Evaluación de la condrogénesis mediada por medios condicionados de células madre mesenquimales derivadas de tejido adiposo versus plasma rico en plaquetas en defectos osteocondrales de rodilla: un modelo experimental en conejos

dc.contributor.advisorOrtiz Morales, Jorge Rolandospa
dc.contributor.advisorChaparro Garzón, Orlandospa
dc.contributor.advisorLinero Segrera, Itali Marcellyspa
dc.contributor.authorRamírez Yépez, Camilo Sebastiánspa
dc.contributor.researchgroupBiología de Células Madrespa
dc.date.accessioned2022-02-09T17:27:29Z
dc.date.available2022-02-09T17:27:29Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractIntroducción: Las lesiones del cartílago hialino, ya sean de tipo traumático o degenerativo dan lugar a defectos condrales u osteocondrales que no cicatrizan con cartílago hialino nuevo. Por esta razón se ha investigado en la terapia regenerativa, con especial atención al secretoma de las células madre mesenquimales (MSC). En el presente estudio se plantea evaluar la condrogénesis del plasma rico en plaquetas (PRP) suplementado con medios condicionados de las células madre mesenquimales derivadas de tejido adiposo (AD-MSC-CM) en un modelo de defecto osteocondral (DO) de rodilla en conejos. Materiales y métodos: se plantea un estudio por fases, una fase piloto en la cual se establece el modelo experimental estandarizando primero la técnica quirúrgica con seis piezas cadavéricas, luego se estandariza el método de administración del tratamiento con dos conejos Nueva Zelanda con supervivencia. El primero se trata únicamente PRP administrado de forma infiltrativa en la rodilla, el segundo se trata con PRP + AD-MSC-CM. Se practica eutanasia a los 7 días y se evalúan los desenlaces y las complicaciones perioperatorias. En las fases siguientes del trabajo se plantea un estudio con 20 conejos: un grupo sham (n=2), un grupo control (n=6), un grupo tratado con PRP (n=6) y un grupo tratado con PRP + AD-MSC-CM (n=6), se sacrifican a las 12 semanas y se evalúa la regeneración condral de forma macroscópica e histológica; y la diferenciación del tipo de cartílago mediante inmunohistoquímica. Resultados: El presente documento muestra los resultados de la fase piloto determinando el diseño del modelo esperimental. Se propone un DO en el surco troclear al lado del tendón extensor digitorium longus. A los 7 días, ambos tratamientos seguían intraarticulares, sin embargo, mientras que el conejo tratado únicamente con PRP no mostraba ningún cambio en el DO, el conejo tratado con PRP + AD-MSC-CM exhibía características de cicatrización en el defecto creado rellenando parcialmente el mismo. Durante siete días, ninguno de los conejos mostró ningún tipo de efecto adverso más que una leve cojera. Tampoco mostraron signos importantes de dolor, malestar o angustia por lo que no hubo necesidad de aplicar criterios de punto final. Discusión y conclusiones: A pesar de las diferencias entre especies, el planteamiento de un DO en conejos permite evaluar el principio del tratamiento a aplicar siendo un modelo costo efectivo, que permitirá analizar la capacidad condrogénica del PRP y los AD-MCS-CM. El PRP es una buena estrategia que sirve como andamiaje para la entrega de factores de crecimiento y además actúa de forma sinérgica con los AD-MSC-CM. Debemos aclarar que los resultados respecto a la condrogénesis deben analizarse mediante un estudio histopatológico en las siguientes fases del estudio y tras haber pasado 12 semanas. A pesar de haber realizado un implante xenogénico no observamos ningún tipo de evento adverso en el conejo tratado con AD-MSC-CM, posiblemente indica que estos son seguros en la aplicación en estudios ulteriores. (Texto tomado de la fuente).spa
dc.description.abstractEvaluation of adipose-derived mesenchymal stem cell conditioned media mediated chondrogenesis versus platelet-rich plasma in knee osteochondral defects: an experimental model in rabbits Introduction: Hyaline cartilage injuries, whether traumatic or degenerative, give rise to chondral or osteochondral defects that do not heal with new hyaline cartilage. For this reason, it has been investigated in regenerative therapy, with special attention to the mesenchymal stem cell (MSC) secretome. The present study aims to evaluate the chondrogenesis of platelet-rich plasma (PRP) supplemented with adipose-derived mesenchymal stem cells conditioned media (AD-MSC-CM) in a model of knee osteochondral defect (OD) in rabbits. Materials y methods: A phased study is proposed, a pilot phase in which the experimental model is established, first standardizing the surgical technique with six cadaveric pieces, then the treatment administration method is standardized with two New Zealand rabbits with survival. The first is treated only with PRP administered infiltratively in the knee, the second is treated with PRP + AD-MSC-CM. Euthanasia is performed at 7 days and perioperative outcomes and complications are evaluated. In the following phases of the work, a study with 20 rabbits is proposed: a sham group (n=2), a control group (n=6), a group treated with PRP (n=6, and a group treated with PRP + AD. -MSC-CM (n=6), sacrificed at 12 weeks and chondral regeneration is evaluated macroscopically and histologically; and differentiation of cartilage type by immunohistochemistry. Results: This document shows the results of the pilot phase determining the design of the experimental model. A DO is proposed in the trochlear groove next to the extensor digitorium longus tendon. At 7 days, both treatments were still intra-articular, however, while the rabbit treated with PRP alone did not show any change in DO, the rabbit treated with PRP + AD-MSC-CM exhibited healing characteristics in the defect created by partially filling the same. For seven days, none of the rabbits showed any adverse effects other than a slight lameness. They also did not show significant signs of pain, discomfort or distress, so there was no need to apply endpoint criteria. Discussion and conclusions: Despite the differences between species, the approach of a DO in rabbits allows evaluating the principle of the treatment to be applied, being a cost-effective model, which will allow analyzing the chondrogenic capacity of PRP and AD-MCS-CM. PRP is a good strategy that serves as a scaffold for the delivery of growth factors and also acts synergistically with AD-MSC-CM. We must clarify that the results regarding chondrogenesis must be analyzed by means of a histopathological study in the following phases of the study and after 12 weeks have passed. Despite having performed a xenogenic implant, we did not observe any type of adverse event in the rabbit treated with AD-MSC-CM, possibly indicating that these are safe in the application in further studies.eng
dc.description.degreelevelEspecialidades Médicasspa
dc.description.degreenameEspecialista en Ortopedia y Traumatologíaspa
dc.description.methodsEstudio experimental en un modelo animalspa
dc.description.notesIncluye anexosspa
dc.description.researchareaCirugía de rodillaspa
dc.description.researchareaTecnología de tejidosspa
dc.description.researchareaCiencias básicasspa
dc.format.extentxiii, 71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80922
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Cirugíaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Especialidad en Ortopedia y Traumatologíaspa
dc.relation.indexedBiremespa
dc.relation.references1. Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic Science of Articular Cartilage. Vol. 36, Clinics in Sports Medicine. W.B. Saunders; 2017. p. 413–25.spa
dc.relation.referencesWhitney Kaitlyn E, Bolia Ioanna, Chahla Jorge, Utsunomiya Hajime, Evans Thos A., Provencher Matthew, et al. Physiology and Homeostasis of Musculoskeletal Structures, Injury Response, Healing Process, and Regenerative Medicine Approaches. In: Gobbi Alberto, Espregueira-Mendes João, Lane John G., Karahan Mustafa, editors. Bio-orthopaedics A New Approach. Berlín; 2017. p. 71–85.spa
dc.relation.referencesKrishnan Y, Grodzinsky AJ. Cartilage diseases. Vols. 71–72, Matrix Biology. Elsevier B.V.; 2018. p. 51–69.spa
dc.relation.referencesRoseti Livia, Grigolo Brunella. Host Environment: Scaffolds and Signaling (Tissue Engineering) Articular Cartilage Regeneration: Cells, Scaffolds, and Growth Factors. In: Gobbi A, Espregueira-Mendes J, Lane JG, Karahan M, editors. Bio-orthopaedics A New Approach. Berlin, Heidelberg: Springer Berlin Heidelberg; 2017. p. 87–103.spa
dc.relation.referencesMaglio M, Brogini S, Pagani S, Giavaresi G, Tschon M. Current Trends in the Evaluation of Osteochondral Lesion Treatments: Histology, Histomorphometry, and Biomechanics in Preclinical Models. Vol. 2019, BioMed Research International. Hindawi Limited; 2019.spa
dc.relation.referencesVizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Vol. 18, International Journal of Molecular Sciences. MDPI AG; 2017.spa
dc.relation.referencesZylińska B, Silmanowicz P, Sobczyńska-Rak A, Jarosz Ł, Szponder T. Treatment of articular cartilage defects: Focus on tissue engineering. Vol. 32, In Vivo. International Institute of Anticancer Research; 2018. p. 1289–300.spa
dc.relation.referencesTobita M, Tajima S, Mizuno H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: Stem cell transplantation methods that enhance stemness Mesenchymal Stem/Stromal Cells-An update. Vol. 6, Stem Cell Research and Therapy. BioMed Central Ltd.; 2015.spa
dc.relation.referencesChahla Jorge, Cinque Mark, LaPrade Robert F., Mandelbaum Bert. Overview of Orthobiology and Biomechanics. In: Bio-orthopaedics A New Approach. Berlin, Heidelberg: Springer Berlin Heidelberg; 2017. p. 25–40.spa
dc.relation.referencesCross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, et al. The global burden of hip and knee osteoarthritis: Estimates from the Global Burden of Disease 2010 study. Annals of the Rheumatic Diseases. 2014;73(7):1323–30.spa
dc.relation.referencesFletscher G. Modificación experimental de la técnica de membrana inducida (Masquelet) mediante uso de medios condicionados producidos por células madre mesenquimales. [Bogotá D.C]; 2014.spa
dc.relation.referencesLinero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS ONE. 2014 Sep 8;9(9).spa
dc.relation.referencesSánchez R. COMPARACIÓN DEL EFECTO DE MEDIOS CONDICIONADOS DE CULTIVOS DE 2 TIPOS DE CÉLULAS MADRE MESENQUIMALES SOBRE LA CICATRIZACIÓN DE HERIDAS EN RATONES. [Bogotá D.C]; 2011.spa
dc.relation.referencesKiani C, Chen L, Wu YJ, Yee AJ, Yang BB. Structure and function of aggrecan [Internet]. Vol. 12, Cell Research. 2002. Available from: http://www.cell-research.comspa
dc.relation.referencesCorrea D, Lietman SA. Articular cartilage repair: Current needs, methods and research directions. Vol. 62, Seminars in Cell and Developmental Biology. Academic Press; 2017. p. 67–77.spa
dc.relation.referencesAlvarez A, Fuentes R, Soto S, Nguyen Tuan, Garcia Y. Cartílago y gonartrosis. Archivo medico de Camaguey. 2019;23(6).spa
dc.relation.referencesArmiento AR, Alini M, Stoddart MJ. Articular fibrocartilage - Why does hyaline cartilage fail to repair? Vol. 146, Advanced Drug Delivery Reviews. Elsevier B.V.; 2019. p. 289–305.spa
dc.relation.referencesPoole A. Robin, Kojima Toshi, Yasuda Tadashi, Mwale Fackson, Kobayashi Masahiko, Laverty Sheila. Composition and Structure of Articular Cartilage: A Template for Tissue Repair. Clinical Orthopaedics & Related Research. 2001;391 Supplement:S26–33.spa
dc.relation.referencesLubis AMT, Lubis VK. Adult Bone Marrow Stem Cells in Cartilage Therapy.spa
dc.relation.referencesWu L, Cai X, Zhang S, Karperien M, Lin Y. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: Perspectives from stem cell biology and molecular medicine. Journal of Cellular Physiology. 2013 May;228(5):938–44.spa
dc.relation.referencesHouck DA, Kraeutler MJ, Belk JW, Frank RM, McCarty EC, Bravman JT. Do Focal Chondral Defects of the Knee Increase the Risk for Progression to Osteoarthritis? A Review of the Literature. Vol. 6, Orthopaedic Journal of Sports Medicine. SAGE Publications Ltd; 2018.spa
dc.relation.referencesCastillo Tiffany N., Huddleston James I. Total Knee Arthroplasty for the Young, Active Patient with Osteoarthritis. In: Parker D, editor. Management of Knee Osteoarthritis in the Younger, Active Patient. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. p. 133–47.spa
dc.relation.referencesSuri P, Morgenroth DC, Hunter DJ. Epidemiology of Osteoarthritis and Associated Comorbidities. Vol. 4, PM and R. 2012.spa
dc.relation.referencesLondoño J, Peláez Ballestas I, Cuervo F, Angarita I, Giraldo R, Rueda JC, et al. Prevalence of rheumatic disease in Colombia according to the Colombian Rheumatology Association (COPCORD) strategy. Prevalence study of rheumatic disease in Colombian population older than 18 years. Revista Colombiana de Reumatologia. 2018 Oct 1;25(4):245–56.spa
dc.relation.referencesPintat J, Silvestre A, Magalon G, Gadeau AP, Pesquer L, Perozziello A, et al. Intra-articular Injection of Mesenchymal Stem Cells and Platelet-Rich Plasma to Treat Patellofemoral Osteoarthritis: Preliminary Results of a Long-Term Pilot Study. Journal of Vascular and Interventional Radiology. 2017 Dec 1;28(12):1708–13.spa
dc.relation.referenceslo Monaco M, Merckx G, Ratajczak J, Gervois P, Hilkens P, Clegg P, et al. Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures. Vol. 2018, Stem Cells International. Hindawi Limited; 2018.spa
dc.relation.referencesDevitt Brian M., Bell Stuart W., Whitehead Tim S. Cartilage Preservation and Restoration Techniques: Evidence-Based Practice. In: Parker D, editor. Management of Knee Osteoarthritis in the Younger, Active Patient. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. p. 51–65.spa
dc.relation.referencesSouthworth TM, Naveen NB, Nwachukwu BU, Cole BJ, Frank RM. Orthobiologics for Focal Articular Cartilage Defects. Vol. 38, Clinics in Sports Medicine. W.B. Saunders; 2019. p. 109–22.spa
dc.relation.referencesTang Y, Wang H, Sun Y, Jiang Y, Fang S, Kan Z, et al. Using Platelet-Rich Plasma Hydrogel to Deliver Mesenchymal Stem Cells into Three-Dimensional PLGA Scaffold for Cartilage Tissue Engineering. ACS Applied Bio Materials. 2021 Dec 20;4(12):8607–14.spa
dc.relation.referencesChang NJ, Erdenekhuyag Y, Chou PH, Chu CJ, Lin CC, Shie MY. Therapeutic Effects of the Addition of Platelet-Rich Plasma to Bioimplants and Early Rehabilitation Exercise on Articular Cartilage Repair. American Journal of Sports Medicine. 2018 Jul 1;46(9):2232–41.spa
dc.relation.referencesMadry H, Orth P, Cucchiarini M. Gene therapy for cartilage repair. Vol. 2, Cartilage. 2011. p. 201–25.spa
dc.relation.referencesCucchiarini M, Henrionnet C, Mainard D, Pinzano A, Madry H. New trends in articular cartilage repair. Journal of Experimental Orthopaedics. 2015 Dec 1;2(1):1–8.spa
dc.relation.referencesXie X, Zhang C, Tuan RS. Biology of platelet-rich plasma and its clinical application in cartilage repair. Arthritis Research & Therapy. 2014;16(1):204.spa
dc.relation.referencesZhu Y, Yuan M, Meng HY, Wang AY, Guo QY, Wang Y, et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: A review. Vol. 21, Osteoarthritis and Cartilage. 2013. p. 1627–37.spa
dc.relation.referencesCampbell KA, Saltzman BM, Mascarenhas R, Khair MM, Verma NN, Bach BR, et al. Does Intra-articular Platelet-Rich Plasma Injection Provide Clinically Superior Outcomes Compared With Other Therapies in the Treatment of Knee Osteoarthritis? A Systematic Review of Overlapping Meta-analyses. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2015 Nov;31(11):2213–21.spa
dc.relation.referencesChen Z, Wang C, You D, Zhao S, Zhu Z, Xu M. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: A meta-analysis. Medicine. 2020 Mar 1;99(11):e19388.spa
dc.relation.referencesDominici M, le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006 Aug;8(4):315–7.spa
dc.relation.referencesChaparro O, Linero I. Regenerative Medicine: A New Paradigm in Bone Regeneration. In: Advanced Techniques in Bone Regeneration. InTech; 2016.spa
dc.relation.referencesHan Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells. 2019 Aug 13;8(8):886.spa
dc.relation.referencesIijima H, Isho T, Kuroki H, Takahashi M, Aoyama T. Effectiveness of mesenchymal stem cells for treating patients with knee osteoarthritis: a meta-analysis toward the establishment of effective regenerative rehabilitation. Vol. 3, npj Regenerative Medicine. Nature Publishing Group; 2018.spa
dc.relation.referencesMaheshwer B, Polce EM, Paul K, Williams BT, Wolfson TS, Yanke A, et al. Regenerative Potential of Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis and Chondral Defects: A Systematic Review and Meta-analysis. Vol. 37, Arthroscopy - Journal of Arthroscopic and Related Surgery. W.B. Saunders; 2021. p. 362–78.spa
dc.relation.referencesLalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of Cell Therapy with Mesenchymal Stromal Cells (SafeCell): A Systematic Review and Meta-Analysis of Clinical Trials. Vol. 7, PLoS ONE. 2012.spa
dc.relation.referencesPeeters CMM, Leijs MJC, Reijman M, van Osch GJVM, Bos PK. Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: A systematic literature review. Vol. 21, Osteoarthritis and Cartilage. 2013. p. 1465–73.spa
dc.relation.referencesRubio-Azpeitia E, Andia I. Partnership between platelet-rich plasma and mesenchymal stem cells: in vitro experience. Vol. 4, Ligaments and Tendons Journal. 2014.spa
dc.relation.referencesAtashi F, Jaconi MEE, Pittet-Cuénod B, Modarressi A. Autologous platelet-rich plasma: A biological supplement to enhance adipose-derived mesenchymal stem cell expansion. Tissue Engineering - Part C: Methods. 2015 Mar 1;21(3):253–62.spa
dc.relation.referencesLoibl M, Lang S, Brockhoff G, Gueorguiev B, Hilber F, Worlicek M, et al. The effect of leukocyte-reduced platelet-rich plasma on the proliferation of autologous adipose-tissue derived mesenchymal stem cells1. In: Clinical Hemorheology and Microcirculation. IOS Press; 2016. p. 599–614.spa
dc.relation.referencesJalowiec JM, D’Este M, Bara JJ, Denom J, Menzel U, Alini M, et al. An in Vitro Investigation of Platelet-Rich Plasma-Gel as a Cell and Growth Factor Delivery Vehicle for Tissue Engineering. Tissue Engineering - Part C: Methods. 2016 Jan 1;22(1):49–58.spa
dc.relation.referencesLee JC, Min HJ, Park HJ, Lee S, Seong SC, Lee MC. Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy - Journal of Arthroscopic and Related Surgery. 2013 Jun;29(6):1034–46.spa
dc.relation.referencesSamuel S, Ahmad RE, Ramasamy TS, Manan F, Kamarul T. Platelet rich concentrate enhances mesenchymal stem cells capacity to repair focal cartilage injury in rabbits. Injury. 2018 Apr 1;49(4):775–83.spa
dc.relation.referencesShi WJ, Tjoumakaris FP, Lendner M, Freedman KB. Biologic injections for osteoarthritis and articular cartilage damage: can we modify disease? The Physician and Sportsmedicine. 2017 Jul 3;45(3):203–23.spa
dc.relation.referencesKoh Y-G, Choi Y-J. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. The Knee. 2012 Dec;19(6):902–7.spa
dc.relation.referencesKoh Y-G, Kwon O-R, Kim Y-S, Choi Y-J. Comparative Outcomes of Open-Wedge High Tibial Osteotomy With Platelet-Rich Plasma Alone or in Combination With Mesenchymal Stem Cell Treatment: A Prospective Study. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2014 Nov;30(11):1453–60.spa
dc.relation.referencesKim YS, Kwon OR, Choi YJ, Suh DS, Heo DB, Koh YG. Comparative Matched-Pair Analysis of the Injection Versus Implantation of Mesenchymal Stem Cells for Knee Osteoarthritis. The American Journal of Sports Medicine. 2015 Nov 3;43(11):2738–46.spa
dc.relation.referencesLee MJ, Kim J, Kim MY, Bae YS, Ryu SH, Lee TG, et al. Proteomic analysis of tumor necrosis factor-α-induced secretome of human adipose tissue-derived mesenchymal stem cells. Journal of Proteome Research. 2010 Apr 5;9(4):1754–62.spa
dc.relation.referencesBousnaki M, Bakopoulou A, Kritis A, Koidis P. The Efficacy of Stem Cells Secretome Application in Osteoarthritis: A Systematic Review of In Vivo Studies. Vol. 16, Stem Cell Reviews and Reports. Springer; 2020. p. 1222–41.spa
dc.relation.referencesVeronesi F, Borsari V, Sartori M, Orciani M, Mattioli-Belmonte M, Fini M. The use of cell conditioned medium for musculoskeletal tissue regeneration. Vol. 233, Journal of Cellular Physiology. Wiley-Liss Inc.; 2018. p. 4423–42.spa
dc.relation.referencesKatagiri W, Osugi M, Kawai T, Hibi H. First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head & Face Medicine. 2016 Dec 15;12(1):5.spa
dc.relation.referencesZhou BR, Xu Y, Xu Y, Guo SL, Wang Y, Zhu F, et al. The effect of conditioned media of Adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. BioMed Research International. 2013;2013.spa
dc.relation.referencesFukuoka H, Suga H. Hair Regeneration Treatment Using Adipose-Derived Stem Cell Conditioned Medium: Follow-up With Trichograms. 2015.spa
dc.relation.referencesEscobar CH, Chaparro O. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine. 2016 Mar 1;5(3):358–65.spa
dc.relation.referencesvan den Borne MPJ, Raijmakers NJH, Vanlauwe J, Victor J, de Jong SN, Bellemans J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage. 2007 Dec;15(12):1397–402.spa
dc.relation.referencesHoemann C, Kandel R, Roberts S, Saris DBF, Creemers L, Mainil-Varlet P, et al. International cartilage repair society (ICRS) recommended guidelines for histological endpoints for cartilage repair studies in animal models and clinical trials. Vol. 2, Cartilage. 2011. p. 153–72.spa
dc.relation.referencesMainil-Varlet P, van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S. A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. American Journal of Sports Medicine. 2010;38(5):880–90.spa
dc.relation.referencesCongreso de la República de Colombia. Ley 84 de 1989: Por la cual se adopta el Estatuto Nacional de Protección de los Animales y se crean unas contravenciones y se regula lo referente a su procedimiento y competencia. Diario Oficial 39120. Bogotá D.C.; 1989.spa
dc.relation.referencesMinisterio de salud. Resolución número 8430 de 1993. Bogotá D.C; 1993.spa
dc.relation.referencesMeng X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, et al. Animal Models of Osteochondral Defect for Testing Biomaterials. Vol. 2020, Biochemistry Research International. Hindawi Limited; 2020.spa
dc.relation.referencesMoran CJ, Ramesh A, Brama PAJ, O’Byrne JM, O’Brien FJ, Levingstone TJ. The benefits and limitations of animal models for translational research in cartilage repair. Vol. 3, Journal of Experimental Orthopaedics. Springer Berlin Heidelberg; 2016. p. 1–12.spa
dc.relation.referencesHiga K, Kitamura N, Goto K, Kurokawa T, Gong JP, Kanaya F, et al. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskeletal Disorders. 2017 May 22;18(1).spa
dc.relation.referencesCampos Y, Almirall A, Fuentes G, Bloem HL, Kaijzel EL, Cruz LJ. Tissue Engineering: An Alternative to Repair Cartilage. Tissue Engineering Part B: Reviews. 2019 Aug;25(4):357–73.spa
dc.relation.referencesYin Z, Yang X, Jiang Y, Xing L, Xu Y, Lu Y, et al. Platelet-rich plasma combined with agarose as a bioactive scaffold to enhance cartilage repair: An in vitro study. Journal of Biomaterials Applications. 2014 Mar 3;28(7):1039–50.spa
dc.relation.referencesZhang YT, Niu J, Wang Z, Liu S, Wu J, Yu B. Repair of osteochondral defects in a rabbit model using bilayer poly(Lactide-co-Glycolide) scaffolds loaded with autologous platelet-rich plasma. Medical Science Monitor. 2017 Oct 31;23:5189–201.spa
dc.relation.referencesLi Z, Zhang X, Yuan T, Zhang Y, Luo C, Zhang J, et al. Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Tissue Engineering - Part A. 2020 Aug 1;26(15–16):886–95.spa
dc.relation.referencesSermer C, Devitt B, Chahal J, Kandel R, Theodoropoulos J. The addition of platelet-rich plasma to scaffolds used for cartilage repair: A review of human and animal studies. Vol. 31, Arthroscopy - Journal of Arthroscopic and Related Surgery. W.B. Saunders; 2015. p. 1607–25.spa
dc.relation.referencesBeigi M-H, Atefi A, Ghanaei H-R, Labbaf S, Ejeian F, Nasr-Esfahani M-H. Activated platelet-rich plasma improves cartilage regeneration using adipose stem cells encapsulated in a 3D alginate scaffold. Journal of Tissue Engineering and Regenerative Medicine. 2018 Jun;12(6):1327–38.spa
dc.relation.referencesAnitua E, Tejero R, Alkhraisat MH, Orive G. Platelet-rich plasma to improve the bio-functionality of biomaterials. Vol. 27, BioDrugs. 2013. p. 97–111.spa
dc.relation.referencesSlimi F, Zribi W, Trigui M, Amri R, Gouiaa N, Abid C, et al. The effectiveness of platelet-rich plasma gel on full-thickness cartilage defect repair in a rabbit model Aims The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model. Methods. Bone Joint Res. 2021;10(3):192–202.spa
dc.relation.referencesVinod E, Vinod Francis D, Manickam Amirtham S, Sathishkumar S, Boopalan PRJVC. Allogeneic platelet rich plasma serves as a scaffold for articular cartilage derived chondroprogenitors. Tissue and Cell. 2019 Feb;56:107–13.spa
dc.relation.referencesBerninger MT, Wexel G, Rummeny EJ, Imhoff AB, Anton M, Henning TD, et al. Treatment of osteochondral defects in the rabbit’s knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. Journal of visualized experiments : JoVE. 2013;(75).spa
dc.relation.referencesKhanmohammadi M, Golshahi H, Saffarian Z, Montazeri S, Khorasani S, Kazemnejad S. Repair of Osteochondral Defects in Rabbit Knee Using Menstrual Blood Stem Cells Encapsulated in Fibrin Glue: A Good Stem Cell Candidate for the Treatment of Osteochondral Defects. Tissue Engineering and Regenerative Medicine. 2019 Jun 1;16(3):311–24.spa
dc.relation.referencesChona D v., Kha ST, Minetos PD, LaPrade CM, Chu CR, Abrams GD, et al. Biologic Augmentation for the Operative Treatment of Osteochondral Defects of the Knee: A Systematic Review. Vol. 9, Orthopaedic Journal of Sports Medicine. SAGE Publications Ltd; 2021.spa
dc.relation.referencesDai WL, Zhou AG, Zhang H, Zhang J. Efficacy of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Meta-analysis of Randomized Controlled Trials. Arthroscopy - Journal of Arthroscopic and Related Surgery. 2017 Mar 1;33(3):659-670.e1.spa
dc.relation.referencesLe ADK, Enweze L, DeBaun MR, Dragoo JL. Current Clinical Recommendations for Use of Platelet-Rich Plasma. Vol. 11, Current Reviews in Musculoskeletal Medicine. Humana Press Inc.; 2018. p. 624–34.spa
dc.relation.referencesCaruana A, Savina D, Macedo JP, Soares SC. From Platelet-Rich Plasma to Advanced Platelet-Rich Fibrin: Biological Achievements and Clinical Advances in Modern Surgery. Vol. 13, European Journal of Dentistry. Georg Thieme Verlag; 2019. p. 280–6.spa
dc.relation.referencesBarbon S, Stocco E, Macchi V, Contran M, Grandi F, Borean A, et al. Platelet-rich fibrin scaffolds for cartilage and tendon regenerative medicine: From bench to bedside. Vol. 20, International Journal of Molecular Sciences. MDPI AG; 2019.spa
dc.relation.referencesWong CC, Chen CH, Chan WP, Chiu LH, Ho WP, Hsieh FJ, et al. Single-Stage Cartilage Repair Using Platelet-Rich Fibrin Scaffolds With Autologous Cartilaginous Grafts. American Journal of Sports Medicine. 2017 Nov 1;45(13):3128–42.spa
dc.relation.referencesMaruyama M, Satake H, Suzuki T, Honma R, Naganuma Y, Takakubo Y, et al. Comparison of the Effects of Osteochondral Autograft Transplantation With Platelet-Rich Plasma or Platelet-Rich Fibrin on Osteochondral Defects in a Rabbit Model. American Journal of Sports Medicine. 2017 Dec 1;45(14):3280–8.spa
dc.relation.referencesHsu YK, Sheu SY, Wang CY, Chuang MH, Chung PC, Luo YS, et al. The effect of adipose-derived mesenchymal stem cells and chondrocytes with platelet-rich fibrin releasates augmentation by intra-articular injection on acute osteochondral defects in a rabbit model. Knee. 2018 Dec 1;25(6):1181–91.spa
dc.relation.referencesWu C-C, Sheu S-Y, Hsu L-H, Yang K-C, Tseng C-C, Kuo T-F. Intra-articular Injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: An in vivo study in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2017 Aug;105(6):1536–43.spa
dc.relation.referencesKazemi D, Fakhrjou A. Leukocyte and platelet rich plasma (L-PRP) versus leukocyte and platelet rich fibrin (L-PRF) for articular cartilage repair of the knee: A comparative evaluation in an animal model. Iranian Red Crescent Medical Journal. 2015 Oct 1;17(10).spa
dc.relation.referencesLee BH, Park JN, Lee EJ, Moon YW, Wang JH. Therapeutic Efficacy of Spherical Aggregated Human Bone Marrow–Derived Mesenchymal Stem Cells Cultured for Osteochondral Defects of Rabbit Knee Joints. American Journal of Sports Medicine. 2018 Jul 1;46(9):2242–52.spa
dc.relation.referencesZayed M, Newby S, Misk N, Donnell R, Dhar M. Xenogenic implantation of equine synovial fluid-derived mesenchymal stem cells leads to articular cartilage regeneration. Stem Cells International. 2018;2018.spa
dc.relation.referencesPei M, Yan Z, Shoukry M, Boyce BM. Failure of xenoimplantation using porcine synovium-derived stem cell-based cartilage tissue constructs for the repair of rabbit osteochondral defects. Journal of Orthopaedic Research. 2010 Aug;28(8):1064–70.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::611 - Anatomía humana, citología, histologíaspa
dc.subject.decsModelos Animalesspa
dc.subject.decsModels, Animaleng
dc.subject.decsCondrogénesisspa
dc.subject.decsChondrogenesiseng
dc.subject.decsStem Cellseng
dc.subject.decsCélulas Madrespa
dc.subject.proposalCartílagospa
dc.subject.proposalCélulas madre mesenquimalesspa
dc.subject.proposalMedios condicionadosspa
dc.subject.proposalSecretomaspa
dc.subject.proposalCartilageeng
dc.subject.proposalMesenchimal stem cellseng
dc.subject.proposalConditioned mediaeng
dc.subject.proposalSecretomeeng
dc.titleEvaluación de la condrogénesis mediada por medios condicionados de células madre mesenquimales derivadas de tejido adiposo versus plasma rico en plaquetas en defectos osteocondrales de rodilla: un modelo experimental en conejosspa
dc.title.translatedEvaluation of adipose derived mesenchymal stem cell conditioned media mediated chondrogenesis versus platelet rich plasma in knee osteochondral defects: an experimental model in rabbitseng
dc.typeTrabajo de grado - Especialidad Médicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameConvocatoria para el Apoyo a Proyectos de Investigación, Creación Artística e Innovación de la Sede de Bogota de la universidad Nacional de Colombia – 2020 (HERMES)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030594330.2022.pdf
Tamaño:
1.64 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Especialidad en Ortopedia y Traumatología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: