Influence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based data

dc.contributor.advisorDuque Montoya, Álvaro Javier
dc.contributor.advisorZuleta Zapata, Daniel Felipe
dc.contributor.authorGómez Correa, Luisa Fernanda
dc.contributor.researchgroupConservación, Uso y Biodiversidadspa
dc.coverage.countryColombia
dc.date.accessioned2023-01-18T21:10:45Z
dc.date.available2023-01-18T21:10:45Z
dc.date.issued2022-10-03
dc.descriptionIlustracionesspa
dc.description.abstractTree mortality is a fundamental ecological process determining forest structure and functioning. Here, we linked remote sensing and ground-based data to assess the influence of tree crown exposure to light (relative to total crown area), individual deviations of growth rates, tree size (DBH), and species wood density on the mortality of 984 canopy trees for the Amacayacu Forest Dynamics Plot, northwestern Amazon, between 2013 and 2019. We fitted Generalized Linear Mixed-Effects models to investigate the variables or combination of variables that best explained the probability of death during this period. We found that canopy trees of low wood density species were less prone to die when their proportion of crown was more exposed to sunlight, whereas high wood density trees were slightly more prone to die with higher relative crown exposure to light. Trees growing less than their species average had higher mortality, especially in low wood density species. The role of wood density in determining the survival of canopy trees under varying light conditions indicates differential responses of life-history strategies. Our results highlight the importance of accounting for life-history strategies (e.g., proxied by wood density) when predicting forest demography under rapidly changing climate.eng
dc.description.abstractLa mortalidad de los árboles es un proceso ecológico fundamental que determina la estructura y funcionamiento de los bosques. En este estudio, vinculamos datos de sensores remotos y monitoreos terrestres para evaluar la influencia de la exposición de la copa de los árboles a la luz (en relación con el área total de la copa), la desviación individual de las tasas de crecimiento, el tamaño del árbol (DBH), y la densidad de la madera de las especies, sobre la mortalidad de 984 árboles de dosel en la Parcela Permanente Amacayacu, Amazonía noroccidental, entre el 2013 y 2019. Ajustamos Modelos Lineales Generalizados de Efectos Mixtos para investigar las variables o combinación de variables que mejor explicaba la probabilidad de muerte durante este período. Encontramos que los árboles de dosel de especies con baja densidad de la madera fueron menos propensos a morir cuando tuvieron mayor proporción de copa expuesta a la luz, mientras que, árboles de alta densidad de madera fueron ligeramente más propensos a morir a mayor proporción de su copa expuesta a la luz. Árboles que crecieron menos que el promedio de su especie presentaron mayor mortalidad, especialmente en especies con baja densidad de la madera. El rol de la densidad de la madera en la determinación de la sobrevivencia de los árboles de dosel bajo diferentes condiciones de luz indica respuestas diferenciales de las estrategias de historia de vida. Nuestros resultados destacan la importancia de tener en cuenta las estrategias de historia de vida (e.g., representadas por la densidad de la madera) al predecir la demografía de los bosques bajo el rápido cambio climático. (tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular en Bosques y Conservación Ambientalspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bosques y Conservación Ambientalspa
dc.description.researchareaEcología de ecosistemas terrestresspa
dc.description.sponsorshipConvocatoria 891 del 2020 "Jóvenes investigadores" MinCienciasspa
dc.format.extentxvii, 71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83020
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambientalspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F, Poorter L. 2019. Amazonian rainforest tree mortality driven by climate and functional traits. Nature Climate Change 9: 384–388.spa
dc.relation.referencesAraujo RF, Chambers JQ, Celes CHS, Muller-Landau HC, Santos APF dos, Emmert F, Ribeiro GHPM, Gimenez BO, Lima AJN, Campos MAA, et al. 2020. Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics (J Müllerová, Ed.). PLoS ONE 15: e0243079.spa
dc.relation.referencesAraujo RF, Grubinger S, Celes CHS, Negrón-Juárez RI, Garcia M, Dandois JP, Muller-Landau HC. 2021. Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50\,ha plot. Biogeosciences 18: 6517–6531.spa
dc.relation.referencesArellano G, Medina NG, Tan S, Mohamad M, Davies SJ. 2019. Crown damage and the mortality of tropical trees. New Phytologist 221: 169–179.spa
dc.relation.referencesAugspurger CK, Kelly CK. 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61: 211–217.spa
dc.relation.referencesBarton K. 2022. MuMIn: Multi-Model Inference.spa
dc.relation.referencesBates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67: 1–48.spa
dc.relation.referencesBauman D, Fortunel C, Delhaye G, Malhi Y, Cernusak LA, Bentley LP, Rifai SW, Aguirre-Gutiérrez J, Menor IO, Phillips OL, et al. 2022. Tropical tree mortality has increased with rising atmospheric water stress. Nature.spa
dc.relation.referencesBennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. 2015. Larger trees suffer most during drought in forests worldwide. Nature Plants 1: 15139.spa
dc.relation.referencesBin Y, Li Y, Russo SE, Cao H, Ni Y, Ye W, Lian J. 2022. Leaf trait expression varies with tree size and ecological strategy in a subtropical forest. Functional Ecology 36: 1010–1022.spa
dc.relation.referencesBohlman SA, O’Brien S. 2006. Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. Journal of Tropical Ecology 22: 123–136.spa
dc.relation.referencesBurnham KP, Anderson DR. 2002. Model selection and multi- model inference. A practical information-theoretic approach (KP Burnham and DR Anderson, Eds.). New York, NY: Springer New York, NY.spa
dc.relation.referencesCamac JS, Condit R, FitzJohn RG, McCalman L, Steinberg D, Westoby M, Wright SJ, Falster DS. 2018. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proceedings of the National Academy of Sciences 115: 12459–12464.spa
dc.relation.referencesChamorro C. 1989. Biología de los suelos del Parque Nacional Natural Amacayacu y zonas adyacentes (Amazonas, Colombia). Colombia Geográfica 15: 45–63.spa
dc.relation.referencesChave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351–366.spa
dc.relation.referencesChave J, Muller-Landau HC, Baker TR, Easdale TA, ter Steege H, Webb CO. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16: 2356–2367.spa
dc.relation.referencesCifuentes L, Moreno F. 2022. Trait coordination at leaf level explains the resistance to excess light stress in shade-tolerant tropical tree species (M Mencuccini, Ed.). Tree Physiology 42: 1325–1336.spa
dc.relation.referencesClark DA, Clark DB. 1992. Life History Diversity of Canopy and Emergent Trees in a Neotropical Rain Forest. Ecological Monographs 62: 315–344.spa
dc.relation.referencesCondit R, Aguilar S, Hernandez A, Perez R, Lao S, Angehr G, Hubbell SP, Foster RB. 2004. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. Journal of Tropical Ecology 20: 51–72.spa
dc.relation.referencesCondit R, Pérez R, Lao S, Aguilar S, Hubbell SP. 2017. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. Forest Ecosystems 4: 17.spa
dc.relation.referencesCushman KC, Bunyavejchewin S, Cárdenas D, Condit R, Davies SJ, Duque Á, Hubbell SP, Kiratiprayoon S, Lum SKY, Muller‐Landau HC. 2021. Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica 53: 1442–1453.spa
dc.relation.referencesCushman KC, Detto M, García M, Muller-Landau HC. 2022. Soils and topography control natural disturbance rates and thereby forest structure in a lowland tropical landscape. Ecology Letters 25: 1126–1138.spa
dc.relation.referencesDavies SJ, Abiem I, Abu Salim K, Aguilar S, Allen D, Alonso A, Anderson-Teixeira K, Andrade A, Arellano G, Ashton PS, et al. 2021. ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation 253: 108907.spa
dc.relation.referencesDawkins HC, Field DRB. 1978. A long-term surveillance system for british woodland vegetation. Oxford, United Kingdom: Department of Forestry, Oxford University.spa
dc.relation.referencesDuque A, Muller-Landau HC, Valencia R, Cardenas D, Davies SJ, de Oliveira A, Pérez ÁJ, Romero-Saltos H, Vicentini A. 2017. Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodiversity and Conservation 26: 669–686.spa
dc.relation.referencesEsquivel-Muelbert A, Phillips OL, Brienen RJW, Fauset S, Sullivan MJP, Baker TR, Chao K-J, Feldpausch TR, Gloor E, Higuchi N, et al. 2020. Tree mode of death and mortality risk factors across Amazon forests. Nature Communications 11: 5515.spa
dc.relation.referencesEsquivel‐Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Lloyd J, Monteagudo‐Mendoza A, Arroyo L, Álvarez-Dávila E, et al. 2019. Compositional response of Amazon forests to climate change. Global Change Biology 25: 39–56.spa
dc.relation.referencesFeeley KJ, Bravo-Avila C, Fadrique B, Perez TM, Zuleta D. 2020. Climate-driven changes in the composition of New World plant communities. Nature Climate Change 10: 965–970.spa
dc.relation.referencesFranklin JF, Shugart HH, Harmon ME. 1987. Tree death as an ecological process. BioScience 37: 550–556.spa
dc.relation.referencesFriedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Bakker DCE, Hauck J, Le Quéré C, Peters GP, Peters W, Pongratz J, et al. 2022. Global Carbon Budget 2021. Earth System Science Data 14: 1917–2005.spa
dc.relation.referencesGivnish T. 1988. Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology 15: 63.spa
dc.relation.referencesGora EM, Esquivel-Muelbert A. 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nature Plants 7: 384–391.spa
dc.relation.referencesGrizonnet M, Michel J, Poughon V, Inglada J, Savinaud M, Cresson R. 2017. Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software and Standards 2: 15.spa
dc.relation.referencesHacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457–461.spa
dc.relation.referencesHarris RMB, Beaumont LJ, Vance TR, Tozer CR, Remenyi TA, Perkins-Kirkpatrick SE, Mitchell PJ, Nicotra AB, McGregor S, Andrew NR, et al. 2018. Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change 8: 579–587.spa
dc.relation.referencesHartig F. 2021. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models.spa
dc.relation.referencesHubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, et al. 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579: 80–87.spa
dc.relation.referencesJucker T, Bouriaud O, Coomes DA. 2015. Crown plasticity enables trees to optimize canopy packing in mixed‐species forests (J Baltzer, Ed.). Functional Ecology 29: 1078–1086.spa
dc.relation.referencesLüttge U. 2008. Tropical Forests. I. Physiognomy and Functional Structure. In: Lüttge U, ed. Physiological Ecology of Tropical Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 51–101.spa
dc.relation.referencesLutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Anderson‐Teixeira KJ, Andrade A, Baltzer J, Becker KML, et al. 2018. Global importance of large‐diameter trees. Global Ecology and Biogeography 27: 849–864.spa
dc.relation.referencesMartínez-Cano I, Muller-Landau HC, Joseph Wright S, Bohlman SA, Pacala SW. 2019. Tropical tree height and crown allometries for the Barro Colorado Nature Monument, Panama: A comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits. Biogeosciences 16: 847–862.spa
dc.relation.referencesMazerolle M. 2020. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c).spa
dc.relation.referencesMcDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science 368.spa
dc.relation.referencesMcDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WRL, Arend M, Breshears DD, Brodribb T, Choat B, et al. 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment 3: 294–308.spa
dc.relation.referencesMcMahon SM, Arellano G, Davies SJ. 2019. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10: e02615.spa
dc.relation.referencesMetcalf CJE, Clark JS, Clark DA. 2009. Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology 25: 1–12.spa
dc.relation.referencesMuller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, et al. 2006. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters 9: 575–588.spa
dc.relation.referencesNakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models (RB O’Hara, Ed.). Methods in Ecology and Evolution 4: 133–142.spa
dc.relation.referencesNascimento HEM, Laurance WF, Condit R, Laurance SG, D’Angelo S, Andrade AC. 2005. Demographic and life‐history correlates for Amazonian trees. Journal of Vegetation Science 16: 625–634.spa
dc.relation.referencesNegrón-Juárez R, Jenkins H, Raupp C, Riley W, Kueppers L, Magnabosco Marra D, Ribeiro G, Monteiro M, Candido L, Chambers J, et al. 2017. Windthrow variability in Central Amazonia. Atmosphere 8: 28.spa
dc.relation.referencesOliveira RS, Costa FRC, Baalen E, Jonge A, Bittencourt PR, Almanza Y, Barros F de V, Cordoba EC, Fagundes M V, Garcia S, et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytologist 221: 1457–1465.spa
dc.relation.referencesPeñuelas J, Ciais P, Canadell JG, Janssens IA, Fernández-Martínez M, Carnicer J, Obersteiner M, Piao S, Vautard R, Sardans J. 2017. Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution 1: 1438–1445.spa
dc.relation.referencesPiponiot C, Anderson‐Teixeira KJ, Davies SJ, Allen D, Bourg NA, Burslem DFRP, Cárdenas D, Chang‐Yang C, Chuyong G, Cordell S, et al. 2022. Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist 234: 1664–1677.spa
dc.relation.referencesPoorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, et al. 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89: 1908–1920.spa
dc.relation.referencesQGIS Geographic Information System. 2022. QGIS.spa
dc.relation.referencesR Core Team. 2021. R: a language and environment for statistical computing.spa
dc.relation.referencesReis SM, Marimon BS, Esquivel‐Muelbert A, Marimon BH, Morandi PS, Elias F, Oliveira EA, Galbraith D, Feldpausch TR, Menor IO, et al. 2022. Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology 110: 876–888.spa
dc.relation.referencesRüger N, Huth A, Hubbell SP, Condit R. 2011. Determinants of mortality across a tropical lowland rainforest community. Oikos 120: 1047–1056.spa
dc.relation.referencesRüger N, Wirth C, Wright SJ, Condit R. 2012. Functional traits explain light and size response of growth rates in tropical tree species. Ecology 93: 2626–2636.spa
dc.relation.referencesRusso SE, Davies SJ, King DA, Tan S. 2005. Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology 93: 879–889.spa
dc.relation.referencesRusso SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, Davies SJ, Ashton PS, Bunyavejchewin S, Chang-Yang C-H, et al. 2021. The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology & Evolution 5: 174–183.spa
dc.relation.referencesTrenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J. 2014. Global warming and changes in drought. Nature Climate Change 4: 17–22.spa
dc.relation.referencesValladares F, Niinemets Ü. 2008. Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237–257.spa
dc.relation.referencesWright SJ. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1–14.spa
dc.relation.referencesWright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, et al. 2010. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91: 3664–3674.spa
dc.relation.referencesYanoviak SP, Gora EM, Bitzer PM, Burchfield JC, Muller‐Landau HC, Detto M, Paton S, Hubbell SP. 2020. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytologist 225: 1936–1944.spa
dc.relation.referencesZanne AE, López-González G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Global wood density database. Dryad Digital Repository.spa
dc.relation.referencesZuleta D, Arellano G, Muller‐Landau HC, McMahon SM, Aguilar S, Bunyavejchewin S, Cardenas D, Chang‐Yang C, Duque A, Mitre D, et al. 2022a. Individual tree damage dominates mortality risk factors across six tropical forests. New Phytologist 233: 705–721.spa
dc.relation.referencesZuleta D, Duque A, Cardenas D, Muller‐Landau HC, Davies SJ. 2017. Drought‐induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98: 2538–2546.spa
dc.relation.referencesZuleta D, Krishna Moorthy SM, Arellano G, Verbeeck H, Davies SJ. 2022b. Vertical distribution of trunk and crown volume in tropical trees. Forest Ecology and Management 508: 120056.spa
dc.relation.referencesZuleta D, Russo SE, Barona A, Barreto-Silva JS, Cardenas D, Castaño N, Davies SJ, Detto M, Sua S, Turner BL, et al. 2020. Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil 450: 133–149.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembÁrboles maderables
dc.subject.proposalÁrea de copaspa
dc.subject.proposalDensidad de la maderaspa
dc.subject.proposalDisponibilidad de luzspa
dc.subject.proposalDronesspa
dc.subject.proposalEstrategias de historia de vidaspa
dc.subject.proposalSobrevivencia arbóreaspa
dc.subject.proposalTasas de crecimientospa
dc.subject.proposalTamaño del árbolspa
dc.subject.proposalCrown areaeng
dc.subject.proposalDroneseng
dc.subject.proposalGrowth rateseng
dc.subject.proposalLife-history strategieseng
dc.subject.proposalLight availabilityeng
dc.subject.proposalTree sizeeng
dc.subject.proposalTree survivaleng
dc.subject.proposalWood densityeng
dc.titleInfluence of tree-level and species-level factors on the mortality of canopy trees in an Amazon forest: linking remote sensing with ground-based dataeng
dc.title.translatedInfluencia de los factores de individuo y especie en la mortalidad de los árboles de dosel en un bosque de la Amazonía: vinculación de sensores remotos y datos terrestresspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037643252.2022.pdf
Tamaño:
3.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Bosques y Conservación Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: