation.referencesXaver, A. (2015). Automated quality control procedures for the international soil moisture network. Master’s thesis, Tu Wien.spa
dc.relation.referencesYang, K. and Wang, C. (2019). Seasonal persistence of soil moisture anomalies related to freeze-thaw over the tibetan plateau and prediction signal of summer precipitation in eastern china. Climate Dynamics.spa
dc.relation.referencesYou, J., Hubbard, K., Mahmood, R., Sridhar, V., and Todey, D. (2010). Quality control of soil water data in applied climate information system. case study in nebraska. Journal of Hydrologic Engineering, 15:200–209.spa
dc.relation.referencesYu-Hua, J. and Shao, M.-A. (2013). Temporal stability of soil water storage under four types of revegetation on the northern loess plateau of china. Agricultural Water Management, 117:33–42.spa
dc.relation.referencesZhang, C., Liu, S., Zhang, X., and Tan, K. (2009). Research on the spatial variability of soil moisture. pages 285–292.spa
dc.relation.referencesZhang, X., Zhang, X., and Li, G. (2014). The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: A case study of olympic forest park in beijing. Frontiers of Environmental Science y Engineering, 9.spa
dc.relation.referencesZhu, H., Hu, S., Yang, J., Karamage, F., Li, H., and Fu, S. (2019). Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the gurbantunggut desert in xinjiang, china. Journal of Arid Land, 11:685–700.spa
dc.relation.referencesAlbergel, C., Rosnay, P., Gruhier, C., Muñoz Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., and Wagner, W. (2012). Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observation. Remote Sensing of Environment, 118:215–226.spa
dc.relation.referencesAttema, E., Davidson, M., Floury, N., Levrini, G., Rosich, B., Rommen, B., and Snoeij, P. (2008). Sentinel-1 esa’s new european radar observatory. pages 1 – 4.spa
dc.relation.referencesAttema, E. and Ulaby, F. (1978). Vegetation modeled as a water cloud. Radio Science - RADIO SCI, 13:357–364.spa
dc.relation.referencesBrocca, L., Melone, F., Moramarco, T., and Morbidelli, R. (2010). Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46:W02516.spa
dc.relation.referencesChoker, M., Baghdadi, N., Zribi, M., El Hajj, M., Paloscia, S., Verhoest, N., Hans, L., and Mattia, F. (2017). Evaluation of the oh, dubois and iem backscatter models using a large dataset of sar data and experimental soil measurements. Water, 9:38.spa
dc.relation.referencesCrow, W. (2007). A novel method for quantifying value in spaceborne soil moisture retrievals. Journal of Hydrometeorology, 8.spa
dc.relation.referencesCrow, W., Berg, A., Cosh, M., Loew, A., Mohanty, B., Panciera, R., Rosnay, P., Ryu, D., Walker, J., Berg, A., Loew, A., Mohanty, B., Panciera, R., Rosnay, P., and Walker, J. (2012). Up-scaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys, 50.spa
dc.relation.referencesDe Jeu, R. and Owe, M. (2003). Further validation of a new methodology for surface moisture and vegetation optical depth retrieval. International Journal of Remote Sensing, 24:4559– 4578.spa
dc.relation.referencesDe Lannoy G.J.M., de Rosnay P., R. R. (2019). Soil Moisture Data Assimilation. In: Duan Q., Pappenberger F., Thielen J., Wood A., Cloke H., Schaake J. (eds) Handbook of Hydro-meteorological Ensemble Forecasting. Springer.spa
dc.relation.referencesDharssi, I., Bovis, K., Macpherson, B., and Jones, C. (2011). Operational assimilation of ascat surface soil wetness at the met office. Earth Syst. Sci. Discuss, 8:4313–4354.spa
dc.relation.referencesDobson, M., Ulaby, F., Hallikainen, M., and El-Rayes, M. (1985). Microwave dielectric beha-vior of wet soil-part ii: Dielectric mixing models. Geoscience and Remote Sensing, IEEE Transactions on, GE-23:35 – 46.spa
dc.relation.referencesDorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P., Hirschi, M., Ikonen, J., Jeu, R., Kidd, R., Lahoz, W., Liu, Y., Miralles, D., and Lecomte, P. (2017). Esa cci soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203.spa
dc.relation.referencesDubois, P., vanZyl, J., and Engman, T. (1995). Corrections to measuring soil moisture with imaging radars. Geoscience and Remote Sensing, IEEE Transactions on, 33:1340.spa
dc.relation.referencesEbtehaj, A. M. (2018). A physically constrained inversion for super-resolved passive microwave retrieval of soil moisture and vegetation water content in l-band.spa
dc.relation.referencesEntekhabi, D., Reichle, R., Koster, R., and Crow, W. (2010). Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11.spa
dc.relation.referencesGouweleeuw, B., van Dijk, A., Guerschman, J., Dyce, P., Jeu, R., and Owe, M. (2012). Space-based passive microwave soil moisture retrievals and the correction for a dynamic open water fraction. Hydrol. Earth Syst. Sci. Discuss, 9:1013–1039.spa
dc.relation.referencesGruber, A., Su, C.-H., Zwieback, S., Crow, W., Dorigo, W., and Wagner, W. (2015). Recent advances in (soil moisture) triple collocation analysis. International Journal of Applied Earth Observation and Geoinformation, 45.spa
dc.relation.referencesHess, R., Lange, M., and Wergen, W. (2008). Evaluation of the variational soil moisture assimilation scheme at deutscher wetterdienst. Quarterly Journal of the Royal Meteorological Society, 134:1499 – 1512.spa
dc.relation.referencesJonard, F., Bogena, H., Caterina, D., Garre, S., Klotzsche, A., Monerris, A., Schwank, M., and von Hebel, C. (2018). Ground-Based Soil Moisture Determination, pages 1–42.spa
dc.relation.referencesJr, W. (1978). Radiative transfer in a plane stratified dielectric. Geoscience Electronics, IEEE Transactions on, 16:138 – 143.spa
dc.relation.referencesKarthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., and Wood, E. (2017). Four decades of microwave satellite soil moisture observations: Part 1. a review of retrieval algorithms. Advances in Water Resources, 109:106–120.spa
dc.relation.referencesKerr, Y., Philippe, W., Wigneron, J.-P., Martinuzzi, J.-M., Font, J., and Berger, M. (2001). Soil moisture retrieval from space: The soil moisture and ocean salinity (smos) mission. Geoscience and Remote Sensing, IEEE Transactions on, 39:1729 – 1735.spa
dc.relation.referencesKim, S., Zhang, R., Pham, H., and Sharma, A. (2019). A review of satellite-derived soil moisture and its usage for flood estimation.spa
dc.relation.referencesKumar, S., Reichle, R., Harrison, K., Peters-Lidard, C., Yatheendradas, S., and Santanello, J. (2012). A comparison of methods for a priori bias correction in soil moisture data assimi-lation. Water Resources Research, 48:3515–.spa
dc.relation.referencesLi, l., Njoku, E., Im, E., Chang, P., and Germain, K. (2004). A preliminary survey of radio-frequency interference over the u.s. in aqua amsr-e data. Geoscience and Remote Sensing, IEEE Transactions on, 42:380 – 390.spa
dc.relation.referencesMahfouf, J.-F., Bergaoui, K., Draper, C., Bouyssel, F., Taillefer, F., and Taseva, L. (2009). A comparison of two off-line soil analysis schemes for assimilation of screen level observations. Journal of Geophysical Research, 114.spa
dc.relation.referencesMay, W., Rummukainen, M., Chéruy, F., Hagemann, S., and Meier, A. (2016). Contributions of soil moisture interactions to future precipitation changes in the glace-cmip5 experiment. Climate Dynamics.spa
dc.relation.referencesMo, T., Choudhury, B., Schmugge, T., Wang, J., and Jackson, T. (1983). A model for micro-wave emission from vegetation-covered fields. Journal of Geophysical Research Atmospheres, 87.spa
dc.relation.referencesMo, T., Schmugge, T., and Jackson, T. (1984). Calculations of radar backscattering coefficient of vegetation-covered soils. Remote Sensing of Environment, 15.spa
dc.relation.referencesMonerris, A., Walker, J., Panciera, R., Jackson, T., Gray, D., Yardley, H., and Ryu, D. (2011). The third soil moisture active passive experiment.spa
dc.relation.referencesMuñoz Sabater, J., Jarlan, L., Calvet, J.-C., Bouyssel, F., and Rosnay, P. (2007). From near-surface to root-zone soil moisture using different assimilation techniques. Journal of Hydrometeorology - J HYDROMETEOROL, 8.spa
dc.relation.referencesOh, Y., Sarabandi, K., and Ulaby, F. (1992). An empirical-model and an inversion technique for radar scattering from bare soil surfaces. Geoscience and Remote Sensing, IEEE Transactions on, 30:370 – 381.spa
dc.relation.referencesPaloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., and Reppucci, A. (2013). Soil moisture mapping using sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134:234.spa
dc.relation.referencesPan, M., Wood, E., Wójcik, R., and McCabe, M. (2008). Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sensing of Environment, 112:1282–1294.spa
dc.relation.referencesParinussa, R., Meesters, A., Liu, Y., Dorigo, W., Wagner, W., and de Jeu, R. (2011). Error es-timates for near-real-time satellite soil moisture as derived from the land parameter retrieval model. Geoscience and Remote Sensing Letters, IEEE, 8:779 – 783.spa
dc.relation.referencesPrévot, L., Dechambre, M., Taconet, O., VIDALMADJAR, D., Normand, M., and Galle, S. (1993). Estimating the characteristics of vegetation canopies with airborne radar measure-ments. International Journal of Remote Sensing, 14:2803–2818.spa
dc.relation.referencesReichle, R., De Lannoy, G., Forman, B., Draper, C., and Liu, Q. (2013). Connecting satellite observations with water cycle variables through land data assimilation: Examples using the nasa geos-5 ldas. Surveys in Geophysics, 35.spa
dc.relation.referencesReichle, R., De Lannoy, G., Liu, Q., Ardizzone, J., Colliander, A., Conaty, A., Crow, W., Jackson, T., Jones, L., Kimball, J., Koster, R., Mahanama, S., Smith, E., Berg, A., Bircher, S., Bosch, D., Caldwell, T., Cosh, M., González-Zamora, n., and Zeng, Y. (2017). Assessment of the smap level-4 surface and root-zone soil moisture product using in situ measurements. Journal of Hydrometeorology, 18.spa
dc.relation.referencesReichle, R. and Koster, R. (2004). Bias reduction in short records of satellite soil moisture. Geophysical Research Letters, 31.spa
dc.relation.referencesReichle, R., McLaughlin, D., and Entekhabi, D. (2002). Hydrologic data assimilation with the ensemble kalman filter. Mon. Weather. Rev., 130:103–114.spa
dc.relation.referencesSchmugge, T., O’Neill, P., and Wang, J. (1986). Passive microwave soil moisture research. Geoscience and Remote Sensing, IEEE Transactions on, 24:12 – 22.spa
dc.relation.referencesStanski, Wilson, L., and Burrows, W. (1990). Survey of common verification methods in meteorology.spa
dc.relation.referencesStoffelen, A. (1998). Error modeling and calibration; towards the true surface wind speed. J. Geophys. Res., 103:7,755–7,766.spa
dc.relation.referencesUlaby, F., Dubois, P., and van Zyl, J. (1996). Radar mapping of surface soil moisture. Journal of Hydrology, 184:57–84.spa
dc.relation.referencesUlaby, F., Long, D., Blackwell, W., Elachi, C., Fung, A., Ruf, C., Sarabandi, K., Zyl, J., and Zebker, H. (2014). Microwave Radar and Radiometric Remote Sensing.spa
dc.relation.referencesWagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-saldaña, J., Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Züger, J., Gangkofner, U., Kienberger, S., Brocca, L., Wang, Y., and Rubel, F. (2013).spa
dc.relation.referencesThe ascat soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift, 22:5–33.spa
dc.relation.referencesWagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., and Rudolf, B. (2003). Evaluation of the agreement between the first global remotely sensed soil moistu-re data with model and precipitation data. <http://www.agu.org/pubs/crossref/2003 2003jd003663.shtml(accessed>3 december 2012). Journal of Geophysical Research (At-mospheres), 108:4611–.spa
dc.relation.referencesWei-Chen, Z., Zhen, H., Shuang-Yu, H., Yi-Qing, W., Xue-Wei, Z., and Yi-Sheng, W. (2019). Characteristics of l-band radio frequency interference detected via the soil moisture active passive radiometer in china and its offshore areas. Results in Physics, 12.spa
dc.relation.referencesAl-Yaari, A., Wigneron, J.-P., Dorigo, W., Colliander, A., Pellarin, T., Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y., and De Lannoy, G. (2019). Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ismn ground-based measurements. Remote Sensing of Environment, 224:289–303.spa
dc.relation.referencesAl-Yaari, A., Wigneron, J.-P., Ducharne, A., Kerr, Y., Rosnay, P., de Jeu, R., Govind, A., Al Bitar, A., Albergel, C., Muñoz Sabater, J., Richaume, P., and Mialon, A. (2014). Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (smos and amsr-e) with respect to land data assimilation system estimates. Remote Sensing of Envi-ronment, 149:181–195.spa
dc.relation.referencesAlbergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E. (2008). From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences, 12.spa
dc.relation.referencesAzimi, S., Dariane, A., SaraModanesi, BernhardBauer-Marschallinger, Bindish, R., wagner, w., and Massari, C. (2019). Understanding the benefit of sentinel 1 and smap - era satellite soil moisture retrievals for flood forecasting in small basins: effect of revisit time and the spatial resolution. Journal of Hydrology, 581.spa
dc.relation.referencesBabaeian, E., Sadeghi, M., Jones, S., Montzka, C., Vereecken, H., and Tuller, M. (2019). Ground, proximal and satellite remote sensing of soil moisture. Reviews of Geophysics, 57.spa
dc.relation.referencesBauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., and Wagner, W. (2018). Toward global soil moisture monitoring with sentinel-1: Harnessing assets and overcoming obstacles. IEEE Transactions on Geoscience and Remote Sensing, PP:1–20.spa
dc.relation.referencesBrocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M. (2011). Soil moisture estimation through ascat and amsr-e sensors: An intercomparison and validation study across europe. Remote Sensing of Environment, 115:3390–3408.spa
dc.relation.referencesBurgin, M., Colliander, A., Njoku, E., Chan, S., Cabot, F., Kerr, Y., Bindlish, R., Jackson, T., Entekhabi, D., and Yueh, S. (2017). A comparative study of the smap passive soil moisture product with existing satellite-based soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, PP:1–13.spa
dc.relation.referencesCandela, E., Mendiguren González, G., Martín, M., Acevedo, M., Bosch-Belmar, M., Fuen-tes, V., and Bordehore, C. (2014). Validación local de la temperatura superficial del mar del sensor modis en aguas someras del mediterráneo occidental. Revista de la Asociación Española de Teledetección.spa
dc.relation.referencesChen, F., Crow, W., Colliander, A., Cosh, M., Jackson, T., Bindlish, R., Reichle, R., Chan, S., Bosch, D., Starks, P., Goodrich, D., and Seyfried, M. (2016). Application of triple collocation in ground-based validation of soil moisture active/passive (smap) level 2 data products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 99:1–14.spa
dc.relation.referencesChen, F., Crow, W., and Holmes, T. (2012). Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the soil moisture analysis rainfall tool. Journal of Applied Remote Sensing, 6:3604.spa
dc.relation.referencesChen, Y. and Yuan, H. (2020). Evaluation of nine sub-daily soil moisture model products over china using high-resolution in situ observations. Journal of Hydrology, 588:125054.spa
dc.relation.referencesChoudhury, B., Schmugge, T., Chang, A., and Newton, R. (1979). Effect of surface roughness on the microwave emission from soils. Journal of Geophysical Research, 84:5699–5706.spa
dc.relation.referencesDaly, E. and Porporato, A. (2005). A review of soil moisture dynamics: From rainfall infiltra-tion to ecosystem response. Environmental Engineering Science, 22:9–24.spa
dc.relation.referencesDick, J., Tetzlaff, D., and Bradford, J. (2018). Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types. Journal of Hydrology, 559.spa
dc.relation.referencesDNP (2011). Plan nacional de desarrollo 2010 2014. Technical report, Departamento Nacional de Planeación de Colombia, Bogotá Colombia.spa
dc.relation.referencesDraper, C., Walker, J., Steinle, P., de Jeu, R., and Holmes, T. (2009). An evaluation of amsr-e derived soil moisture over australia. Remote Sensing of Environment, 113:703–710.spa
dc.relation.referencesEbtehaj, A. M. and Bras, R. (2019). A physically constrained inversion for high-resolution passive microwave retrieval of soil moisture and vegetation water content in l-band. Remote Sensing of Environment, 233:111346.spa
dc.relation.referencesEnenkel, M. (2016). Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrology and Earth System Sciences, 20:4191–4208.spa
dc.relation.referencesEntekhabi, D., Jackson, T., Njoku, E., O’Neill, P., and Entin, J. (2008). Soil moisture ac-tive/passive (smap) mission concept. Proceedings of SPIE - The International Society for Optical Engineering.spa
dc.relation.referencesFang, B., Lakshmi, V., Jackson, T., Bindlish, R., and Colliander, A. (2019). Passive/active microwave soil moisture change disaggregation using smapvex12 data. Journal of Hydrology, 574.spa
dc.relation.referencesFAO (2017). The future of food and agriculture. trends and challenges. Technical report, Food and Agriculture Organization.spa
dc.relation.referencesGao, L., Sadeghi, M., and Ebtehaj, A. M. (2020). Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for smap satellite. Remote Sensing of Environment, 239.spa
dc.relation.referencesGruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., Mccoll, K., Montzka, C., Muñoz-Sabater, J., Peng, J., and Wagner, W. (2020). Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244:111806.spa
dc.relation.referencesGruber, A., Dorigo, W., Zwieback, S., Xaver, A., and Wagner, W. (2013). Characterizing coarse-scale representativeness of in situ soil moisture measurements from the international soil moisture network. Vadose Zone Journal, 12:0.spa
dc.relation.referencesHatfield, J., Antle, J., Garrett, K., Izaurralde, R., Mader, T., Marshall, E., Nearing, M., Robertson, G., and Ziska, L. (2018). Indicators of climate change in agricultural systems. Climatic Change.spa
dc.relation.referencesHeathman, G., Cosh, M., Han, E., Jackson, T., McKee, L., and Mcafee, S. (2012). Field scale spatiotemporal analysis of surface soil moisture for evaluating point-scale in situ networks. Geoderma, 170:195–205.spa
dc.relation.referencesHolzman, M., Rivas, R., and Piccolo, M. (2014). Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28:181–192.spa
dc.relation.referencesHusson, F., Josse, J., and Lê, S. (2008). Factominer: An r package for multivariate analysis. Journal of Statistical Software, 25.spa
dc.relation.referencesJackson, T., Bindlish, R., Cosh, M., Zhao, T., Starks, P., Bosch, D., Seyfried, M., Moran, M., Goodrich, D., Kerr, Y., and Leroux, D. (2012). Validation of soil moisture and ocean salinity (smos) soil moisture over watershed networks in the u.s. Geoscience and Remote Sensing, IEEE Transactions on, 50:1530–1543.spa
dc.relation.referencesJackson, T., Cosh, M., Bindlish, R., Starks, P., Bosch, D., Seyfried, M., Goodrich, D., Moran, M., and Du, J. (2011). Validation of advanced microwave scanning radiometer soil moisture products. Geoscience and Remote Sensing, IEEE Transactions on, 48:4256 – 4272.spa
dc.relation.referencesKarthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., and Wood, E. (2017). Four decades of microwave satellite soil moisture observations: Part 2. product validation and inter-satellite comparisons. Advances in Water Resources, 109:236–252.spa
dc.relation.referencesKerr, Y., Philippe, W., Richaume, P., Cabot, F., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., and Steven, D. (2009). The prototype smos soil moisture algorithm.spa
dc.relation.referencesKerr, Y., Philippe, W., Richaume, P., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., Juglea, S., Leroux, D., and Mialon, A. (2012). The smos soil moisture retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing - IEEE TRANS GEOSCI REMOT SEN, 50:1384–1403.spa
dc.relation.referencesKim, H., Wigneron, J.-P., Kumar, S., Dong, J., Wagner, W., Cosh, M., Bosch, D., Collins, C., Starks, P., Seyfried, M., and Lakshmi, V. (2020). Global scale error assessments of soil moisture estimates from microwave- based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions. Remote Sensing of Environment, 251.spa
dc.relation.referencesKolassa, J., Gentine, P., Prigent, C., and Aires, F. (2016). Soil moisture retrieval from amsr-e and ascat microwave observation synergy. part 1: Satellite data analysis. Remote Sensing of Environment, 173:1–14.spa
dc.relation.referencesKumar, S., Wang, S., Mocko, D., Peters-Lidard, C., and Xia, Y. (2017). Similarity assessment of land surface model outputs in the north american land data assimilation system (nldas). Water Resources Research, 53.spa
dc.relation.referencesLakshmi, V. (2004). The role of satellite remote sensing in the prediction of ungauged basins. Hydrological Processes, 18:1029 – 1034.spa
dc.relation.referencesLesk, C., Rowhani, P., and Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529:84–87.spa
dc.relation.referencesLindell, D. and Long, D. (2016). High-resolution soil moisture retrieval with ascat. IEEE Geoscience and Remote Sensing Letters, 13:1–5.spa
dc.relation.referencesLiu, Y., Pan, Z., Zhuang, Q., Miralles, D., Teuling, A., Zhang, T., An, P., Dong, Z., Zhang, J., He, D., Wang, L., Pan, X., Bai, W., and Niyogi, D. (2015). Agriculture intensifies soil moisture decline in northern china. Scientific Reports, 5:5.spa
dc.relation.referencesMa, H., Zeng, J., Chen, N., Xiang, Z., Cosh, M., and Wang, W. (2019). Satellite surface soil moisture from smap, smos, amsr2 and esa cci: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 231C:111215.spa
dc.relation.referencesMarkechová, D., Stehlikova, B., and Tirpáková, A. (2011). Statistical Methods and their Ap-plications.spa
dc.relation.referencesMinet, J., Bogaert, P., Vanclooster, M., and Lambot, S. (2012). Validation of ground pe-netrating radar full-waveform inversion for field scale soil moisture mapping. Journal of Hydrology, 424-425:112–123.spa
dc.relation.referencesNjoku, E. and Chan, S. (2006). Vegetation and surface roughness effects on amsr-e land observations. Remote Sensing of Environment, 100:190–199.spa
dc.relation.referencesParinussa, R., Holmes, T., Wanders, N., Dorigo, W., and de Jeu, R. (2015). A preliminary study toward consistent soil moisture from amsr2. Journal of Hydrometeorology, 16:932–947.spa
dc.relation.referencesParinussa, R., Wang, S.-Y., Holmes, T., Liu, X.-B., Dolman, H. A., de Jeu, R., Jiang, J.-T., Zhang, M., and Shi, Y. (2014). Global surface soil moisture from the microwave radiation imager onboard the fengyun-3b satellite. International Journal of Remote Sensing, 35.spa
dc.relation.referencesParrens, M., Wigneron, J.-P., Richaume, P., Al Bitar, A., Mialon, A., Fernandez-Moran, R., Al-Yaari, A., O-Neill, P., and Kerr, Y. (2017). Considering combined or separated roughness and vegetation effects in soil moisture retrievals. International Journal of Applied Earth Observation and Geoinformation, 55:73–86.spa
dc.relation.referencesPena Pereira, D., Lima, J., Xavier, A., Passos, R., and Fiedler, N. (2014). Taylor diagram application for the evaluation of spatial interpolators in attributes of soil under cultivation with eucalyptus. Revista Arvore, 38:889–905.spa
dc.relation.referencesRapinel, S., Clement, B., Dufour, S., and Hubert-Moy, L. (2017). Fine-scale monitoring of long-term wetland loss using lidar data and historical aerial photographs: the example of the couesnon floodplain, france. Wetlands, pages 1–13.spa
dc.relation.referencesRodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, J., Arsenault, K., Brian, C., Radakovich, J., MG, B., Entin, J., Walker, J., Lohmann, D., and DL, T. (2004). The global land data assimilation system. bams, 85:381–394.spa
dc.relation.referencesRost, S., Gerten, D., Hoff, H., Lucht, W., Falkenmark, M., and Rockström, J. (2009). Global potential to increase crop production through water management in rainfed agriculture. Environmental Research Letters, 4:044002.spa
dc.relation.referencesSakai, T., Iizumi, T., Okada, M., Nishimori, M., Grünwald, T., Prueger, J., Cescatti, A., Korres, W., Schmidt, M., Carrara, A., Loubet, B., and Ceschia, E. (2015). Varying applica-bility of four different satellite-derived soil moisture products to global gridded crop model evaluation. International Journal of Applied Earth Observation and Geoinformation, 48.spa
dc.relation.referencesSong, C. and Jia, L. (2016). A method for downscaling fengyun-3b soil moisture based on apparent thermal inertia. Remote Sensing, 8:703.spa
dc.relation.referencesSure, A. and Dikshit, O. (2019). Estimation of root zone soil moisture using passive microwave remote sensing: A case study for rice and wheat crops for three states in the indo-gangetic basin. Journal of Environmental Management, 234:75–89.spa
dc.relation.referencesUlaby, F., Long, D., Blackwell, W., Elachi, C., Fung, A., Ruf, C., Sarabandi, K., Zyl, J., and Zebker, H. (2014). Microwave Radar and Radiometric Remote Sensing. V.T. Chow, D.R. Maidment, L. M. (2011). Applied Hydrology. McGraw-Hill.spa
dc.relation.referencesWigneron, J.-P., Chanzy, A., Kerr, Y., Lawrence, H., Shi, J., Escorihuela, M. J., Mironov, V., Mialon, A., Demontoux, F., Rosnay, P., and Saleh, K. (2011). Evaluating an improved parameterization of the soil emission in l-meb. Geoscience and Remote Sensing, IEEE Transactions on, 49:1177 – 1189.spa
dc.relation.referencesWigneron, J.-P., Jackson, T., O’Neill, P., De Lannoy, G., Rosnay, P., Walker, J., Ferrazzoli, P., Mironov, V., Bircher, S., Grant, J., Kurum, M., Schwank, M., Muñoz Sabater, J., Das, N., Royer, A., Al-Yaari, A., Al Bitar, A., Fernandez-Moran, R., Lawrence, H., and Kerr, Y. (2017). Modelling the passive microwave signature from land surfaces: A review of recent results and application to the l-band smos y smap soil moisture retrieval algorithms. Remote Sensing of Environment, 192:238–262.spa
dc.relation.referencesWigneron, J.-P., Mialon, A., De Lannoy, G., Fernandez-Moran, R., Al-Yaari, A., Ebrahimi, M., Rodriguez-Fernandez, N., Kerr, Y., Quets, J., Pellarin, T., Fan, L., Fensholt, R., and Brandt, M. (2018). SMOS-IC: Current status and overview of soil moisture and VOD applications.spa
dc.relation.referencesYadav, V., Prasad, R., Bala, R., and Vishwakarma, A. (2020). An improved inversion al-gorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using c- band sentinel-1a sar data. Computers and Electronics in Agriculture, 173:105447.spa
dc.relation.referencesYanar, Y., Lipps, P., and Deep, I. (1997). Effect of soil saturation duration and soil water content on root rot of maize caused by pythium arrhenomanes. Plant Disease - PLANT DIS, 81:475–480.spa
dc.relation.referencesYang, G., Guo, P., Li, X., Wan, H., Meng, C., and Wang, B. (2020). Assessment with remotely sensed soil moisture products and ground-based observations over three dense network. Earth Science Informatics.spa
dc.relation.referencesYang, M., Wang, G., Lazin, R., Shen, X., and Anagnostou, E. (2021). Impact of planting time soil moisture on cereal crop yield in the upper blue nile basin: A novel insight towards agricultural water management. Agricultural Water Management, 243:106430.spa
dc.relation.referencesZeng, J., Li, Z., Quan, C., and Bi, H. (2015). Method for soil moisture and surface temperature estimation in the tibetan plateau using spaceborne radiometer observations. Geoscience and Remote Sensing Letters, IEEE, 12:97–101.spa
dc.relation.referencesZribi, M., Anguela, T., Duchemin, B., Lili, Z., Wagner, W., Hasenauer, S., and Chehbouni, A. (2010). Relationship between soil moisture and vegetation in the kairouan plain región of tunisia using low spatial resolution satellite data. Water Resources Research, 46:6508.spa
dc.rightsDerechos Reservados al Autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.proposalAgrometeorologíaspa
dc.subject.proposalControl de calidadspa
dc.subject.proposalVariabilidad espacio-temporalspa
dc.subject.proposalDesempeño de recuperaciónspa
dc.subject.proposalAlgoritmos de recuperaciónspa
dc.subject.proposalAgrometeorologyeng
dc.subject.proposalQuality controleng
dc.subject.proposalSpatio-temporal variabilityeng
dc.subject.proposalRecovery performanceeng
dc.subject.proposalRecovery algorithmseng
dc.subject.unescoAgroclimatología
dc.subject.unescoAgroclimatology
dc.subject.unescoHumedad del suelo
dc.subject.unescoSoil moisture
dc.titleEvaluación de métodos agroclimáticos para la estimación oportuna de las condiciones de humedad superficial del suelo en zonas agrícolas de Colombiaspa
dc.title.translatedEvaluation of agroclimatic methods for timely estimation of the conditions of surface soil moisture in agricultural areas of Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de Herramientas agroclimáticas para la estimación oportuna de la humedad de suelo en zonas agrícolas colombianasspa
oaire.fundernameFedearroz - Fondo Nacional del Arrozspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_FranciscoHernandez_HumedadSueloColombia.pdf
Tamaño:
29.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Meteorología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: